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The Penrose tiling is a perfectly ordered two-dimensional structure with fivefold symmetry and scale invari-
ance under site decimation. Quantum spin models on such a system can be expected to differ significantly from
more conventional structures as a result of its special symmetries. In one dimension, for example, aperiodicity
can result in distinctive quantum entanglement properties. In this work, we study ground-state properties of the
spin-1 /2 Heisenberg antiferromagnet on the Penrose tiling, a model that could also be pertinent for certain
three-dimensional antiferromagnetic quasicrystals. We show, using spin-wave theory and quantum Monte
Carlo simulation, that the local staggered magnetizations strongly depend on the local coordination number z
and are minimized on some sites of fivefold symmetry. We present a simple explanation for this behavior in
terms of Heisenberg stars. Finally, we show how best to represent this complex inhomogeneous ground state
using the “perpendicular space” representation of the tiling.
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The Penrose tiling,1 illustrated in Fig. 1, is one of the best
known quasiperiodic tilings. Its counterpart in one dimension
is the Fibonacci chain, while its three-dimensional counter-
part is the three-dimensional Penrose or icosahedral tiling—
the basic template for many quasicrystalline alloys. One of
the most striking and experimentally observable features of
the Penrose tiling is its fivefold symmetric structure factor
with sharp peaks in reciprocal space. In real space, the tiling,
built from two types of rhombuses, has a set of vertices of
coordination number z ranging from 3 to 7, with an overall
coordination number of exactly 4. The characteristics of the
Penrose tiling, such as the tile shapes or the relative frequen-
cies of vertices, can be expressed in terms of the golden
mean �= ��5+1� /2. This irrational number also gives the
length scale for the transformations called inflations �defla-
tions� that leave the tiling invariant, in which the basic units
of the tiling are redefined so as to give a Penrose tiling on a
larger �smaller� scale. These and many other fascinating
properties of the Penrose tiling have been extensively studied
in the literature.2 This type of ordered structure can lead to
complex physics, as shown by a large number of studies on
electronic properties in this and other quasiperiodic
models.3,4 Quasiperiodic quantum spin chains have also been
the subject of many studies. The recent interest in quantum
entanglement of spins has led, for example, to the investiga-
tion of one-dimensional critical aperiodic systems,5 showing
that the entanglement entropy depends on the strength of the
aperiodicity. Quantum effects are biggest in low dimensions
and small spin value, while 2 is the smallest dimension for
which T=0 order can occur. It is therefore interesting to con-
sider the Penrose S= 1

2 antiferromagnet and compare its prop-
erties with those of simpler structures.

In an antiferromagnet, quantum fluctuations around the
Néel state lead to a reduction of the order parameter with

respect to its classical value, even at T=0. On bipartite
Archimedean lattices, where all sites have the same value of
z, the staggered magnetization is expected to increase with z
toward the classical value of 1

2 . This effect is easily explained
within linear spin-wave theory,6 and it is confirmed in a num-
ber of numerical calculations. Thus, for example, the order
parameter on the honeycomb lattice �z=3�, ms�0.235,7 is
more strongly suppressed than on the square lattice �z=4�,
where ms�0.307.8

For inhomogeneous structures with more than one value
of z, it was recently argued that, contrarily to naive belief
based on the preceding remarks, quantum fluctuations in the
ground state are typically greater on sites with greater z.9

The Penrose tiling is the most complex of the structures so
far studied, with more local environments and more complex
transformation rules than the quasiperiodic octagonal tiling
studied in Refs. 10 and 11. The ground state of the former
has significantly stronger variations of the local-order param-
eters as compared to the latter. The results show a strong
decrease of on-site magnetization with z for small z, fol-
lowed by an upturn for larger z—a behavior we will explain
by generalizing an argument presented in Ref. 9.

FIG. 1. Portion of the Penrose tiling.
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The ground state of the Penrose antiferromagnet can be
described in terms of the local staggered magnetizations. We
calculate these by two different methods: linearized spin-
wave �LSW� theory and quantum Monte Carlo �QMC�. Al-
though the real-space distribution of the local staggered mag-
netization thus found is complex, a compact visualization of
it is possible in “perpendicular space,” as will be explained
below.

The model we consider is the nearest-neighbor Heisen-
berg antiferromagnet

H = �
�i,j�

JS� i · S� j , �1�

where the sum is taken over pairs of linked sites and all
bonds J�0 are of the same strength. The site index i takes
values from 1 to N, for the finite-size systems considered.
The first type of systems we consider are periodic approxi-
mants called Taylor approximants—after their use in the de-
scription of the Taylor phases of intermetallic compounds in
the Al-Pd-Mn system12—which allow using periodic bound-
ary conditions. These approximants can be constructed in
such a way as to obtain sublattices of equal size, and we have
considered four such systems, with N=96, 246, 644, and
1686 sites. These approximants have defects as compared to
the infinite perfect tiling, but the relative number of defects
becomes negligible as N increases. We also considered finite
pieces of the perfect Penrose tiling and found that spin mag-
netizations in the interior of the finite sample are close to
those obtained for the Taylor approximants, showing their
relative insensitivity to boundary conditions.

The model of Eq. �1� is unfrustrated, and the ground state
of this bipartite system breaks the SU�2� symmetry of H,
with the order parameter being the staggered magnetization

Ms=�i�i�S� i
z���imsi, where �i= ±1 depending on whether i

lies in sublattice A or B and msi= 	�Si
z�	 are the local-order

parameters.
Within the QMC simulations, we obtain msi

2

= 3
N� j=1

N �i� j�Si
zSj

z� from the spin-spin correlation functions.10

The QMC simulations were performed using the stochastic
series expansion method8 for the Taylor approximants at
temperatures chosen low enough to obtain ground-state prop-
erties of these finite systems.10

To obtain the spin-wave Hamiltonian, one uses the
Holstein-Primakoff boson representation of Sz on each sub-
lattice in terms of the deviation from the classical values of
±S, Si

z=S−ai
†ai and Sj

z=−S+bj
†bj, respectively.13 The ai ,bj

�i , j=1, . . . ,N /2� and their adjoints obey appropriate bosonic
commutation relations and correspond to the sites of the A
and B sublattices, respectively. The spin raising and lowering
operators on the two sublattices are Si

+=�2S�1−
ni

2S
�1/2

ai and
Sj

+=�2Sbj
†�1−

nj

2S
�1/2

, respectively. After expanding to order
1 /S, the �LSW� Hamiltonian can be diagonalized by a gen-
eralized Bogoliubov transformation.14 The ground-state en-
ergy and msi can then be calculated from the transformation
matrix �cf., e.g., Ref. 11�. The LSW result for the ground-
state energy, extrapolated to the thermodynamic limit, is
E0 /N=−0.643J, and compares well to the QMC result,
E0 /N=−0.6529�1�J.

Figure 2 shows the values of msi plotted against coordina-
tion number z for the largest approximant �N=1686� for both
the LSW and QMC data. In comparison with the other
known quasiperiodic structure, the octagonal tiling �see Ref.
11�, the variations of the local-order parameters are larger,
making it possible to identify some of the trends more
clearly. The values initially decrease with z, but then tend to
go upward. There appears, thus, to be a minimum in ms�z� at
z=5—the median z value in this tiling. �On the infinite tiling
as well as the approximants, the mean value of z is exactly
4.� The average value of the magnetizations is also higher on
the Penrose tiling, compared to the octagonal tiling, showing
a suppression of quantum fluctuations due to greater struc-
tural complexity.

Another noteworthy feature is the wide spread in the val-
ues for z=5. This is related to the complex structural prop-
erties of the lattice, as there are three sets of sites with z=5.
The first set, which occurs most frequently, does not possess
local fivefold symmetry and corresponds to the intermediate
range of values of msi. The two other sets of sites have a
fivefold symmetry and are at the centers of football-shaped
clusters �F� or star-shaped clusters �S�. F sites correspond to
the lowest msi values, while the highest msi values are ob-
tained at the S sites.

This local hierarchy in the magnetic structure on the Pen-
rose tiling becomes evident in the perpendicular space struc-
tural representation.2 The vertices of the Penrose tiling can,
in effect, be considered as the projection of vertices of a
five-dimensional cubic lattice onto the x-y �“physical”�
plane. If those vertices are instead projected onto the three
remaining dimensions or perpendicular space, one obtains
dense packings of points lying on four distinct pentagon-
shaped plane regions. In this perpendicular space projection,
sites having the same environment map into the same sub-
domain of the selection windows �applied to a crystalline
structure, the same operation would lead to as many points as
there are distinct environments, of which there are a finite
number, contrarily to the quasicrystal�. The different do-
mains are labeled in Fig. 3 by the value of z associated with
each domain. In addition, the domains corresponding to the
sets of F and S sites are shown, along with their appearance
in real space.
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FIG. 2. �Color online� Local staggered magnetization plotted vs
coordination number z as obtained by QMC �red� and by LSW
theory �blue�.
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Using a color map to represent the local-order-parameter
strengths, we obtain compact representations of the ground
state as in Fig. 3, which thus shows the LSW magnetizations
of sites corresponding to two of the perpendicular space
planes �the two others being identical up to rotations�. The
points in the central star-shaped region of Fig. 3�a� corre-
spond to the F sites and have the smallest staggered magne-
tizations. In Fig. 3�b�, the central pentagon corresponds to
the S sites, which have the highest staggered magnetizations
at z=5.

A simple model for the local staggered magnetization is
based on a Heisenberg star cluster consisting of a central spin
coupled to z neighboring spins.9 One considers the external
spins to be embedded in an infinite medium, so that there is
a finite net staggered magnetization. By carrying out the
standard expansion in boson operators, one then finds that
the center magnetization is smaller than that of the outer
spins.9 This model, which takes into account only the nearest
neighbors, is clearly inadequate to describe the nonmono-
tonic dependence of magnetizations observed. We consider,
therefore, a generalization to a two-level Heisenberg star in
order to investigate the effects of next-nearest neighbors on
the central spin magnetization. The cluster we consider is
shown in Fig. 4, where the central site has z nearest neigh-

bors and zz� next-nearest neighbors. All the couplings �rep-
resented by the links in the figure� are taken equal, with
J�0.

The Hamiltonian of this cluster of 1+z�1+z�� spins can
be diagonalized in linear spin-wave theory, with the follow-
ing result for the central spin’s staggered magnetization:
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FIG. 3. �Color online� Two out
of the four perpendicular space
projected domains of the Penrose
tiling, with a color coding of the
sites according to the value of the
local staggered magnetization de-
termined by linear spin-wave
theory.
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FIG. 4. A two-level Heisenberg star showing the central spin
and its z nearest neighbors and zz� next-nearest neighbors. In the
example shown, z=6 and z�=4.
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ms�z,z�� =
1

2
−

zf1
2�z,z��

f2
2�z,z�� − zf1

2�z,z�� − 4z�
, �2�

where f1�2�=−z�± 
2−z+�4−4z+ �z+z��2�. This yields a
staggered magnetization that approaches the classical limit of
0.5 in the limit of large z and/or z�. In addition, for fixed z,
this function ms�z ,z�� has a minimum for a value of z� be-
tween z−1 and z. In other words, the quantum fluctuations
on the central site are largest when this site and its neighbors
have similar coordinations.

Turning now to the Penrose tiling, effective values of z�
can be assigned for each site by counting the number of its
next-nearest neighbors. One finds that sites of small z have
higher values of z� �next-nearest-neighbor number�, with the
opposite being true for sites of high z. This means that the
density of sites, in other words, does not have large local
fluctuations on the Penrose tiling. A single effective z� is
found for all the sites except for the values z=3 and z=5. For
the z=3 sites, we find z�=4, 4.3, and 4.7, where the nonin-
tegral values result from the fact that the clusters on the tiling
do not have the regular tree structure of the model shown in
Fig. 4. This leads to a spread in the values of the local stag-
gered magnetizations. The generic z=5 sites correspond to
z�=2.8, while F and S sites have z�=2.4 and 4, respectively.
The resulting values for the ms�z ,z�� obtained using Eq. �2�
along with the values of z and z� for each class of site are
shown in Fig. 5.

The predictions of the simple analytical model, which is
based on the number of nearest and next-nearest neighbors
only, agree qualitatively quite well with the numerical results
shown in Fig. 2 for most z. The complete description must,
of course, include longer ranged structural differences, seen
clearly in Fig. 3: the domains of sites of a given coordination
number are not colored uniformly but are instead further
separated into subdomains. The hierarchical invariance of the
original structure, which has not been exploited in these cal-
culations �as was done in Ref. 15 using a renormalization-
group approach for the octagonal tiling�, is expected to lead
to self-similarities in the order-parameter distribution func-
tion. This analysis, which requires considering much bigger
sample sizes, is left for further investigations.

In conclusion, we have considered quantum fluctuations
in the Penrose tiling, a two-dimensional structure that has
perfect long-range structural order but with an infinite num-
ber of spin environments. The overall value of the staggered
magnetization is higher than on the octagonal tiling, which
is, in turn, higher than on the square lattice. This indicates a
progressive suppression of quantum fluctuations in going
from the periodic to the simple quasiperiodic, and finally, to
the more complex quasiperiodic structure. The geometry of
the Penrose tiling leads to an antiferromagnetic ground state
with extremely large variations of the local staggered mag-
netization compared to other systems studied recently in this
context. The heirarchical symmetry present in the ground
state is best seen in perpendicular space projections such as
the ones shown in this Brief Report. Finally, to explain our
results, we present a two-level Heisenberg star argument
showing that quantum fluctuations tend to be maximized
when the site coordination number and the next-nearest-
neighbor coordination numbers are closely matched in value.
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FIG. 5. �Color online� Staggered magnetization as predicted by
Eq. �2� as a function of z for different z� values. The points indicate
the value of z� computed �see text� for sites of the Penrose tiling.
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