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Individual nanoparticles of silicon and titanium having diameters in the range of 40–140 nm have been
repeatedly compressed by a nanoindenter. Even at low loads, the small tip-particle and particle-substrate
contacts generate extreme pressures within the confined particle, influencing its stiffness and fracture tough-
ness. The effect of these high pressures on the measured modulus is taken into account by invoking a Mur-
naghan equation-of-state-based analysis. Fracture toughness of the silicon particles is found to increase by a
factor of 4 in compression for a 40-nm-diam particle when compared to bulk silicon. Additionally, strain
energy release rates increase by more than an order of magnitude for particles of this size when compared to
bulk Si.
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I. INTRODUCTION

A recent trend in nanoindentation has been to evaluate the
properties of nanoparticles1–3 and small structures.4,5 Typi-
cally this has been accomplished by using scanning-probe-
microscopy- �SPM-� based nanoindenters in order to locate
the structure of interest. Unique issues are encountered with
this type of testing; besides adopting new algorithms to de-
termine the proper contact area, what assumptions are nec-
essary in order to calculate modulus when considering the
contact of individual nanoscale structures? In these in-
stances, relatively low loads can generate extreme contact
pressures that, in turn, can influence the effective local elas-
tic moduli. This is important since when quantifying the
early stages of plasticity through to the later stages of frac-
ture, the need for any changes in modulus as a function of
pressure is critical.6–8 Additionally, if one is to design a ro-
bust freestanding nanostructure, the fracture toughness needs
to be described and this also often requires the knowledge of
the elastic modulus.

In general, the extremely high pressures generated at
nanoscale contacts can be thought of as happening at the
contact between surface asperities. Specific examples of this
would include atomic force microscopy �AFM� tips scanning
a surface, microelectromechanical system �MEMS� compo-
nents in contact, and in our case, compression of individual
nanoparticles between a diamond indenter tip and sapphire
substrate. Numerous experimental and computational results
show that when large compressive or tensile stresses develop
in materials, the effective elastic modulus is influenced. For
example, Jarausch et al.9 used an interfacial force micro-
scope to measure the elastic properties of 100-nm-thick gold
films and found that a 50-GPa compressive stress increased
the film’s effective indentation modulus by 42%. Astala et
al.10 combined a quasistatic molecular dynamics simulation
with a density-functional-based tight-binding method to in-
vestigate indentation into silicon. At small indentation
depths, they report hardness values up to 89 GPa and elastic
modulus values up to 397 GPa. By measuring acoustic ve-
locities, Wang11 found stress effects on the modulus of me-

tallic glasses under high pressure. For two glasses with
Young’s moduli of approximately 100 GPa under zero pres-
sure, compressive pressures of 10 GPa were projected to in-
crease the bulk moduli by 36% and 40%. This pressure effect
is also observed for standard nanoindentation into planar
films. Veprek and Argon8 noted that when indenting films
with hardnesses appreciably greater than 20 GPa, the modu-
lus measured using the Oliver-Pharr technique12 will overes-
timate the material modulus unless the effect of compressive
pressure is accounted for. However, the appropriate experi-
mental assessment of how high compressive pressures affect
the elastic stiffness in freestanding nanostructures under
compression has yet to be done.

Geophysicists have been quantifying the effect of pressure
on bulk moduli for decades by using seismic events to inves-
tigate the properties of Earth’s high-pressure interior, leading
to the development of equations of state �EOS�. One of the
most simple, yet most popular and effective equations of
state is the Murnaghan relationship.13 A basic assumption
that can be used to derive this relation is that the bulk modu-
lus is a linear function of pressure for small volume changes,
such that

K = K0 + �p , �1�

where K is the bulk modulus, K0 is the zero pressure bulk
modulus, � is the bulk modulus pressure first derivative, and
p is pressure. This relation has been confirmed using an ever-
growing database of experimental seismic14 and diamond an-
vil cell15,16 data. For a full development of the theory see pp.
65 and 77 of Poirier �Ref. 13�. The pressure effect on the
bulk modulus can be related to the compressive elastic
modulus E0 through Poisson’s ratio � by

K0 =
E0

3�1 − 2��
. �2�

One finds from combining Eqs. �1� and �2� that

E = E0 + �p , �3�
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where �=3��1−2��. A value of ��4 is found to be valid
for many materials13 and silicon in particular.17 It will be
shown that Eq. �3� is an appropriate way to measure the
effective elastic modulus of nanoparticles and nanostructures
under compression.

The large contact pressures that are generated in nanopar-
ticles under compression also influence the local fracture
toughness and strain energy release rate since both measures
depend upon the elastic modulus. While these silicon nano-
particles can accommodate large plastic strain, Nowak et al.3

showed that compression could eventually lead to cleavage-
based fracture. This is seen in a movie3 recorded using a
transmission electron microscope �TEM� equipped with an in
situ indentation holder. Large pressures also promote dislo-
cation behavior, which increases fracture resistance. The pro-
pensity for dislocation plasticity is increased in a freestand-
ing structure compared to a planar surface by the decrease in
constraint in the structure. With in situ TEM indentation of
silicon wedges, Minor et al.,18 showed that, after indentation,
plastic deformation was due entirely to dislocation plasticity
and not to a phase change.

The present study first assesses the pressure effect on
modulus of elasticity in 40–140-nm-diameter nanospheres
of Si �Ref. 1� and Ti. Those values are then used to determine
semiquantitative estimates of the strain energy release rate. It
is shown that for brittle nanospheres the experimental proce-
dure is fairly simple; however, the interpretation is compli-
cated due to the deformation history. We want to make it
very clear that the phenomena to be discussed are appropri-
ate to extremely small contacts and volumes under compres-
sion.

II. ELASTIC MODULUS

When determining elastic moduli using nanoindentation,
it is first necessary to make appropriate estimations of the
area that is supporting the applied load. In the case of a
compressed nanoparticle between two rigid platens, both up-
per and lower bound estimates of the contact area are con-
sidered. An estimate of the minimum area supporting the
compressive load would be the contact area between platens
and particle. This estimate, detailed below, assumes a geo-
metric contact area with a uniform pressure within it. The
modulus can then be calculated assuming the particle un-
loads elastically. Alternatively, the maximum possible area
supporting the load would be the nanosphere’s midplane.
This is calculated using a cylindrically shaped particle based
on constancy of volume of the particle in both its initial and
compressed states. For this approach, the modulus is calcu-
lated using an average true-stress–true-strain relationship.
These models are applied to both silicon and titanium nano-
spheres.

A. Contact area models

Estimating contact area as a function of displacement is
necessary for nanoindentation. During standard nanoindenta-
tion of thin films, the indentation surface is assumed to be
flat. And thus by indenting a material with known properties

such as fused quartz, the contact area as a function of dis-
placement can be calculated. Unfortunately this approach is
not applicable to the compression of individual nanospheres
where the indenter tip has a much larger radius of curvature
than the particle or structure that is being indented. However,
contact models between spheres and flat surfaces have a
long, well-developed history in continuum mechanics begin-
ning with Hertz.19 The Hertzian contact radius aH is

aH = ��r�1/2, �4�

where � is the displacement at one contact and r is the re-
duced contact radius. In the case of a nanoparticle being
compressed between a large-radius diamond tip and sapphire
substrate, the total displacement measured by the nanoin-
denter, �t, would be divided in half to satisfy the condition of
one contact elastically deforming. Hertzian theory assumes
that the spheres are isotropic, the contact radius and defor-
mation are small when compared to the reduced radius of
curvature of the system, and the deformation is elastic. How-
ever, the compressions of the nanospheres, even at small
displacements, are characterized by elastic-plastic loading
followed by elastic unloading. Considering that the loading
is elastic-plastic, a generously large estimate of the contact
radius would be one that uses a purely plastic, geometric
contact radius ageo, such that

ageo = ��tr −
�t

2

4
�1/2

, �5�

where �t is the total displacement measured by the nanoin-
denter and r is the radius of curvature of the nanosphere.
This equation is appropriate at small to intermediate defor-
mations where plastic flow is occurring and is a factor of 2
smaller than a standard geometric radius since the displace-
ment here accounts for both the tip-sphere and sphere-
substrate contacts. Additionally, both tip and substrate are
assumed to be rigid. A schematic of this situation can be seen
in Fig. 1�a�.

The second model takes into account that at larger dis-
placements the sphere becomes more barrel shaped and ap-
proaches a right cylinder compressed between two platens as
seen in Fig. 1�b�. At this point fracture is a possibility and the
appropriate area that is supporting the load would be associ-
ated with the midplane of the sphere. This radius is based on

FIG. 1. Schematics depicting contacting radii used in determin-
ing stress for �a� mean contact pressure as an upper-bound stress
and �b� average stress in an equivalent height right cylinder as a
lower-bound stress.
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a cylinder under compression and is estimated by setting the
original volume of the sphere equal to the current volume of
the cylinder �cross-sectional area multiplied by the current
height�. This cylindrical contact radius acyl is

acyl = � 4r3

3�2r − �t�
�1/2

. �6�

Figure 2 compares the three contact radii equations above
versus displacement, with both axes normalized by initial
particle diameter. The Hertzian radius is only valid for elastic
deformations at small displacements. Since the majority of
modulus measurements are taken at total displacements be-
tween 20% and 60% of the initial diameters of the particles,
a relatively narrow spread between the geometric contact and
cylindrical midplane radii is used in the modulus estimates.

B. Pressure-enhanced elastic modulus models

First consider how one might treat a sphere that was com-
pressed �elastic-plastic loading and elastic unloading� using a
uniform pressure contact stress. For an analysis of the con-
tact stress, we consider a mean pressure applied to a circular
region of contact, �ageo

2 , as seen in Fig. 1�a�. As shown by
Johnson,22 the mean displacement of a single circular contact
under uniform pressure is given by

ūz =
16pa

3�E* , �7�

where p is a uniform pressure, a is the contact radius, in this
case ageo, and E* is the reduced modulus. Since the elastic
displacement is assumed to be equally divided between the
top and bottom contacts of the sphere in Fig. 1�a�, for large
tip radii R, we can approximate an upper-bound modulus
assuming only the contact regions to unload as in the rigid
punch approximation, giving

E* =
32P

3�2ageo�E
u . �8�

Here, the pressure p is P /�ageo
2 , where P is the load and �E

u

is the elastic unloading displacement that occurs at both the
top and bottom contacts of the sphere. Experimentally, �E

u, is
taken as the maximum displacement minus the residual dis-
placement ��max−�R� as shown in Fig. 3. It will be seen that
Eq. �8� represents an upper bound for the modulus, E*=Eub

* ,
even with the use of the perfectly plastic ageo and the large
“rigid punch” unloading displacement, and as such overesti-
mates the stiffness of the entire sphere leading to moduli well
beyond expectations.

The second model takes into account that at larger dis-
placements the sphere becomes more barrel shaped and ap-
proaches a right cylinder compressed between two platens.
The simple geometric construct for the right cylinder in Fig.
1�b� assumes the cylinder is compressed an equal amount

from top and bottom with the upper and lower platen areas Ā
represented by �acyl

2 . We propose this as an appropriate es-
timate of the average cross-sectional area supporting the
load. As such, an average true compressive stress �̄ is ob-
tained by dividing the load P by the above area. To obtain an
average true elastic unloading strain �̄E

u, the unloading elastic
displacement �E

u is divided by the current cylinder height.
This is given as

�̄E
u =

�E
u

�2r–�t�
. �9�

Since we now have an average true stress and an average
true elastic unloading strain, the elastic modulus may be es-
timated. This gives

Elb �
�̄

�̄E
u =

3P�2r − �t�2

4�r3�E
u , �10�

where the “lb” subscript indicates that this represents a
lower-bound estimate. Since the numerical coefficients in
both Eqs. �8� and �10� are nearly unity for small displace-
ments, the distinguishing features for these equations are

FIG. 2. Values of contact radius a from Eqs. �4�–�6� as a func-
tion of total displacement normalized by the initial particle
diameter.

FIG. 3. The elastic unloading displacement �max−�R is
shown.
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1/��r for Eq. �8� vs 1/r for Eq. �10�. As �t becomes large,
these two equations would again diverge. In the range of
interest then, the lower- and upper-bound stresses have area
estimates ranging by slightly more than a factor of 2. It is
clear that Eq. �8� will lead to much larger moduli as only the
contact stress is considered rather than the average stress in
the body, but it is not as clear that Eq. �10� is always a lower
bound. However, for both estimates we have been conserva-
tive in considering the elastic unloading to be the fully re-
covered displacement rather than just the unloading slope.
Further, we did not adjust this apparent modulus for any
displacement associated with the upper and lower platens.

C. Modulus measurements of silicon nanospheres

As explained elsewhere,5 an aerodynamically focused
beam of nanoparticles formed directly from a thermal plasma
was deposited as a line on a sapphire substrate. Isolated par-
ticles at the edge of the line were imaged with SPM-based
nanoindenters �TriboScope, TriboIndenter, Hysitron, Inc.,
Edina, MN�. In this way heights of nanoparticles could be
measured before and after each compression. A series of
load-displacement curves for a 44-nm-diameter nanosphere
of Si can be seen in Fig. 4. For each subsequent run it is seen
that the load increases rapidly for a given displacement par-
tially due to an increased contact area and partially due to
work hardening. Overall, the contact pressures and mean
stresses in the sphere increase for each run. The large in-
crease in cumulative displacement between the loading runs
of 45 	N and 55 	N in Fig. 4 is associated with sphere
fracture, similar to the TEM-indentation fracture of a silicon
nanoparticle by Nowak et al.3 With regard to load bearing
capability, it was observed that the 44-nm silicon sphere sup-
ports equivalent loads compared to larger �93-nm-diameter�
spheres at the same displacement, implying much larger
stresses in the smaller sphere due to roughly a factor of 4
smaller contact area.

Prior to each compression the height of the particle is
measured which is indicative of how much permanent dis-
placement has remained from the previous run. With this, the

total, or cumulative, displacement can be determined at any
displacement in the subsequent run and represents the value
of �t used in Eqs. �5�, �6�, �9�, and �10�. The elastic unload-
ing displacement �E

u in Eqs. �8�–�10� is the displacement at
maximum load minus the residual displacement at zero load
of the unloading curve. Calculated values of Eub

* and Elb from
Eqs. �8� and �10� are given in Fig. 5, as a function of normal
stress for repeat compressions of five silicon particles with
diameters in the range of 39–93 nm. A linear least-squares
fit with the same functional form as Eq. �3� for the upper-
bound pressure-enhanced modulus values of Eq. �8� extrapo-
lates to a zero pressure value of E0=160 GPa, but at higher
pressures increases with a coefficient of �=19.2 to unrealis-
tic values. The contact stress values may be correct; how-
ever, the contact area is not representative of the area respon-
sible for supporting the load once large deformations take
place. At large deformations, the entire sphere, not just the
portions under contact, would be elastically unloading.
Therefore, for silicon particles with mean contact stresses
below 10 GPa, Eq. �8� is valid. However, for larger contact
stresses, the equation should only be considered an upper-
bound estimate.

The linear least-squares fit of the lower-bound pressure-
enhanced modulus estimate, Elb, of Eq. �10� extrapolates to
E0=80 GPa at zero pressure and increases at higher pres-
sures with a coefficient of �=6.45. The lower-bound esti-
mate of Eq. �10� generates unrealistically low modulus val-
ues at small displacements and pressures since it calculates
stress using the radius of an equivalent cylinder, acyl, which
is unrealistically large at small displacements as seen in Fig.
2. However the pressure coefficient of 6.45 agrees well with
the Birtch-Murnaghan coefficient for silicon,17 which after
substitution into Eq. �3�, using �Si=0.218 and �=4, produces
�Si=6.67. Given that similarity, we considered the best rep-
resentation of the compressive stress effect on the effective
modulus of silicon nanoparticles to be

ESi = 160 GPa + 6.67�̄ . �11�

This equation is represented in Fig. 5 and has the satisfying
aspect that all of the upper-bound calculations are above the

FIG. 4. Repeat compression loadings of a 44-nm silicon sphere.
Note the jump in cumulative displacement between the 45-	N and
55-	N runs.

FIG. 5. Modulus estimates for different diameter silicon nano-
spheres using a right-cylinder approximation �open symbols� for
average bearing area giving lower-bound moduli and a rigid punch
approximation using an average contact area �solid symbols� giving
upper-bound moduli.
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trend line and nearly all of the lower-bound estimates are
below the trend line.

D. Modulus measurements of titanium nanospheres

Measurements similar to those for silicon resulted in the
load-displacement curves for a series of titanium nano-
spheres. An example of repeat compressions of a
143-nm-diameter Ti nanosphere can be seen in Fig. 6. As
with silicon, there is a large increase in both upper and lower
bounds of the apparent modulus for the titanium nanospheres
with increasing superimposed stress as seen in Fig. 7. Using
E0=105 GPa as the extrapolation point for the upper-bound
linear fit gives a pressure coefficient of �=12.6 which is too
large to be realistic. On the other hand, for the lower bound,
the least-squares coefficient of �=4.5 agrees reasonably well
with the Birtch-Murnaghan coefficient of titanium21 using
�Ti=0.321 and �=3.8, to produce a value of �Ti=4.1. The

lower-bound intercept at zero pressure is E0=20 GPa. As
with silicon, the moduli based on the lower-bound estimate
at low pressures are well below the accepted modulus of Ti
at zero pressure which is 105 GPa. Therefore the following
is used as the best estimate of the effect of superimposed
compressive stress on the modulus of titanium nanospheres,

ETi = 105 GPa + 4.3�̄ . �12�

This Birtch-Murnaghan-style relation produces the line in
Fig. 7 where all lower-bound estimates except one fall below
the line and all upper-bound estimates except three are above
the line. Additional information on the plasticity response of
the Ti nanoparticles can be found elsewhere.22

E. Pressure-enhanced modulus discussion

The modulus estimates for both the silicon and titanium
nanoparticles detailed above show large amounts of scatter.
There is nearly a factor of 2 scatter at all levels of compres-
sive pressure for the lower-bound modulus estimate and
slightly more for the upper-bound estimate of Figs. 5 and 7.
Such scatter is not related to any length-scale effect since, for
a given stress level the smallest spheres are intermixed with
the largest. Rather, the scatter is partially associated with the
repeatability of accurately returning the tip to the top of the
particle prior to each run, which will affect the calculated
cumulative displacement. Furthermore, from sphere to
sphere the crystallographic axis of deformation will be dif-
ferent which will also influence the relative stiffness. Given
these uncertainties and the nanometer-level displacements
measured, such scatter is expected.

The modulus measurements are conservative in nature
since we did not consider any displacement accommodation
by the diamond tip or sapphire substrate. Both platens would
be influenced by the high pressures and would share a por-
tion of the unloading displacement. From experiments cur-
rently in progress we know that some displacement accom-
modation is taking place at loads in the 30–60 	N range.
This will clearly increase the nanoparticle modulus magni-
tudes of both estimates. Once additional confidence is gained
regarding the partitioning of displacement, even larger dis-
placements and attendant pressures should be possible.

As an additional check to confirm that this approach to
moduli is reasonable, consider the elastic portion of the ini-
tial compression of a silicon nanoparticle where the load-
displacement curve should follow a Hertzian relationship. In
this case, using Hertzian theory, it is possible to be more
exact concerning the tip-particle-substrate deformation. A
46-nm-diameter silicon sphere was imaged before and after
compression with scanning electron microscopy �SEM� as
seen in Figs. 8�a� and 8�b�. The compression was conducted
under displacement control at a loading rate of 1 nm/s. The
Hertzian load-displacement relationship is

P =
4

3
E*r1/2�3/2, �13�

where the radius r is the radius of the particle and not the
average of the reduced radius of the two contacts, since the
reduced radius of tip �in this case a 5-	m conical diamond�

FIG. 6. Repeat compression loadings of a 143-nm-diameter ti-
tanium sphere. A large amount of plastic flow occurred during the
first compression. However, there is not compelling scanning probe
microscopy or displacement excursion evidence that the nanopar-
ticle fractured.

FIG. 7. Modulus estimates for different diameter titanium nano-
spheres using a right-cylinder approximation �open symbols� for
average bearing area giving lower-bound moduli and a rigid punch
approximation using an average contact area �solid symbols� giving
upper-bound moduli.
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and the particle �23 nm� is 22.9 nm. The effective reduced
modulus E* is the average of the tip-particle and particle-
substrate reduced moduli such that

E* =
E1

* + E2
*

2
,

1

E1
* =

1 − �Si
2

ESi
+

1 − �Al2O3

2

EAl2O3

,

1

E2
* =

1 − �Si
2

ESi
+

1 − �dia
2

Edia
. �14�

Now, if one does not consider the effect of compressive pres-
sure on the effective modulus and uses the following values
for the zero-pressure moduli and Poisson’s ratio for silicon
�160 GPa, 0.22�, sapphire �375 GPa, 0.29�, and diamond
�1007 GPa, 0.07�, then Eq. �13� produces the fit in Fig. 8�c�
that vastly underpredicts the elastic load-displacement re-
sponse. If, however, the influence of pressure within the sili-
con nanoparticle is accounted for, Eq. �13� does reproduce
the elastic response in Fig. 8�c�. For this fit, the pressure-
enhanced silicon modulus follows Eq. �11� with the pressure
taken to be the average of the geometric contact and right
cylinder stress estimates, such that

�̄ =
�̄geo + �̄cyl

2
, �̄geo =

P

�ageo
2 , �̄cyl =

P

�acyl
2 . �15�

The pressure coefficient to produce this fit is �Si=5.8, which
equates to a value of �Si=3.4, approximately 15% lower than
the standard value of 4.0 �see Eq. �1�	. It is thought that this
difference may be due to the large proportion of nonhydro-
static stress within the particle from the uniaxial compression
as compared to standard diamond-anvil cell experiments.
With that said, the pressure-enhanced modulus approach
shows much more promise than the non-pressure-enhanced
Hertzian load-displacement relationship seen in Fig. 8�c� that
drastically underpredicts the experimental data.

III. FRACTURE TOUGHNESS AND STRAIN
ENERGY RELEASE RATE

Having an estimate of elastic modulus for silicon nano-
particles, we proceed to examine their fracture behavior.

Fracture of these particles is confirmed using a combination
of in situ SPM images and load-displacement discontinuities.
Where available, ex situ AFM and SEM images will be ref-
erenced as well. As there was not compelling evidence that
the titanium nanospheres fractured, they are not considered.
Additional in situ TEM compression of a silicon nanoparticle
by Nowak et al.3 gives direct evidence of the brittle nature of
nanoparticle fracture. They show that the particle first de-
forms elastically with quantitatively equal amounts of defor-
mation at both the tip-particle and particle-substrate contacts.
This is followed by plastic deformation and cleavage fracture
along a favorably oriented �111�-type plane. An image of the
nanoparticle after the compression and fracture event can be
seen in Fig. 9. With this evidence, we first outline a model
for the local stress nucleating fracture and a method for con-
verting that to a fracture toughness and strain energy release
rate. These are then compared to the stored elastic energy in
the sphere that is released upon fracture.

FIG. 8. Compression of a
46-nm-diameter silicon nanopar-
ticle with load control at a rate of
1 nm/s where �a� is the precom-
pression and �b� the post-
compression SEM image of the
particle. �c� Hertzian relationships
are superimposed on the load-
displacement data using the stan-
dard modulus �under predicting
relationship� and pressure-
enhanced modulus for the tip, par-
ticle, and substrate.

FIG. 9. Bright-field TEM image of a fractured silicon nanopar-
ticle after in situ compression as detailed in Ref. 3. The particle
fractured into two pieces, one of which pulled away from the sub-
strate as the tip was retracted.
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A. Fracture stress and fracture toughness

Determining the fracture stress and fracture toughness
was thought to be possible if the onset of nanoparticle frac-
ture could be measured. One has the macroscopic Brazilian
disk test history,20,23 for example, to know that compressed
ceramic cylindrical disks can give good estimates of fracture
toughness. However, defining the stress and crack length is
not so simple. Two prior studies are significant: that of Ship-
way and Hutchings24 who did a detailed theoretical analysis
of the fracture of brittle spheres under compression and that
of Majzoub and Chaudhri25 who visualized low-velocity im-
pact cracking of brittle spheres. Shipway and Hutchings24

concluded that the only tensile surface stresses responsible
for brittle fracture were �
 tensile stresses just outside the
contact area which might lead to ring cracks or a maximum
�� acting along the equator. Larger internal tensile stresses
did develop for a contact radius to particle radius ratio less
than 0.6, leading them to conclude that for large specimens
there tended to be an internal defect to nucleate a crack. They
proposed that a conservative estimate of the fracture stress
was given by

�f
* = 0.4� P

�r2� . �16�

Initially, we used this and concluded that it underestimated
the stresses responsible for fracture. An alternative approach
focused on the fracture of PMMA spheres25 showing a high-
speed photographic sequence that pinpointed the fracture ini-
tiation site. The initiation site was found to be at the edge of
the contact radius at or near the surface. Given this, we pro-
pose a fracture stress criterion based on the mean pressure of
the contact using the geometric contact radius from Eq. �15�.

As brittle fracture requires a tensile stress and this is com-
pressive, one needs to show that equivalent tensile stresses
which are equal but opposite in sign to the mean pressure can
evolve. Because of the imperfect loading of these nano-
spheres, tangential forces will develop, leading to large com-
pressive stresses on one side of the contact edge and equally
large tensile stresses on the other.20 Such contact edge tensile
stresses could easily be as large as the mean contact pressure.
Using �̄geo from Eq. �15� as an estimate of the stress, the
fracture toughness can be determined assuming a defect in
the less-tough oxide film coating the nanoparticle. With a
free surface magnification factor of 1.1, to first order this
becomes

KIc = 1.1�̄geo
��c , �17�

where c is the defect size. With this determination of KIc, the
strain energy release rate for a fractured silicon particle, can
be evaluated with the use of Eq. �11� from

GIc =
KIc

2

ESi
, �18�

where the ESi values is calculated using Eq. �11� with the
appropriate �̄ value from Eq. �15� at the load and displace-
ment position where fracture is confirmed in each particle.
Given the first-order nature of this calculation, the Poisson
term normally used in Eq. �18�, �1−�2�, is ignored. This

strain energy release rate should be closely linked to the
stored elastic energy in the sphere divided by the fracture
area. Again, to first order this is just the average elastic strain
energy density �̄2 /2E times the volume-to-area ratio of the
sphere, V /Af, where Af is the new fracture surface created.
This becomes

UE

Af
=

�̄2

2E

V

Af
=

�̄2

2E

V

2�r2 =
�̄2r

3ESi
, �19�

where the average compressive stress �̄ is defined in Eq.
�15�, the pressure-enhanced effective modulus of silicon, ESi,
is defined in Eq. �11�, and r is the particle radius. The extra
factor of 2 in the denominator accounts for both newly cre-
ated fracture surfaces. These determinations for fracture re-
sistance are used with the Si nanosphere data as described in
the following section.

B. Fracture measurements in silicon nanospheres

Geometric deconvolution reconstructions were made to
validate that the contact of other particles were not involved
during an individual compression, and as fracture ensued,
that the diamond tip did not contact the sapphire substrate.
This was facilitated by a series of SPM images using both
height- and deflection-mode capabilities. The load at which
fracture occurred for a specific silicon nanoparticle is deter-
mined by using SPM evidence along with displacement
jumps between the runs. Evidence for fracture is shown in
Fig. 10�a� which is a deflection image of two particles of
interest, 50-nm- and 44-nm-diameter silicon nanospheres.
The 50-nm particle was loaded 8 times to consecutively
higher maximum loads. After this loading sequence the
dimple shown in Fig. 10�b� in the middle of the sphere
clearly demonstrated the sphere had fractured. Remembering
that these spheres were loaded with a large radius diamond,
the only way such a dimpled feature can emerge is for the
particle to separate. Adjacent to that sphere, the slightly
smaller 44-nm sphere was loaded next. After the fourth com-
pression to 45 	N in Fig. 4, the particle failed which was
accompanied by a large decrease in the measured height after
the compression. Evidence of this fracture can be seen com-
paring the upper particle in the outlined area of Figs. 10�b�
and 10�c�. Pinpointing the actual fracture stress was only

FIG. 10. �Color online� Deflection-mode images of two nano-
particles fractured by repeat loadings to ever-increasing maximum
loads as in Fig. 4 showing �a� 50- and 44-nm-diameter spheres
imaged with a 1-	m-radius diamond tip �b� after the 50-nm particle
was fractured and �c� after the 44-nm particle, the loading of which
is seen in Fig. 4, was fractured.
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crudely accomplished as the loads were increased in 10-	N
increments. However, due to increasing contact area, the
fracture stress used in Eq. �16� only varied by ±3% from
35 to 55 	N for the 44-nm particle and by ±10% from
45 to 45 	N for the 50-nm particle.

Additional ex situ electron microscopy images are used to
confirm nanoparticle fracture. Figure 11 reexamines the com-
pressed silicon particle from Fig. 8. Both SEM �Fig. 11�a�	
and AFM deflection �Fig. 11�b�	 images show this nanopar-
ticle fractured into at least three sections. Using Eq. �15�, the
average geometric contact stress is superimposed on the
load-displacement curve of the fractured particle in Fig.
11�c�. Since this particle was loaded using displacement
control,26 fracture events will be evident as load drops in-
stead of displacement discontinuities as seen in Fig. 4. While
it is not clear which load drops are responsible for the
multiple-fracture events, it is evident that once the load drops
and plastic flow begin to occur, a rather constant average
peak contact stress state near 85 GPa is maintained.

With the loads and stress necessary for fracture deter-
mined, KIc values were calculated using Eq. �17�. To accom-
plish this, a number of measurements of the oxide film thick-
ness were made by TEM on both the silicon and titanium
nanoparticles in Fig. 12. In general, larger-diameter particles
had larger film thicknesses. This might be expected since
larger particles have a larger residence time and oxygen ac-
cumulated during growth would tend to segregate to the sur-
face if the solubility limit is exceeded. With this, we propose
that the maximum stress at the edge of the contact fractures
the oxide film such that the critical defect size in Eq. �17� is
the oxide film thickness, c= tox, from the least-squares line.
As this is in the square root of Eq. �17�, it should give a
first-order estimate of the fracture toughness. Appropriate
data are shown in Table I, and values of KIc versus inverse
particle radius are shown in Fig. 13. With this type of plot,
one can extrapolate to the bulk fracture toughness which ap-
pears to emerge at a particle diameter of 154 nm. Whether
this would translate as the transition to small volume effects
for fracture of silicon is dependent on how well a linear

extrapolation to the bulk fracture toughness of 0.8 MPa m1/2

represents the fracture mechanism. As a comment on the
choice of oxide film thickness as an appropriate defect size,
one sees in Fig. 13 that the larger nanoparticle tested in situ
in the TEM falls on the accepted fracture toughness value for
bulk single-crystal silicon of 0.8 MPa m1/2. If the oxide film
thickness was not a correct measure of the defect that initi-
ated fracture, this data point would have fallen elsewhere.
For that reason we strongly suggest that film thickness is a
reasonable estimate of the initiating defect size in the context
of the scatter shown in Fig. 12. It should be noted that the
fractured particle detailed in Figs. 8 and 11 produced a frac-
ture toughness of approximately 6.4 MPa m1/2 which is
much larger than the data in Fig. 13. This particular nanopar-
ticle had a thin coating of atomic layer deposition �ALD�
alumina deposited over it, and as such it is in a different class
from the nanoparticles evaluated in Fig. 13. Additional
evaluations are currently underway to explore the repeatabil-
ity and, if found, significance of such a coating.

C. Discussion of strain energy release rates

In the above discussion of fracture toughness, it was sug-
gested that the elastic strain energy release rate GIc from Eq.
�18� could be compared to the stored elastic strain energy
times the volume to fracture area ratio of the sphere giving
Eq. �19�. It is emphasized that these are different estimates
since the former uses the average contact stress determined
from the geometric contact radius, while the latter uses the
average stress in Eq. �15�. Such a comparison, as seen in
Table I and Fig. 14�a�, indicates that the estimate for GIc is
approximately 20% larger than UE/Af. Given the assump-
tions these are in good agreement, and therefore additional
discussion uses the fracture toughness estimate of Eq. �17� as
representative of the silicon nanosphere fractures. Using this
for comparison, GIc as a function of particle diameter is
given in Fig. 14�b�. First, as might be expected, a straight

FIG. 11. �Color online� Fractured silicon nanoparticle from Fig.
8 with �a� a post-compression SEM and �b� the corresponding
deflection-mode AFM image of the particle which has fractured into
at least three pieces. �c� The average contact stress, which is super-
imposed on the load-displacement curve, levels out once the frac-
ture events �load drops� begin. FIG. 12. Measured oxide film thicknesses in different size tita-

nium and silicon nanospheres. Taken using bright-field TEM im-
ages on a Philips CM30.
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line extrapolation to 3.5 J /m2, representative of bulk Si with
a modulus of 160 GPa, gives a cutoff of 160 nm consistent
with the KIc extrapolation. If these data are truly representa-
tive of the size scale on small volume fracture, what is the
possible origin of a d−2 dependence? On average, these par-
ticles were deformed 45% prior to fracture if we use �t /2r as
a measure of strain. This amount of deformation encom-
passes a large number of dislocations which could represent
crack-tip shielding even if the dislocations were not emitted
from the crack in the oxide film. The implicit assumption is
that the dislocations emitted from the contact edge of the
indenter are of the shielding type rather than being antish-
ielding. Assuming these to be shielding gives a shielding
stress intensity of27

kD = − N
3	b

2�1 − ��
sin 
 cos�
/2�

�2�x̄�1/2 , �20�

where x̄ is the average distance of all shielding dislocations
from the crack tip. Taking a typical angle 
 between the

crack plane and the activated slip planes to be about 30° and
assuming that at most x̄�d /2, one could calculate kD if the
net number of shielding dislocations were known. From pre-
vious work,27 we estimated the number of dislocations that
were generated during nanoparticle compression based upon
prismatic punching even though we are assuming here that
the shielding dislocations are shear loops. The number of
dislocations increases due to both increasing displacement
and an increasing number of glide cylinders activated, giving

N =
�

b

�a

r
, �21�

where a is the contact radius and � is a coefficient near unity.
Interpreting a in terms of the cumulative displacement and
the sphere radius, one can show from Eqs. �20� and �21� that
the shielding stress intensity is

kD � −
E��a

7rd1/2 . �22�

The resistance to crack growth as a work per unit fracture
area is proportional to kD

2 /E. Crudely, then, one might expect

TABLE I. Data for the compression of silicon nanoparticles.

2r
�nm�

P
�	N�

�t

�nm�
�̄geo

a

�GPa�
�̄a

�GPa�
ESi

b

�GPa�
tox

c

�nm�
KIc

d

�MPa·m1/2�
UE/Ae

�J /m2�
GIc

f

�J /m2�
GIc

g

�J /m2�

39 55 21 58.3 45.1 461 1.4 4.3 28.7 39.3 117

44 45 18 45.5 35.9 399 1.4 3.3 23.6 27.6 50

50 55 23 39.5 31.1 367 1.5 3.0 21.9 24.2 75

64 45 24 23.0 18.1 280 1.6 1.8 12.4 11.5 39

93 55 36 13.0 10.2 228 1.9 1.1 7.1 5.4 51

216h 49 29 5.6 3.7 184 5.4 0.8 2.6 3.5 4

46i 73 13 85.0 66.1 601 1.5 6.4 55.8 68.5 26

aEquation �15�.
bEquation �11�.
cEstimate from Fig. 12.
dEquation �17�.
eEquation �19�.

fEquation �18�.
gEquation �24�.
hFrom Fig. 9 and Ref. 3.
iparticle coated with alumina ALD in Figs. 8 and 11.

FIG. 13. Fracture toughness from Eq. �17� as a function of in-
verse particle radius extrapolated to the bulk value of 0.8 MPa m1/2

where the value represented as the square is the in situ TEM com-
pression from Ref. 3.

FIG. 14. �a� Comparison of elastic strain energy release rate
from Eq. �18� to the stored elastic energy in the particle divided by
the fracture area from Eq. �19� where the slope of the least-squares
fit is 0.8. �b� Strain energy release rate from Eq. �18� as a function
of particle diameter with a cutoff at the bulk property value. The
square data point is in reference to the particle shown in Fig. 9 and
is detailed in Ref. 3.
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GIc 

kD

2

E



2E�2a2

49d3 , �23�

if � is on the order of 1. As shown in Table I, there is a rough
correlation between this shielding estimate and that deter-
mined from KIc. Finally, if we use the first-order geometric
relationship between contact radius, particle radius, and dis-
placement, a2
�r, one finds from Eq. �23�

GIc 

E�3

24d2 , �24�

which does represent the d−2 dependence shown in Fig.
14�b�. The reason that this overestimates the magnitude of
GIc lies with the uncertainty of how many dislocations are
shielding and the exact relation between them and the crack
tip since the particles’ crystallographic orientation varies
from particle to particle and � is unknown. As such, this
qualitative agreement is highly speculative and awaits further
confirmation from additional studies since other dissipation
processes may be involved.

IV. CONCLUSIONS AND SUMMARY

Length-scale effects for nanospheres in compression are
found for both modulus of elasticity and fracture toughness.
Moduli of silicon and titanium nanospheres increase with
increasing mean pressure, approximately following Mur-
naghan’s equation of state.13 At similar strain, the effect is
accentuated for smaller volumes. Additionally, the onset of
fracture in silicon nanoparticles is bracketed by repeat load-
ing and imaging of nanospheres with scanning probe micros-
copy. Based on critically sized defects in the oxide film that
passivates the silicon nanoparticles, fracture toughness for a
20-nm-radius particle is found to increase by a factor of 4
when compared to bulk silicon. Corresponding strain energy
release rates increase by more than an order of magnitude
and compare to first order with estimates from shielding dis-
locations produced during the prior loading history.
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