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Melting curve of tantalum from first principles
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We report on the first-principles calculation of the melting curve of Ta in the pressure range 0—300 GPa. The
calculations have been performed using density functional theory (DFT) with generalized gradient corrections
and the projector augmented wave method. The melting curve has been evaluated using the method of the
coexistence of phases, with the help of an auxiliary reference potential. The melting curve obtained with the
reference potential has then been corrected using free energy differences between the DFT and the reference
potential, so as to obtain the DFT melting curve. The results are in good agreement with diamond anvil cell
experiments at low pressure, but they rapidly diverge from these as pressure is increased, and agree well with
shock-wave experiments at high pressure. A general description of the lattice dynamics and thermal properties
of body-centered cubic tantalum using DFT is also presented. The equation of state at zero temperature and the
phonon dispersion are investigated using both the local density approximation and the generalized gradient
approximation (GGA). Good agreement with the zero-temperature equation of state and zero-pressure phonon
dispersions is obtained with the GGA. This agreement reinforces the reliability of the calculated melting curve.
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I. INTRODUCTION

A fundamental issue in material physics and geophysics is
the understanding of the behavior of metals under extreme
conditions. Tantalum is a transition metal with multiphase
thermodynamic behavior; the specific crystalline structures
are a body-centered cubic' (bcc) or a phase, stable even at
high pressure of hundreds of GPa in the bulk material, a 8
phase, stable in deposited thin films up to 1000 K,?> and an
A15 structure, which could be energetically competitive with
the bcc at a very low pressure regime, whereas face-
centered-cubic (fcc) and hexagonal-closed-packed (hcp)
phases are not.> Furthermore, the bce crystal structure pre-
sents a very high melting point at room pressure at about
3270 K. Due to its chemical stability it is widely used in the
microelectronics industry for producing integrated circuits.

In this paper, we are mainly concerned with the thermo-
dynamical properties of Ta as functions of temperature and
pressure, and in particular its melting curve.

While a large effort has been made to improve the experi-
mental setup for studying phase transitions at high pressures
by the use of shock waves*> and laser-heated diamond-anvil
cells (DACs),%” large discrepancies between these experi-
ments still exist, in particular about melting curves. Although
DAC experiments are only available up to relatively low
pressures of about 100 GPa, extrapolations from measure-
ments on tantalum and molybdenum to pressures of 300 GPa
show a discrepancy between DAC and shock-wave experi-
ments of several thousand degrees.

Calculation of the dependence of the electronic structure
and nuclear motion on pressure and temperature is still a
challenge for theory, due to the difficulty of taking fully into
account the complex many-body interactions between the
electrons, and the interplay between electrons and phonons.
In the last few years, advances in computer power and de-
velopment in computation techniques have made it possible
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to numerically solve many-body problems for a variety of
metals, including transition metals,®° under extreme condi-
tions of temperature and pressure. In particular, first-
principles thermodynamic quantities, including melting
curves, have been calculated using density functional theory
(DFT), and although good agreement is present with experi-
ments for materials like Al (Refs. 10-12) and Cu,!" signifi-
cant disagreement with DAC experiments has been reported
for the melting curves of MgO (Ref. 13) and Fe,'*! al-
though in the case of Fe a number of DAC experiments are
available with results often in conflict with each other.!0-!8

On the melting of Ta, we mention the early work of Mo-
riarty et al.,’ who employed the so-called generalized
pseudopotential theory method and calculated a melting
curve that agreed well with the shock datum® but was several
thousand  degrees above the extrapolated DAC
measurements.” More recent calculations are due to Strachan
et al.,' who calculated the melting curve of Ta using an
embedded atom model (EAM), and obtained results not very
different from the earlier ones of Moriarty et al.’

The differences between theoretical results on the melting
of transition metals and some DAC experiments are still the
subject of discussion.?’ It has been suggested that the shal-
low slope of the melting curve of bcc metals, compared to
that of nearly-free-electron metals like Al, could be due to
electronic rearrangements upon melting.

The main aim of this work is to produce the complete
melting curve of Ta from first-principles calculations. The
results will then be compared with previous molecular dy-
namics calculations®! and experiments.*’

A number of different approaches have been used in the
past to calculate melting curves of materials. One possibility
is to use the free energy approach, which consists in evalu-
ating the Gibbs free energies of solid, G,(p,T), and liquid,
G((p,T), as functions of pressure and temperature, and then
obtaining the melting temperature 7,, at each fixed pressure p
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by the condition G,(p,T)=G,(p,T).!%!1421-23 Another pos-
sibility is to use the so-called coexistence method, which
consists in directly simulating solid and liquid in coexist-
ence. The method requires large simulations cells, typically
containing hundreds or even thousands of atoms, and it is
therefore very difficult to apply using first-principles meth-
ods, though this has been achieved recently for Al,'> MgO,"?
LiH,?** and hydrogen.?> A third approach, which may be seen
as a combination of the two above, consists in fitting an
empirical potential to first-principles calculations, obtaining
the melting curve of the empirical potential using the coex-
istence method, and then correcting for the difference be-
tween the ab initio and the empirical potentials. This ap-
proach, which has been described in detail elsewhere,?° is the
one that we adopted in the present work. As we show later,
our results are in good agreement with DAC experiments at
low pressure but differ from them significantly as pressure is
increased, and at high pressure agree well with shock-wave
experiments.

The paper is organized as follows. In the next section we
report the main technical details used in this work. In Sec.
I, tests of the reliability of the techniques and the static
equation of state are discussed, whereas lattice dynamics and
the thermal equation of state are presented in Secs. IV and V,
respectively. The melting curve of tantalum is presented in
Sec. VI. Finally, discussion and conclusions are given in Sec.
VIL

II. TECHNICAL DETAILS

Calculations have been performed within the framework
of density functional theory, using the ab initio total-energy
and molecular dynamics program VASP,?’3? with the imple-
mentation of an efficient extrapolation for the electronic
charge density.?! The ion-electron interaction has been de-
scribed using the projector augmented wave (PAW)
technique,3> with single-particle orbitals expanded in plane
waves with a cutoff of 224 eV, which ensures convergence
of the structural parameters of Ta, like the equilibrium vol-
ume and the bulk modulus, to better than 0.05%. We tested
different exchange-correlation functionals and various PAW
potentials, the details of which will be reported in the next
section. Spin-orbit effects have also been tested. Thermal
excitations of electrons are important at high temperature;
we therefore used the finite-temperature formulation of DFT,
in which the variational quantity to be minimized is the free
energy of the electrons, Fy,,;(V,T)=E(V,T)-TS(V,T),
where the DFT energy E is the usual sum of kinetic,
electron-nucleus, Hartree, and exchange-correlation terms,
and S is the electronic entropy, given by the independent-
electron formula S=—kgTZ,[f; In fi+(1—f)In(1-f,)], with
kg being the Boltzmann constant and f; the thermal (Fermi-
Dirac) occupation number of orbital i. Brillouin zone (BZ)
sampling was performed using Monkhorst-Pack (MP) spe-
cial points.>* Constant temperature molecular dynamics
simulations were performed using a Nosé thermostat,* with
a time step of 2 fs.

III. EQUATION OF STATE

The Helmholtz free energy of a solid can be written as a
sum of two different contributions:
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F(Vs T) = F.YlatiC(V’ T) + Fvib(Vs T)9 (1)

where  Fy,,,(V,T)=E(V,T)-TS(V,T) is the zero-
temperature energy plus the contribution arising from ther-
mal electronic excitation in the perfect crystal, and
Fois(V,T)=F 40V, 1)+ F 4arm(V, T) is the contribution due
to the vibrations of the ions, written as a sum of harmonic
and anharmonic contributions. F,,,;.(V,T) can be obtained as
a result of a standard DFT calculation. The treatment of the
ionic component of the free energy F;,(V,T), neglecting the
anharmonic contribution in all the calculations, will be de-
scribed in the next section.

Within the plane wave formalism of DFT with PAW po-
tentials we tested the local density approximation (LDA) and
the generalized gradient approximations (GGAs) known as
the Perdew-Burke-Ernzerhof!*] (PBE) and the Perdew-Wang
1991 (Ref. 37) (PW91) functionals. We found negligible dif-
ferences between the PW91 and the PBE results, and there-
fore in what follows we will only report results obtained
using the LDA and the PBE functionals. We calculated the
total electronic static (free) energy for different volumes on
the perfect Ta bce crystal, and fitted the calculated (free)
energies to the third-order Birch-Murnaghan equation38-40

] 2% 2 o)
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where E, and Ky=-Vd*F ./ dV* are the values of the en-
ergy and the bulk modulus at equilibrium volume V), respec-
tively, X:%(4—K{)), and K)=[dK/dP], with the derivative
evaluated at zero pressure. The static equation of state (P
—V curve) is obtained as the derivative of Eq. (2) as a func-
tion of the volume.

In all calculations we used an electronic temperature of
T=300 K, and we found that with a 16 X 16 X 16 MP grid of
k points the electronic free energy of the bcc primitive cell
was converged to within less than 1 meV.

We tested PAW potentials with the 5p electrons either
frozen in the core, or explicitly included in valence, together
with the 6s and 5d electrons. In Fig. 1 we display the results
of the calculations using the two different PAW potentials,
both with PBE and LDA, compared with the diamond anvil
cell experiments from Refs. 41-43. We see, that in order to
obtain good accuracy it is necessary to use the functional
PBE and the PAW potentials which explicitly include the 5p
electrons in the valence. These results agree well also with a
number of previous calculations.’**

We also tested spin-obit(SO) coupling, with both the LDA
and the GGA. With the LDA we found an increase of about
0.3% in the equilibrium volumes when spin-orbit coupling is
switched on, and with the GGA the results are almost iden-
tical. These small effects are in agreement with previous cal-
culations done by Bercegeay and Bernard,® Boettger et al.,*
and Cohen and Giilseren,** though at variance with previous
full potential linear muffin-tin orbital results by Soderlind
and Moriarty,*® who found a significant spin-orbit effect on
the equilibrium volume, which decreases by about 3% when
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FIG. 1. Pressure vs volume curves obtained by fitting a Birch-
Murnaghan equation of state to DFT calculated values for bcc Ta.
Curves show results obtained using the LDA with (points) and with-
out (points and dashed line) the inclusion of 5p electrons in valence.
The same calculations using the PBE functional with (solid) and
without (dashed) the inclusion of 5p electrons in valence. Diamond
anvil cell data from Refs. 41 (squares) and 43 (solid circles) are also
reported for comparison.

spin-orbit coupling was switched on. Table I summarizes the
final values of the parameters at zero pressure obtained in the
present work as compared to the DAC data obtained by
Cynn and Yoo.*!

After these tests, we decided to use the PBE functional in
all calculations, the PAW potential with 5p electrons in va-
lence, and to neglect spin-orbit interactions.

IV. LATTICE DYNAMICS

To further test the quality of the PAW potential and the
PBE exchange-correlation functional to be employed in this
work, we also calculated phonon dispersion relations, both at
zero and at high pressure. These have been calculated using
the PHON code*’ which implements the small displacement
method described in Refs. 22 and 48. Within this method, the
quantity that is directly calculated is the force-constant ma-
trix @, 5(R), where R is the position of the ions in the crys-
tal and «,B indicate Cartesian coordinates. This can be
evaluated by displacing the atom in one primitive cell by a
small amount, and computing the forces induced on all the
other atoms in the system. The force-constant matrix is then
simply the constant of proportionality between the displace-
ment and the forces. The phonon frequencies wy, for any q
vector in the BZ and any branch s are obtained as eigenval-
ues of the dynamical matrix, which is given by
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1
Do (@) =—=2 @, sR)exp(iq - R), (3)
VM r

where M is the mass of the tantalum atom and the sum has to
be evaluated for every lattice vector R in the crystal. In fact,
®(R) is usually short ranged, and therefore one only needs to
include in the sum those terms for which ®(R) is apprecia-
bly different from zero. This makes the small displacement
method feasible, as one only needs ®(R) in a finite supercell.
Convergence of the phonon frequencies wg, is then ensured
by progressively increasing the size of the supercell used to
evaluate O(R).

The force-constant matrix, and therefore the phonon fre-
quencies, can depend on temperature because of electronic
excitations. In this work we neglected this dependence.

We tested the convergence of the phonon frequencies with
respect to a number of technical points. The quantity used to
measure the quality of the results was the ionic free energy in
the quasiharmonic approximation, given by

1 h \%
FramlV.T) = —ky T ln[z sinh(ﬂﬂ)} L@
Ny @ 2kgT

where the sums are over phonon wave vectors  in the BZ
and branches s, and N is the number of q points in the sum.
First, we tested the size of the displacement, which has to be
small in order to be in the validity range of the harmonic
approximation, but also big enough so that the forces in-
duced in the crystal are not too small compared to the nu-
merical noise in the calculations. We found that a value of
0.02 A is a good compromise, and allows us to obtain free
energies at 300 K converged within 1 meV. The calculations
were done using a 2 X 2 X 2 supercell (eight atoms). Second,
we tested convergence with respect to k-point sampling, and
we found that an 8 X 8 X 8 MP k-point grid is necessary to
obtain a free energy converged within 1 meV at 300 K.
Third, we tested the size of the supercell, performing calcu-
lations with up to 8X8X8 supercells (512 atoms), and
found that the convergence of the free energy was obtained
using cells containing at least 64 atoms (4 X4 X 4). With a
512-atom supercell, the only I'-point sampling of the BZ has
been calculated. Finally, we did convergence tests on the grid
of q points in which the phonons are calculated, and found
that with a 24 X 24 X 24 q-point grid the quasiharmonic free
energy is converged to 1 meV.

In Fig. 2 we plot the dispersion curves at zero pressure
along several high-symmetry directions in the Brillouin zone
for both transverse (TA) and longitudinal (LA) acoustical
branches obtained using the 512-atom supercell. An almost

TABLE I. Zero-pressure equilibrium volume V;, and bulk modulus K, for bce Ta in comparison with DAC
data from Ref. 41. All values obtained using the PAW potential with the 5p electrons explicitly included in

valence.

LDA LDA+SO PBE PBE+SO DAC data
Vo (A3 17.23 17.28 17.91 17.90 18.04
K, (GPa) 214 212 197 197 194
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FIG. 2. Phonon dispersion curves at zero pressure for bcc Ta.
Squares with error bars are neutron diffraction experiments (Ref.
49).

perfect agreement is obtained in comparison to the inelastic
neutron diffraction data by Woods* and previous theoretical
calculations by Bercegeay et al.® The calculations have been
repeated for 20 further different volumes using only 64-atom
cells, which show no significant degradation of the phonon
dispersion curves. As expected, the results show the well-
known phenomenon in solids of increasing phonon frequen-
cies with decreasing volume (increasing pressure), which is
responsible for the positive thermal expansion. Figure 3
shows some of the dispersion curves corresponding to pres-
sures from 6 to 325 GPa.

V. HIGH-TEMPERATURE EQUATION OF STATE

Previous calculations on tantalum®** suggest that the total
free energy, i.e., the electronic free energy term plus the vi-
brational contribution, can be fitted to the Vinet equation of
state for each temperature 7. Here we took a similar ap-
proach. We calculated the static and the vibrational parts of
the free energy at a number of different temperatures be-

14

12

Frequency (THz)

r H P r N

FIG. 3. Phonon dispersion curves calculated at pressures of 6
(solid line), 28 (dashed line), 95 (short dashed line), and 325 (dotted
line) GPa.
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TABLE II. Birch-Murnaghan fitted parameters for bulk bcc Ta
as a function of temperature.

T (K) Eo(T) (eV) Vo(T) (A%) Ko(T) (GPa)
293 -11.728 18.34 186
1174 -12.327 18.69 173
2113 -13.197 19.13 157
3052 -14.218 19.79 137
4226 -15.646 20.44 121
5166 -16.898 21.24 104
6105 -18.218 21.85 87
6574 -18.871 22.10 80

tween 293 and 6500 K, and for each temperature fitted the
total free energy to a third-order Birch-Murnaghan equation
of state. We obtained a set of parameters V(T), Ko(T), Eo(T),
and K((T), which we report in Table II for some values of 7.
The temperature dependence of these quantities has been fur-
ther parametrized using third-order spline functions in 7.
Figure 4 shows the Birch-Murnaghan parameters Ey(7),
Vo(T), Ko(T) as functions of temperature. Previously calcu-
lated values from Ref. 44, where the parameters were fitted
using the Vinet equation of state, are in good agreement with
the present work.

Figure 5 shows the room temperature thermal pressure
(defined as the total pressure minus the static pressure) as a
function of volume. Our calculations indicate, in agreement
with Cohen and Giilseren,* that the thermal pressure contri-
bution is very small in the whole pressure range
~0-300 GPa, being less than 1 GPa at low pressure and
increasing only to about 2 GPa at high pressure.

A very important parameter for the interpretation of shock
experiments is the Griineisen parameter defined by

oP KV
y=V(—> ==, (5)
GE)y  Cy

where E is the internal energy and «, Ky, and Cy are the
thermal expansivity, isothermal bulk modulus, and constant
volume specific heat, respectively. Figures 6 and 7 show the
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FIG. 4. Birch-Murnaghan parameters as a function of the tem-
perature. (a) Minimum energy Fo(7), (b) Vo(T), and (c) Ko(T).
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FIG. 5. Thermal pressure at room temperature as a function of
volume.

variation of the Griineisen parameter as a function of tem-
perature and pressure, respectively. We found a smooth
variation of the Griineisen parameter with temperature in the
range of pressures considered, and a large increase for pres-
sures below 100 GPa. Our results are similar to those re-
ported by Cohen and Giilseren,** but they predict a more
pronounced variation with pressure than those of Bercegeay
and Bernard® and those of Moriarty et al.> The experimental
zero-pressure room temperature value of the Griineisen pa-
rameter is 1.65, which agrees well with the calculations of
Bercegeay and Bernard® and, to some extent, those of Mori-
arty et al.> (who only reported the ionic contribution), but is
lower than that found in the present calculations (and those
of Cohen and Giilseren**).

VI. MELTING CURVE OF TANTALUM

To calculate the melting curve of Ta we applied the
method of the coexistence of phases plus free energy correc-

. - Fr= -
1000 2000 3000 4000 5000 6000
Temperature (K)

FIG. 6. Variation of the Griineisen parameter with temperature.
Different line styles correspond to different isobars: solid line
(0 GPa), dashed line (50 GPa), dotted line (100 GPa), dot-dashed
line (200 GPa), and double-dot-dashed line (300 GPa).
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Pressure (GPa)

FIG. 7. Variation of the Griineisen parameter on pressure. Dif-
ferent line styles correspond to different isotherms: solid line
(300 K), dotted line (2000 K), dashed line (3000 K), dot-dashed
line (4000 K), double-dot point dashed (5000 K), double-dash-
dotted line (6000 K).

tions, as described earlier.?® The strategy can be summarized
in the following three steps. The first step is to find a good
reference potential that mimics as closely as possible the ab
initio system. The second is to use this reference potential to
compute the melting temperature at a chosen pressure. This
is done by performing simulations in large boxes in which
solid and liquid are simulated at the same time. If simula-
tions are performed in the NVE ensemble, then for any
choice of volume V there exists a range of internal energy E
for which solid and liquid coexist for long time. The average
pressure and temperature over the coexisting period then
provide a point on the melting curve of the reference poten-
tial. We will describe this in more detail below. The third and
final step is the evaluation of the difference in melting tem-
perature between the reference system and the ab initio one.
This evaluation is repeated at various pressures on the refer-
ence model melting curve in order to produce the DFT melt-
ing curve. As shown earlier,”® for a chosen pressure p the
difference in melting temperature between the reference po-
tential and the ab initio system is given, to first order, by
T, = AGS(T)/SS (6)

ref>

where AGls(Yfo) is the difference in the Gibbs free energies
between the ab initio system and the reference potential,
evaluated at the melting temperature of the reference poten-
tial T‘nff, and the superscript Is indicates the difference be-
tween solid and liquid. Si; is the entropy of melting of the
reference potential, and it is readily evaluated. If the differ-
ences in the Gibbs free energies between the ab initio system
and the reference potential are not too large they can be
evaluated using a perturbational approach to thermodynamic
integration:

1
AG(P, T) = <AU>ref_ 5B<5AU2>ref+ Tt (7)

where B=1/kgT, ()¢ indicates the thermal average evalu-
ated in the reference potential ensemble, AU=U—-U,, with
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U and U,y the ab initio and the reference potential total
energy functions, respectively, and SAU=AU—(AU),.;. We
prefer to work with the isothermal-isochoric ensemble, and
we therefore evaluate the difference in the Helmholtz free
energies AF(V,T),

AF(VT) = AUy~ 3 BNt . (8)

Then, the relation between AG and AF is readily shown to
be

1
AG = AF - EVKTApz +o(Ap?), ©)

where Ap is the difference in pressure as the potential energy
function is changed from the reference potential to the ab
initio system at constant volume V, « is the isothermal com-
pressibility, and AG is obtained at the pressure p of the ref-
erence system at volume V.

The reference potential used in the present calculation is
an embedded atom model®® in which the total energy is given

by
1 a n a m | 1/2
pts (2 s[5 (4] o
Tij i Lj#En \ij

i#]
where r;; is the interatomic separation.

It is clear from Eq. (6) that, in order for the first-order
correction to the melting temperature 7/, to be reliable, the
difference in Gibbs free energy AG’S(T;?) between the DFT
and the reference system has to be as small as possible.
Moreover, in order for the perturbational approach described
in Eq. (8) to be valid it is necessary for the term ( SAU?) .. to
be small. This requirement provides a natural recipe for fit-
ting the reference potential to the DFT system: the param-
eters of the EAM are chosen so as to minimize the fluctua-
tions in the energy differences between the EAM and DFT.

Initially, the parameters of the potential were fitted to a
DFT simulation of liquid Ta performed near zero pressure
and at a temperature of 3500 K, which gave n=5.734, m
=3.462, €=0.743, a=3.222, and C=6.601. With this poten-
tial we then performed a first series of coexistence simula-
tions in the following way. We constructed a large box by
periodically repeating the bcc crystal, represented in a simple
cubic box, eight times in the x and y directions and 16 times
in the z direction, to obtain a rectangular-shaped supercell
containing 2048 atoms. The system was then thermalized to
a guessed melting temperature T, by simulating for 10 ps
in the (NVT) ensemble. Then we raised the temperature to a
very large value, keeping the atoms in the left half of the
simulation box fixed. Once melting in the right half of the
cell occurred, we rethermalized the system back t0 Tgeqs
with the atoms in the left half of the box still fixed. Then we
released the atoms in the left half of the box and let the
simulation continue in the (NVE) ensemble. If the amount of
total energy E present in the system is chosen appropriately,
solid and liquid coexist for a long time, and the averages of
the pressure p and temperature 7 during the simulation pro-
vide a point on the melting curve. For every fixed volume V
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FIG. 8. Time variation of pressure (upper figure) and tempera-
ture (lower figure) during a coexistence simulation of solid and
liquid Ta at low pressure.

there is a range of values of E which realize this condition.
Of course, the initial choice of E (which in our case is tuned
by assigning initial velocities to the atoms at the beginning
of the simulation) rarely falls into this range, and the system
completely melts (solidifies), if E is too large (small), so a
number of trial and error steps are necessary before a right
choice of E is made.

To monitor the simulations we used a number of tools,
including the mean square displacement and, in particular,
the planar density, defined as the number of atoms present in
a slice of the simulation box cut parallel to the solid-liquid
interface: in the solid region this planar density is a periodic
function, being large when the slice contains a plane of at-
oms and small when it falls in between planes, while in the
liquid region it is simply a random number fluctuating
around an average value.

This first series of coexistence simulations were per-
formed to obtain a point on the melting curve near zero pres-
sure. The temperature and pressure calculated throughout
this simulation are displayed in Fig. 8, from which we ex-
tracted the values p=—2.8 GPa and 7=2320 K. In Fig. 9 we
show a snapshot of the density profile which clearly indicates
solid and liquid in coexistence. We tested size effects on

180 T T T T T T T T T

160 [ 1
140 | 1
120 1
100

80

Number of atoms

60 n

T

40

20 r

0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Slice number

FIG. 9. Snapshot of the density profile during a coexistence
simulation of solid and liquid Ta.
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TABLE III. Thermal averages (AU) and fluctuations (SAU) (see text for definition) for different sizes of
the supercell at p=—2.8 GPa and 7=2320 K for solid and liquid Ta. Calculations have been performed using
the I point only (I'). Tests carried out using four k points with a 128-atom cell and by averaging in the
ab-initio ensemble (Al) are also reported. Values are in eV and errors on the last decimal digit.

(AU)IN —%B{ﬁAUZWN
N Liquid Solid Liquid Solid
128 (I') 2.733(2) 2.688(2) -0.026(9) -0.027(7)
216 (I 2.732(1) 2.708(2) -0.008(4) -0.021(7)
250 (') 2.729(2) 2.708(2) -0.017(8) -0.021(7)
128 (4k) 2.729(2) 2.708(3) -0.001(1) -0.013(4)
128 (AI) -2.666(1) -2.625(1) -0.037(3) -0.035(1)

these results by repeating the simulations using a 16 384-
atom cell, which showed essentially identical results.

To compute the DFT corrections to the EAM melting
curve we therefore applied Egs. (6), (8), and (9) above. This
has been done in the following way. For a chosen (p,75AM)
point on the melting curve of the EAM potential we per-
formed long simulations in the EAM ensemble with T
=T§1AM, and adjusted the volume V separately in solid and
liquid in order to obtain p as the average pressure. We then
extracted typically 50 statistically independent configurations
and calculated the ab initio total energies and pressures on
these configurations. We separately tested size and k-point
effects by performing simulations on 128, 216, and 250 at-
oms with the I" point only, and then repeating the calcula-
tions on the 128-atom systems using four k points. The re-
sults of these tests are summarized in Table III, where we
report the quantities (AU)gay and —%,B(&AU2>EAM. We no-
tice that all results are very close, with only a small differ-
ence of about 20 meV/atom in the results for the solid for
(AU)gam in the calculations performed with the 128-atom
cell and the I" point. We then decided to perform all calcu-
lations using the I" point only and simulation cells containing
250 atoms. We also tested the reliability of the perturbative
approach to obtain AF using Eq. (8) by repeating the calcu-
lations in the ab initio ensemble, i.e., by evaluating

—AF(V,T) =(- AU) oy + %B(éAU2>AI+ <o (1)

where now (-),; indicates the thermal average evaluated in
the ab initio ensemble. The simulations have been performed
with 128-atom cells, and only with I'-point sampling, and are
also reported in Table III. We notice that the term
—% B(SAU?),, is slightly larger in this case; however, when
summed to the (AU),; term the results for AF are equal to
those obtained in the EAM ensemble to within 5 meV/atom.

We then calculated the full melting curve of this EAM
potential, and computed the free energy differences between
the model and the ab initio system at a number of points on
the melting curve. Unfortunately, we found that the quality
of the EAM potential fitted at low pressure was not good

enough to obtain reliable corrections also in the high-
pressure region, and we therefore refitted a second EAM
potential on a solid simulation performed at p=49.7 GPa and
T=4310 K. We obtained slightly different parameters, given
by n=5.471, m=3.317, €=0.353, a=3.898, and C=14.23,
and we found that this potential could be used in the whole
range of pressures 0—300 GPa. The melting curve obtained
using this EAM potential and the ab initio one obtained by
adding on corrections according to Egs. (6), (8), and (9) are
displayed in Fig. 10, where we compare our results with the
available DAC and shock-wave experiments and previous
theoretical results by Moriarty et al.® and Strachan et al.'®
The calculated values are given in Table IV. The interpolated
value of the melting temperature at zero pressure (T,
=3270 K) is in good agreement with DAC experiments’
(T,,=3270 K), but as the pressure is increased the agreement
with  DAC experiments quickly deteriorates, and at
~100 GPa the difference between our DFT calculations and
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FIG. 10. Phase diagram of Ta obtained using the EAM and the
coexistence molecular dynamics MD approach (dotted line), and
the resulting ab initio curve obtained after adding free energy cor-
rections (solid line). Also reported are DAC melting (Ref. 7)
(crosses and open squares), shock melting (Ref. 5) (open circle),
and calculations from Ref. 3 (dot-dashed line) and Ref. 19 (dashed
line).
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TABLE IV. Melting temperature TEAM of the EAM at various
pressures and ab initio corrections T, (see text).

P (GPa) TEAM (K) T (K)
-6.9 2778+30 307+100
7.8 3103+20 495+65
49.7 4310+ 10 264+55
184.7 7450+20 80+96
306.8 9620+30 50+85

these DAC experiments is already about 2000 K. At
307 GPa our calculated value T7,,=9783+85 K is in good
agreement within the statistical error bars with shock-wave
experiments,’ which estimate T,,=8500+ 1500 K.

VII. DISCUSSION AND CONCLUSIONS

The main result of this work is the ab initio calculation of
the melting curve of Ta, performed with the DFT GGA and
PAW potentials. This has been evaluated by combining co-
existence calculations based on an interatomic embedded
atom model (a reference potential), and DFT corrections.
Since the method relies on a perturbative approach to evalu-
ate the corrections between the reference potential melting
curve and the DFT one, it is imperative that the reference
potential accurately mimics the DFT one. There are two
main requirements here: the first is that the energy fluctua-
tions in the energy differences between the reference model
and the DFT one must be small, and the second is that the
average energy differences between the model and the DFT
system must be the same, or as close as possible, in both
solid and liquid. To satisfy both requirements may not be
easy, and indeed we found that our first fit performed at
nearly zero pressure was not good enough in the high-
pressure region, and we needed to refit the model potential at
an intermediate pressure. We used this potential in the whole
pressure region because this second potential seemed to per-
form well everywhere, but we note that there is no reason
why one should use the same potential at each pressure.

The calculated melting curve is in good agreement with
DAC experiments in the very low-pressure regime, but starts
to differ with increasing pressure. At high pressure our cal-
culated melting curve disagrees substantially with DAC ex-
periments, but is in good agreement with shock data at
300 GPa. Our results on melting are comparable with previ-
ous calculations obtained using empirical potentials, though
our melting curve is somewhat lower.

The reliability of the calculations is supported by the in-
vestigation of a number of thermodynamic properties of tan-
talum. We have calculated the equation of state (P-V curves)
with different correlation-exchange functionals and found es-
sential the use of a PBE functional and PAW potentials,
which explicitly treat as valence electrons the 5p, 6s, and 5d
electrons. A very good agreement for the equation of state
has been found with the most recent DAC data on
tantalum,*? which differ somewhat from previous experimen-
tal measurements.*! Of course, a fair comparison should in-
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clude thermal expansion effects at room temperature, where
the experiments have been performed, however our calcula-
tions show that the thermal pressure is only a very small
contribution at room temperature, being less than 1 GPa at
low pressure and increasing only to about 2 GPa at high
pressure. We have found that the contribution of spin-orbit
coupling has negligible effects in the calculation of the equa-
tion of state. We also performed lattice dynamics calculations
using the small displacement method, obtaining almost per-
fect agreement of phonon dispersion curve at zero pressure
with neutron diffraction measurements. Within the quasihar-
monic approximation, we studied finite-temperature proper-
ties, and in particular we calculated the Griineisen parameter,
which is used together with the constant volume specific heat
(not reported here) to calculate temperatures on the Hugoniot
in shock-wave experiments. We found that the Griineisen
parameter depends weakly on temperature in the range of
pressures investigated (0—300 GPa), but has a stronger de-
pendence on pressure in the range of temperature
300-6000 K. These findings agree well with those previ-
ously reported by Cohen and Giilseren.** The pressure varia-
tion of the Griineisen parameter is also in agreement with the
results of Cohen and Giilseren,** and it is more pronounced
than that found by Bercegeay and Bernard® and by Moriarty
et al.* Our calculated zero-pressure room temperature value
of the Griineisen parameter is just over 2.0, which is higher
than the experimental value, equal to 1.65. We have not con-
sidered anharmonic effects in these calculations, but we do
not believe that they would change significantly the value of
the Griineisen parameter. Anharmonic effects were investi-
gated in our previous work on hcp Fe,?> where we found a
very small anharmonic contribution (at high temperature) to
the specific heat and the thermal pressure. These small con-
tributions also had the same sign, and therefore partially can-
cel when used in the evaluation of the Griineisen parameter.

These results per se do not shed light on the reasons for
the large disagreement between DAC melting curves of tran-
sition metals on one side, and first-principles calculations
(generally in agreement with shock data experiments) on the
other, but provide additional data substantiating these differ-
ences. There seems to be a consistent pattern of disagreement
between ab initio and DAC melting of transition metals, as
this disagreement is observed also in Mo and Fe (although
recent DAC experiments'® on Fe show good agreement with
the ab initio calculations'). The disagreement with the DAC
experiments is large enough to cause concern, and it is dif-
ficult to comment on why this is. We believe that at least
some of the DAC experiments may suffer from an imperfect
diagnostic tool to detect melting, like the use of the intensity
of x-ray diffraction peaks,® which might lead to underesti-
mating the melting temperature. Another possible problem in
DAC experiments is the temperature measurement. Recently,
an analysis of the spectroradiometrics effects of the disper-
sion and adsorbance properties of diamond has found that
chromatic effects induced by the diamond windows can be
substantial, and may lead to an underestimate of melting
temperatures of several hundred degrees.’! Applying this
analysis to the melting curve of Benedetti et al.’' concluded
that, for example, the melting curve of Boehler!® and that of
Saxena and Dubrovinski®? are at least a few hundred degrees
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too low at megabar pressures. On the theoretical side we
cannot exclude the possibility that density functional theory
may be in error, although this is difficult to believe given the
large quantity of experimental data accurately predicted by
this level of theory. Nevertheless, it has been shown that in
some cases different approximations for the exchange-
correlation functional do indeed result in different melting
temperatures. For example, in both MgO (Ref. 13) and Al
(Refs. 11 and 12) the GGA gives a zero-pressure melting
temperature that is about 20% lower than the experimental
one, while the LDA provides a melting temperature in very
good agreement with the experiments, although this differ-
ence between the two is progressively removed as pressure is
increased. Silicon is another example where the LDA and
GGA give different answers, though in this case it is the

PHYSICAL REVIEW B 75, 214103 (2007)

LDA that underestimates the melting temperature.?!3 This
would leave scope for going beyond the DFT to try to im-
prove on the accuracy of ab initio calculations. For Ta the
difference between the calculations and the experiments is
very large, and we believe that it is very unlikely for DFT to
be so much in error.
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