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We discuss fermionic zero modes in the two-dimensional chiral p-wave superconductors. We show quite
generally that without fine tuning, in a macroscopic sample there is only one or zero of such Majorana-fermion
modes depending only on whether the total vorticity of the order parameter is odd or even, respectively. As a
special case of this, we find explicitly the one zero mode localized on a single odd-vorticity vortex and show
that, in contrast, zero modes are absent for an even-vorticity vortex. One zero mode per odd vortex persists,
within an exponential accuracy, for a collection of well-separated vortices, shifting to finite ±E energies as two
odd vortices approach. These results should be useful for the demonstration of the non-Abelian statistics that
such zero-mode vortices are expected to exhibit and for their possible application in quantum computation.
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Recently1–3 there has been considerable interest in the
structure of fermionic zero modes localized on vortices of a
chiral spinless two-dimensional superconductor character-
ized by px+ ipy order parameter. In part, it is stimulated by a
proposal1 that the ground state of such a superconductor �for
a positive chemical potential� is similar to the Moore-Read
�Pfaffian� quantum Hall state,4 thought to describe the
�=5/2 quantum Hall plateau.5 Vortices �corresponding to the
Laughlin quasiholelike excitations6 in the Moore-Read state�
in such a superconductor are thus expected to exhibit a de-
generate set of zero modes separated from all other states by
a gap and to obey non-Abelian statistics,7 which may make
them useful for a realization of a “topological quantum
computer8” free of decoherence.

Many of the properties of these zero modes for a single
vortex have already been discussed in the literature.1–3,9

However, in our view an explicit discussion of the fate and
robustness of the zero modes to, for example, a local defor-
mation of the order parameter or in the presence of many
vortices has not appeared in the literature. Such questions are
of particular interest in view of recent proposals for experi-
mental realization and manipulation of such non-Abelian
states in two-dimensional superconductors, such as
Sr2RuO4,10 the �= 5

2 plateau of the quantum Hall effect,11–13

and p-wave resonantly interacting atomic superfluids.2,14,15

In this paper we show quite generally that for a macro-
scopic sample �i.e., ignoring the boundary physics�, without
fine-tuning, strictly speaking there is only one or zero
Majorana-fermion mode depending only on whether the total
vorticity of the order parameter �in elementary vortex units
of 2�� is odd or even, respectively. For a collection of well-
separated vortices, within an exponential accuracy one zero
mode per an isolated odd-vorticity vortex persists. As two of
such vortices are brought closer together the corresponding
pair of “zero” modes splits away to finite ±E �vortex-
separation-dependent� energies. Generically, even-vorticity
vortices do not carry any zero modes.

Even in the odd-vorticity case, zero modes only exist for
a positive chemical potential ��0, consistent with the exis-
tence �absence� of a topological order in a weakly �strongly�
paired ground state of a p-wave superconductor stable only
for ��0 ���0�.1,9,15 While a p-wave superconductor in a

solid-state context naturally obeys ��0, in a Feshbach reso-
nant atomic p-wave superfluid a chemical potential can be
adjusted to be positive via an external magnetic field,14,15 a
“knob” that can also be used to drive a topological quantum
phase transition between a strongly and weakly paired super-
fluid ground states.1

As a demonstration of a specific realization of this general
connection between parity of vorticity and a number of zero
modes, we compute the eigenfunction of the one zero mode
localized on a single isolated odd-vorticity vortex and show
that zero modes are absent for an even-vorticity vortex. This
symmetric vortex result is in agreement with a recent study
in Ref. 3, but does not rely on a linearization of the fermion
dispersion around a Fermi surface and thereby allows us to
access the nondegenerate �low-chemical-potential� regime
realizable in tunable �via a Feshbach resonance14,15� atomic
gas experiments. Our results then imply that such zero
modes, residing on isolated elementary vortices, are always
shifted to finite ±E energies when an even number of them
come into proximity,1 with possible deleterious implications
for a realization of non-Abelian statistics and quantum
computation.

Note that since in general an even-vorticity vortex is en-
ergetically unstable towards its decomposition into several
vorticity-1 vortices, we expect that in a generic experiment
involving vortices in a �=5/2 quantum Hall state, a p-wave
superconductor, or a p-wave condensate,1,2,10,14,15 only
vorticity-1 vortices will be present. Hence their zero modes
will exhibit non-Abelian statistics.

To demonstrate these results we begin by first discussing
the properties of the solutions of generic Bogoliubov–de
Gennes �BdG� equations arising in the context of any super-
conductor. These coupled Schrödinger equations follow from
the Bardeen-Cooper-Schrieffer �BCS� Hamiltonian

H = �
ij

�ai
†hijaj − ajhijai

† + ai�ijaj + aj
†�ij

* ai
†� , �1�

where indices i and j label space �and in a spinful case, spin�
coordinates of the fermion creation and annihilation opera-
tors ai

† and ai. Their canonical anticommutation relations en-
sure that �ij is an antisymmetric operator. Since H must be
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Hermitian, so is hij, and the problem is equivalent to a study
of the spectrum and eigenstates of a matrix

H = � h �

�† − hT � . �2�

This matrix possesses the important symmetry property

�1H�1 = − H*, �3�

where �1 is the first Pauli matrix acting in the 2�2 space of
the matrix H, Eq. �2�. In the terminology of Ref. 17, the
matrix H is said to belong to the symmetry class D. As a
result of this property, it can be seen from

H�1	* = − �1H*	* = − E�1	* �4�

that if 	 is an eigenvector of such H with eigenvalue E, then
�1	* is guaranteed to be an eigenvector with eigenvalue −E.
As a result, all nonzero eigenvalues of H come in ±E pairs.
A special role is played by the zero eigenvectors of this ma-
trix, referred to as zero modes. If 	 is a zero mode, �1	* is
also a zero mode. Taking linear combinations 	+�1	* and
i�	−�1	*� of these degenerate modes, we can always ensure
the relation

�1	* = 	 �5�

for every zero mode. In the absence of other symmetries of
H it is quite clear that generically there is nothing that pro-
tects the total number Nz of its zero modes under smooth
changes of the Hamiltonian matrix that preserve its BdG
form. However, since nonzero modes have to always appear
in ±E pairs, as long as the symmetry property �3� is pre-
served by the perturbation, the number of zero modes can
only change by multiples of 2. Thus, while the number Nz of
zero modes of the Hamiltonian �2� may change, this number
will always remain either odd or even, with �−1�Nz a
“topological invariant.”18,19

The value of this invariant is easy to establish if one ob-
serves that H is an even-sized matrix, with an even number
of eigenvalues. Since the number of nonzero modes must be
even, this implies, quite generally, that the number of zero
modes is also even, �−1�Nz =1, and strictly speaking the BdG
Hamiltonian does not have any topologically protected zero
modes. Furthermore, since zero modes must appear in pairs,
there can only be an even number of accidental zero modes,
which will nevertheless be generally destroyed by any per-
turbation of H �preserving its BdG structure Eq. �2��. We
believe this observation was first made by Read.19

The situation should be contrasted with that of the Dirac
operators D. Those operators, being generally of one of the
chiral classes in the terminology of Ref. 17, obey the sym-
metry

�3D�3 = − D .

Thus, if 	 is an eigenvector of D with eigenvalue E, �3	 is
an eigenvector with eigenvalue −E. Thus �after a suitable
diagonalization� the zero modes of D must obey the relation

�3	L,R = ± 	L,R.

Namely, they are eigenstates of the �3 operator, with the
“left” zero modes 	L coming with the eigenvalue +1 and the
“right” zero modes 	R labeled by the eigenvalue −1. As the
operator D is deformed, the number of zero modes changes,
but the nonzero modes always appear in pairs, where one of
the members of a pair has to be “left” and the other “right.”
Therefore, while the number of zero modes is not an invari-
ant, the difference between the number of left and right zero
modes is a topological invariant, determined �through the
index theorem� by the monopole charge of the background
gauge field.

Contrast this with zero modes of H, which obey relation
�5�. Because of the complex conjugation on 	, these zero
modes cannot be split into “left” and “right.” Indeed, even if
we tried to impose �1	*=−	, a simple redefinition of
	→ i	 brings this relation back to Eq. �5�. Thus, the most an
“index theorem” could demonstrate in the case of the BdG
problem is whether there is zero or exactly one zero mode.
Moreover, since the BdG problem is defined by an even-
dimensional Hamiltonian, generically there will not be any
topologically protected zero modes.18,19

Yet it is quite remarkable that in the case of an isolated
vortex of odd vorticity in a macroscopic sample �i.e., ignor-
ing the boundaries� of a px+ ipy superconductor of spinless
fermions, there is exactly one zero mode localized on this
vortex.1–3,20 To be consistent with above general property of
the BdG Hamiltonian �namely, that the total number of zero
modes must be even� another vortex is situated at the bound-
ary of the system,1,19 preserving the overall parity of the
number of zero modes. Hence, although even in this odd-
vorticity case the one zero mode is not protected topologi-
cally, being able to hybridize with a vortex at a boundary of
the sample, it survives �up to exponentially small correc-
tions� only by virtue of being far away from the boundary
�and from other odd-vorticity vortices�.

To see this explicitly we consider the BdG equations for a
two-dimensional px+ ipy superconductor:

�−
�2

2m
− ��u�r� − ���r�

�

�z̄
�v�r����r�� = Eu�r� ,

�6�

� �2

2m
+ ��v�r� − ��*�r�

�

�z
�u�r���*�r�� = Ev�r� .

Here ��r� is the order parameter of the superconductor,
z=x+ iy, z̄=x− iy are the two-dimensional complex coordi-
nates, m is the fermion mass, and � is the chemical potential.
Equation �6� is of course a particular case of the eigenvalue
equation for a matrix of the form given in Eq. �2�, with the
vector 	 represented by

	 = �u

v
� . �7�

For a uniform �vortex-free� order parameter ��r�=�0, it is
easy to solve Eq. �6� in terms of plane waves, finding the
spectrum
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Ek =�� k2

2m
− ��2

+ 	�0	2k2. �8�

Since Ek has a gap for all k �with the exception of the critical
point at �=0 �Refs. 1, 9, and 16��, consistent with above
discussion, there are no zero modes of Eq. �6� in the absence
of vortices.

Now consider a superconductor with a symmetric vortex
of vorticity �. The order parameter is then given by

��r� = ei�
f2�r� , �9�

where r and 
 are polar coordinates centered on the vortex
and f�r� is a real function of r that vanishes at small r. Then
the BdG equations take the form

�−
�2

2m
− ��u − f�r�ei�
/2 �

�z̄
�ei�
/2f�r�v� = Eu ,

�10�

� �2

2m
+ ��v − f�r�e−i�
/2 �

�z
�e−i�
/2f�r�u� = Ev .

Next we observe that for the case of a vortex of even
vorticity �=2n, we can eliminate the phase dependence of
Eq. �10� entirely. Indeed, making a transformation

u → uein
, v → ve−in
 �11�

leads to the equations

�−
�2

2m
+

n2

2mr2 − ��u −
in

mr2

�u

�

− f�r�

�

�z̄
�f�r�v� = Eu ,

�12�

� �2

2m
−

n2

2mr2 + ��v −
in

mr2

�v
�


− f�r�
�

�z
�f�r�u� = Ev .

Now we note that these equations are topologically equiva-
lent to the BdG equations without any vortices. Indeed, the
only difference between these equations and those for a uni-
form condensate is the presence of the terms 2in /r2�� /�
�,
n2 /r2, and f�r�, which is a constant at large r and vanishes in
the core of the vortex for r�rcore. We can imagine smoothly
deforming these equations to get rid of the first two terms
(for example, by replacing them with ��n2 /r2

−2in /r2�� /�
��u and taking � from 1 to 0) and smoothly
deforming f�r� into a constant equal to its asymptotic value
at large r; in order to be smooth, the deformation must pre-
serve the BdG structure, Eq. �2�, and the vorticity of the
order parameter. These equations then become equivalent to
Eq. �6� for a constant, vortex-free order parameter ��r�
=�0 with an exact spectrum, Eq. �8�, which for ��0 clearly
does not exhibit any zero modes.

As Eqs. �12� are smoothly deformed, in principle it is
possible that for a particular deformation some of its eigen-
states will become zero modes �although, as demonstrated
above, this can only happen in ±E pairs, leading to an even
number of these�. However, these modes will not be topo-
logically protected, and even a small deformation of, say, the
order parameter shape f�r� will destroy these modes. We note
that this argument easily accommodates vortices that are not
symmetric, as those can be smoothly deformed into symmet-

ric ones without changing the topologically protected parity
of Nz. The conclusion is that generically there are no zero
modes in the presence of an isolated vortex of even vorticity.

In fact, if any doubts remain, it is also possible to directly
demonstrate the absence of zero modes in Eq. �12� simply by
following the arguments parallel to those given after Eq.
�20�. However, the arguments presented above are more gen-
eral and robust, and can be used to establish the claim even
for nonsymmetric even-vorticity vortices.

The situation is drastically different if the vorticity of a
vortex is odd—i.e., �=2n−1. Indeed, in that case the trans-
formation, Eq. �11�, cannot entirely eliminate such a vortex
from the equations �even with the help of a smooth deforma-
tion�, leaving at least one fundamental unit of vorticity. This
thereby guarantees at least one zero mode localized on the
odd-vorticity vortex. To see this, recall that due to the con-
dition �5� together with the definition �7�, the zero mode
satisfies

u = v*. �13�

Combining this with the transformation, Eq. �11�, we find the
equation for the zero mode:

− f�r�e−i
/2 �

�z̄
�e−i
/2f�r�u*� = � �2

2m
−

n2

2mr2 + ��u +
in

mr2

�u

�

.

�14�

We look for a solution to this equation in terms of a spheri-
cally symmetric real function u�r�. This gives

−
1

2m
u� − � f2

2
+

1

2mr
�u� − � f2

4r
+

f f�

2
−

n2

2mr2�u = �u .

�15�

A transformation

u�r� = ��r�exp�−
m

2



0

r

dr�f2�r��� �16�

brings this equation to the more familiar form

−
��

2m
−

��

2mr
+ �m

f4�r�
8

+
n2

2mr2�� = �� . �17�

This is a Schrödinger equation for a particle of mass m which
moves with angular momentum n in a potential mf4 /8 that is
everywhere positive. We observe that this potential vanishes
at the origin and quickly reaches its asymptotic bulk value
��mf0

4 /8 away from the origin. Then, for ��mf0
4 /8, there

always exist a solution to this equation finite at the origin and
at infinity. Moreover, if ��mf0

4 /8, then the solution finite at
the origin will diverge at infinity as

� � er�m2f0
4/4−2m�. �18�

Combining this with Eq. �16�, we observe that u�r� remains a
bounded function at infinity as long as ��0. Thus the con-
clusion is that there exists a zero mode as long as ��0. For
the special case of the n=0 vortex of vorticity −1, the small-
and large-r asymptotics of the solution we found here was
discussed recently in Ref. 2.
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In the simplest London approximation of a spatially
uniform condensate with f�r�= f0 for all r except inside an
infinitesimally small core, the zero mode localized on an
isolated odd-vorticity vortex is simply given by

u�r� =�
Jn�r�2�m − m2 f0

4

4
�e−�m/2�f0

2r,

for � � m
f0

4

8
,

In�r�m2 f0
4

4
− 2m��e−�m/2�f0

2r,

for 0 � � � m
f0

4

8
,

 �19�

where Jn�x� and In�x� are Bessel and modified Bessel
functions.

We note that it may seem possible to construct additional
zero modes in the following way. Instead of the ansatz of a
rotationally invariant u�r� just before Eq. �15�, we could have
chosen an ansatz

u�r,
� = u��r�ei�
 + u−��r�e−i�
. �20�

Then two second-order differential equations follow relating
these two functions. Generally there are four solutions to
these equations. Boundary conditions at the origin r=0 select
a subset of two of these solutions. Boundary conditions at
infinity select a different subset of two solutions. However,

barring a coincidence, none of those solutions finite at the
origin are also finite at infinity. Even if such a coincidence
arises for some special value of �, by the above arguments,
the additional zero modes must appear in topologically un-
protected pairs, which will be split to finite ±E energies by a
slight generic deformation of the potential �order parameter
distortion�. Hence we conclude that generically there will be
no additional zero modes �except the one found above� for
an odd-vorticity vortex.

Thus we indeed find that the number of zero modes in a
symmetric odd-vorticity vortex must be 1. Since smooth de-
formations of the order parameter can only change the zero-
mode number by multiples of 2, an arbitrarily shaped odd-
vorticity vortex must have an odd number of zero modes.
However, any number of zero modes other than 1 is not
generic and will revert to 1 under an arbitrary deformation of
the order parameter.

To summarize, the results presented here establish the ro-
bustness of the zero modes localized on well-separated
�rseparation1/ �m��� odd-vorticity vortices and support the
idea that they can eventually be used to demonstrate
non-Abelian statistics and perhaps even for quantum
computation.
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