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In this paper, a method combining the stress and strain fluctuation formula with the elastic bath method is
proposed to calculate the elastic constants. Compared to the traditional method of standard fluctuation formula,
the new method shows much better convergence. The significance is based on one of the benefits of elastic bath
method, where the thermal strains of materials can be amplified or attenuated by appropriate choice of elastic
constants of the bath. Results obtained with a nearest-neighbor Lennard-Jones fcc crystal indicate that the
combination method is considerably more efficient than using its component technique separately.
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I. INTRODUCTION

The essence of the constitutive relation of a certain mate-
rial is the determination of its elastic constants. Once deter-
mined, these constants provide a way to link the loading on
the material to its response. Another use of the elastic con-
stants in the atomic simulation research is to serve as a prob-
ing of the interatomic forces employed,1 where the calculated
values of these constants using molecular simulations are
compared with the experimental data. This property has been
widely used and proved to be an efficient way to test the
validity of the model and atomic potential functions.

Molecular dynamics �MD� and Monte Carlo method are
two widely used atomic simulation methods. Conventional
MD simulations conserving the total energy and volume cor-
respond to the microcanonical �NVE� ensemble. However,
most experiments are conducted under constant temperature
or pressure, so canonical �NVT� or isothermal-isobaric �NPT�
ensemble should be adopted, correspondingly, to perform the
MD simulations. On the specific problem of the calculation
of elastic constants, due to the limitation of algorithms in
MD simulation, so far, most efforts are confined to the Monte
Carlo method.2–5

In a creative paper, Anderson6 proposed the extended sys-
tem method, which takes the volume as a fictitious degree of
freedom to carry out MD simulations in isobaric-isoenthalpic
�NPH� ensemble. His method was then improved by Par-
rinello and Rahman7,8 to apply to anisotropic cases. Later,
Nosé9 and Hoover10 devised a method which can adjust tem-
perature in MD simulations. With these methods, many sig-
nificant efforts3,4,11,12 have been devoted to calculate the elas-
tic constants of anisotropic materials rapidly and accurately.
Some of the drawbacks in the aforementioned methods13–17

that lead to improper results of the calculated elastic con-
stants have been eliminated partly by several modified
algorithms.18–20 In this paper, we shall focus on the following
two algorithms: the Nosé-Poincaré thermostat method17 and
the metric-tensor flexible-cell pressostat algorithm.16 The
former keeps the symplectic structure of the Hamiltonian and
the latter has eliminated the flaws of the original Parrinello-
Rahman �PR� algorithm. Recently, an algorithm21,22 combin-

ing the advantages of these two methods was proposed to
perform MD simulations in various isothermal-isobaric
�NPT� ensembles, thus extending greatly the application do-
mains of MD simulations. The calculation of elastic con-
stants using MD method then becomes possible.

The common ways to calculate the elastic constants de-
pend on the fluctuation techniques3–5 in NPT ensemble. For
example, the isothermal elastic constant tensor can be ob-
tained in terms of the PR strain fluctuation formula3

Cijkl =
kBT

�V�
���ij�kl� − ��ij���kl��−1, �1�

where �ij is the strain tensor, �V� is the average volume of the
system, kB is the Boltzmann constant, T is the temperature,
and the brackets denote the ensemble average. The indices
i , j ,k , l represent the Cartesian coordinates in three dimen-
sions and run from 1 to 3. The strain tensor is given by

�ij =
1

2
��h�ik

−Thkl
T hlm�h�mj

−1 − �ij� , �2�

where the scaling matrix h= �a� ,b� ,c�� consists of the three

noncoplanar basis vectors a� ,b� ,c� describing the size and
shape of the simulation box, and matrix �h� denotes the av-
erage shape of the system as the reference state. h−T is the
inverse of the transpose of h, and �ij is the Kronecker tensor.
In this paper, the conventional suffix notation is used, where
repeated suffixes indicate summation over the values of
1,2,3.

The elastic constants can also be calculated in NhE or
NhT ensembles,11,19,23 where the scaling matrix h is fixed.
However, the formulas are rather cumbersome because of the
Born term. According to the stress and strain fluctuation for-
mula, isothermal elastic constants can be calculated via4

Cijkl = ��ij�mn���mn�kl�−1, �3�

where �ij are the components of the microscopic stress ten-
sor
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�ij = −
1

V	

�

�p��i�p�� j

m�

− 

���

�U

�r��

�r���i�r��� j

r��
� . �4�

In Eq. �4�, the potential energy U is assumed as a pair func-
tion, i.e., U�r���, and r�� is the distance between the atom
indexed as � and �, and p� and m� are the momentum and
mass of the �th atom, respectively. Equation �3� has been
proven to be more efficient than Eq. �1� for the improved
convergence property.

However, as mentioned in Ref. 5, Eqs. �1�–�3� assume the
validity of linear elasticity, where strains and strain fluctua-
tions are sufficiently small, hence the elastic constants of stiff
or soft materials may be inappropriately calculated with
those formulas. In order to extend the application fields of
Eqs. �1� and �3�, the elastic bath method can be used to
facilitate fast and accurate calculation of elastic constants.
This idea has been implemented in Ref. 5, but only in PR
strain fluctuation formula. In this paper, we extend this idea
further with stress and strain fluctuation formulas to improve
convergence over standard techniques.

II. MD SIMULATIONS

Some spurious effects using the original PR method, such
as the absence of virial theorem,13 unphysical symmetry
breaking effects,14,15 spurious cell rotations,16 have been
eliminated by metric-tensor algorithm.16 The cause for the
spuriousness is the fictitious cell kinetic-energy term and the
transformation matrix h between spatial Cartesian reference
frame and lattice coordinates, where the latter has generally
nine independent components. A fix for this in the metric-
tensor algorithm then is to propose a symmetrical metric
tensor G=hTh. Now, G serves as the new dynamical variable
for the system and has only six independent components,
with three diagonal elements representing the lengths of the
lattice vectors and three off-diagonal elements for the angles
between those vectors. Hence, the matrix G itself is enough
to describe the shape and size of the simulation box. The
volume of the box is given by V=det h=�det G. The position
r�� of the �th atom in the system can be defined by its lattice
coordinates q��, i.e., r��=hq��, and the interatomic distance
between the �th atom and the �th atom can be obtained
through r��

2 = �q���
T Gq����.

On the other hand, Nosé-Poincaré thermostat algorithm17

can sample the NVT ensemble and keep symplectic structure
of Hamiltonian, which is achieved by performing Poincaré
transformation to the original Nosé Hamiltonian. Therefore,
the combined dynamics of Nosé-Poincaré thermostat algo-
rithm and metric-tensor flexible-cell pressostat algorithm can
describe the conservation of the Gibbs free energy. For sim-
plicity, we take the q�� as the lattice coordinates of the �th
atom, s, extended position variable,17 as the additional de-
gree of freedom in Nosé-Poincaré method, and g as the num-
ber of degrees of freedom of the system. Due to the Hamil-
tonian of Nosé-Poincaré, the Hamiltonian of the extended
system is the same as Ref. 21. Hence the equations of motion
in NPT ensemble are21

q�̈� = −
1

m�

�U�r���
�r��

q���

r��

− G−1Ġq�̇� −
ṡ

s
q�̇�,

G̈ =
s2

2WG
	GPG

det G
−

GPext

�det G
� +

ṡ

s
Ġ + ĠG−1Ġ

+
1

2
Tr�ĠG−1ĠG−1�G − Tr�G−1Ġ�Ġ ,

s̈ =
s

Ws




�

m�q�̇�
TGq�̇� − gkBText − �H� +

ṡ2

s
, �5�

where

P = 


�

m�q�̇�q�̇�
T − 


���

�U

�r��

q���q���
T

r��
� . �6�

Note that the superimposed dot denotes the time derivative in
Eqs. �5� and �6�, Tr�A� is the trace of the matrix A, WG is the
fictitious mass of variable G and Ws for variable s, and

�H =
1

2

�

m�q�̇�
TGq�̇� + U + gkBText ln�s� +

Wsṡ
2

2s2 + Pext
�det G

+
WG det G

2s2 Tr�ĠG−1ĠG−1� − H0, �7�

where H0 represents H�t=0�. Here, all the formulas have
been written in a matrix form for some predictor-corrector
integral algorithms.24 If the time-reversible and symplectic
numerical integrators, such as the generalized leapfrog
scheme,25,26 have been applied, the formulas should be re-
written in a covariant-contravariant form.

With the aid of the metric tensor G and the kinetic term of

system
WG

2 �det G�Tr�ĠG−1ĠG−1�, drawbacks mentioned
above can be eliminated. However, since the degree of free-
dom of G is 6, less than that of scaling matrix h �being 9�, h
could not be obtained from G. In other words, with the evo-
lution of G with time, h cannot be obtained in every MD
step. In addition, G, as the dynamical variable, is indepen-
dent of spatial Cartesian reference frame. Hence, the posi-
tions �r��, velocities �v�� of atoms, and other information
associated with transformation matrix h cannot be obtained
from the formulas above. This immediately tells that Eqs. �3�
and �4� cannot be applied at all. Therefore, the original stress
and strain fluctuation formula should be modified with this
pressostat algorithm.

Consider a system of N particles without external stresses
and let H be its Hamiltonian16

H = 

�

p��
TG−1p��

2m�

+ U�q� ,G� , �8�

where p�� is the momentum canonically conjugate to q��. With
chain rule, we have �refer to the Appendix for more details�

�H

��kl
= 2�h�km

�H

�Gmn
�h�nl

T = − �h�kmPmn�h�nl
T . �9�

With the following identity27
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��ij
�H

��kl
� =

1

2
kBT��ik�lj + �il�kj� , �10�

we can obtain the following expression:

Cijkl = ��ij�̃mn���mn�kl�−1, �11�

where �̃ij =−�h�ikPkl�h�lj
T / �V�. Obviously, since Eq. �11� is

based on the rigorous mathematical derivation with chain
rule, it gives more reasonable results than Eq. �3�. In addi-
tion, due to the correlation of stresses and strains in the phase
space, Eqs. �11� and �3� have better convergent properties
than Eq. �1�, which has only the second moments ��ij�kl�.

In MD simulations, the fluctuations of simulation box un-
der equilibrium state are determined by the fictitious cell
mass WG with the dimensions of mass��length�−4. If the
value of WG is too big, it will take a long time to reach the
equilibrium state, i.e., linear elasticity assumption breaks, or
to oscillate very frequently for contrary situation. In other
words, the value of mass WG can make the simulation system
stiffer or softer, thus it determines adequate sampling of the
accessible strains and stresses. In order to attenuate the de-
pendence of WG, the elastic bath method is employed.

III. ELASTIC BATH METHOD

Strain energy density of a deformed system with small
strains can generally be written as follows:5

Ẽs =
1

2
Cijkl�ij�kl. �12�

The main idea of the method in Ref. 5 is to immerse the
simulation system in an elastic bath with appropriately cho-
sen elastic constants Cijkl

b , where the strain and stress fluctua-
tions can be amplified or attenuated. Since the elastic bath is
merely a mathematical construction, the elastic constants
Cijkl

b can be chosen freely, including nonphysical values, i.e.,
less than zero, which implies to amplify fluctuations. With
the elastic bath method, the dependence of the fictitious cell
mass WG will weaken. Meanwhile, the Hamiltonian in Eq.
�8� should have the strain energy due to the elastic bath in-
cluded, i.e.,

H1 = H + �V�Ẽs
b = H +

1

2
�V�Cijkl

b �ij�kl. �13�

Thus, the evolution of metric tensor G in Eq. �5� can be
rewritten as

G̈ =
s2

2WG
	GP1G

det G
−

GPext

�det G
� + ĠG−1Ġ

+
1

2
Tr�ĠG−1ĠG−1�G − Tr�G−1Ġ�Ġ +

ṡ

s
Ġ , �14�

where

�P1�ij = Pij − �V��h�ki
−T�h� jl

−1Cklmn
b �mn. �15�

The second part of Eq. �15� is contributed from the addi-
tional strain energy of elastic bath, i.e.,

�
1

2
�V�Cijkl

b �ij�kl

�Gij
= �V��h�ki

−T�h� jl
−1Cklmn

b �mn. �16�

Correspondingly, �H in Eq. �7� should include the strain
energy. Thus, Eq. �9� should count in a term as

�H1

��ij
= �V���̃ij + 	ij� , �17�

where

	ij =
�Ẽs

b

��ij
=

�
1

2
Cijkl

b �ij�kl

��ij
= Cijkl

b �kl. �18�

According to Eq. �12� in Ref. 5, the elastic constants can be
calculated via

Cijkl = Cijkl
t − Cijkl

b , �19�

where Cijkl
t = ��ij��̃mn+	mn����mn�kl�−1 are the elastic con-

stants of the material including the elastic bath. Since the
elastic bath and the simulation system have identical strains,
their reference states can have the same form, �ij

0 =0. There-
fore, the equilibrium state for the combined system will also
be the reference state, �ij

0 =0. The additional strain energy of
the elastic bath, Eq. �12�, provides an additional stress 	ij to
the system, which is zero for the reference state. As men-
tioned in Ref. 5, the choice of Cijkl

b is always available, of
order −10–10.

IV. SIMULATION RESULTS

To check the validity of the aforementioned algorithms, a
MD simulation code is developed to study a fcc crystal using
a first-nearest-neighbor interatomic model. A classical pair
potential of Lennard-Jones is used. The simulation system
including 108 atoms2–5 is employed. The NPT ensemble is
adopted, implemented by using Nosé-Poincaré thermostat,17

metric-tensor pressostat,16 and Gear algorithm24 for the time
integration. The isotropic material is employed as the elastic
bath, and the elastic constants are given by28

C11 = 
 + 2�, C12 = 
, C44 = � , �20�

where 
 and � are the Lamé coefficients. Our simulation
results are represented using the Voigt matrix notation29 in
reduced units. For fcc crystals, there are only three indepen-
dent elements of the elastic constant matrix, C11, C12, C44,
and C11=C22=C33, C12=C23=C13, and C44=C55=C66.

In Fig. 1, �C11�, �C12�, and �C44� as functions of tempera-
ture are calculated by using Eq. �19�. Each simulation is first
equilibrated for 1.0�106 steps, then additional 2.0�106

steps are evolved before the results are collected. Three dif-
ferent strengths of the elastic bath �
b=�b=20, 
b=�b=0,
and 
b=�b=−20� are employed and the Cij

b can be obtained
by Eq. �20�. There is excellent agreement between all sets of
data. The same results have been found in Table I, where the
isothermal elastic constants in units of NkBT /V for six tem-
peratures are listed for comparison with literature data.2 The
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significance of the combination method is best seen by com-
paring the convergence of the calculation from different elas-
tic strengths and temperatures.

When 
b=�b=0, all formulas degenerate to the usual
stress and strain fluctuation techniques, i.e., without elastic
bath. The convergence of �C11� from Eq. �11� is slow at both
low and high temperatures �see Figs. 2�a� and Fig. 3�a��.

When 
b=�b=−20, the system is immersed in a negative
stiffness elastic bath, i.e., the composite material is softer
than in the absence of the bath, therefore the thermal strains
are enhanced. Since small strain fluctuation of stiff material
at low temperature can hinder adequate sampling of acces-
sible strain values, the elastic constants may be calculated
imprecisely using Eqs. �1� or �3�. Therefore, with Eq. �19�,
strains can be amplified to get an adequate sample for accu-
rate calculation of elastic constants �see Fig. 2�b��.

When 
b=�b=20, the system is immersed in a positive
stiffness, isotropic elastic bath. In this case, the composite
system is stiffer than in the previous case, and the strains due
to thermal fluctuations are attenuated. Using Eq. �19�, the
correct elastic constants can be obtained, as shown in Fig. 1
and Table I. Due to the first-nearest-neighbor Lennard-Jones
potential used in the fcc crystal, the system is very soft at
high temperature, i.e., the strain fluctuation may not satisfy
the theory of linear elasticity, thus that choice of elastic bath
has better convergence �see Fig. 3�b��.

TABLE I. Isothermal elastic constants �in units of NkBT /V� cal-
culated via Eq. �19� from additional 2.0�106 steps for three differ-
ent sets of Lamé coefficients of the elastic bath. The temperature is
measured in units of � /kB, where � is the well depth of the Lennard-
Jones potential-energy function. Data from the literature �Ref. 2� are
shown in the last column.

T �Cij� 
b=�b=20 
b=�b=0 
b=�b=−20 Ref. 2

0.125 �C11� 491.6±1.5 492.2±1.5 496.7±2.5 494.0±1.1

�C12� 236.7±1.1 238.3±0.8 241.1±2.0 237.8±1.1

�C44� 250.0±1.1 248.5±2.2 244.7±1.5 250.0±0.2

0.225 �C11� 235.0±1.7 236.3±1.5 234.9±1.3 237.0±0.8

�C12� 108.3±0.9 107.6±1.8 106.1±1.1 108.2±0.8

�C44� 121.5±1.0 120.2±2.0 116.7±2.0 121.9±0.2

0.3 �C11� 155.4±1.5 154.8±1.9 154.2±2.2 157.1±1.0

�C12� 66.0±1.3 69.3±0.8 67.7±1.8 69.3±0.9

�C44� 81.5±1.1 82.2±1.2 78.0±2.1 82.2±0.2

0.375 �C11� 109.7±0.9 108.2±1.5 105.2±2.2 111.0±0.7

�C12� 44.3±1.1 46.5±1.4 44.4±1.8 46.8±0.7

�C44� 55.3±1.2 55.6±0.9 53.5±1.1 58.1±0.2

0.45 �C11� 76.9±1.1 73.5±2.0 75.5±2.2 78.4±0.9

�C12� 29.4±1.1 28.7±1.2 27.1±1.8 31.0±1.0

�C44� 41.2±0.8 39.7±1.5 40.1±0.5 42.0±0.3

0.5 �C11� 60.0±1.1 56.7±0.9 66.5±1.3 61.7±0.7

�C12� 22.0±1.5 19.6±1.3 21.9±0.5 22.8±0.8

�C44� 33.7±0.8 30.4±1.8 32.0±2.2 33.8±0.2
FIG. 1. �Color online� The elastic constants �in units of NkBT /V�

of the fcc crystal as a function of temperature �measured in units of
� /kB�: ��� positive elastic bath, ��� zero elastic bath, ��� negative
elastic bath.

FIG. 2. �Color online� Convergence of �C11� for the fcc crystal
at T=0.05. �a� Using Eq. �11� without elastic bath. �b� Using Eq.
�19� with negative bath.
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V. CONCLUDING REMARKS

In this paper, the elastic bath method is applied in stress
and strain fluctuation formulas to improve the convergence
and to extend the application areas of the MD method. Since
the strains and stresses may be enhanced or attenuated with
bath, the proposed combination method can keep the linear
elasticity assumption of fluctuation formula in various mate-
rials. In addition, for the classical first-nearest-neighbor
Lennard-Jones fcc crystal, the results show a better conver-
gence than the standard technique.
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APPENDIX

In this appendix, we show the derivation of Eq. �9�. From
the Hamiltonian defined in Eq. �8�,

H = EK + EU = 

�

p��
TG−1p��

2m�

+ U�q� ,G� , �A1�

we can obtain

�H

��kl
=

�H

�Gij

�Gij

��kl
= 
 �EK

�Gij
+

�EU

�Gij
� �Gij

��kl
. �A2�

For Gij, according to Eq. �2�, we have

Gij = �hT�ikhkj = 2�h�ik
T �kl�h�lj + �G�ij . �A3�

This leads to

�Gij

��kl
= 2�h�ki�h� jl

T . �A4�

We now evaluate the two terms inside the parentheses of Eq.
�A2�. From Eq. �A1�, we have

�EU

�Gij
=

1

2 

���

�U

�r��

�q����i�q���� j

r��

, �A5�

�EK

�Gij
=

�EK

�Gkl
−1

�Gkl
−1

�Gij
= 	


�

�p��k�p��l

2m�
��− Gki

−1Gjl
−1� .

�A6�

According to Eq. �5� in Ref. 21, Eq. �A6� can be written as
follows:

�EK

�Gij
= −

1

2

�

m��q�̇��i�q�̇�� j . �A7�

Therefore, with Eqs. �A2�, �A5�, and �A7�, we can get the
following expression:

�H

��kl
= 2�h�ki

�H

�Gij
�h� jl

T = − �h�kiPij�h� jl
T . �A8�
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