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We note that if the interatomic interactions of the 11th or more distant neighbors in an hcp crystal are
negligible, there exist two simple relations between the elastic constants C33 and C44 and the phonon frequen-
cies at points A and �. Comparison of these relations to the experimental data can provide a direct information
about the scale of the long-range interaction effects in hcp metals.
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I. INTRODUCTION

Features of interatomic interactions in metals related to
the electron-ion and electron-electron correlations attract
much attention �see, e.g., Refs. 1–4�. It is usually believed
that the correlation effects should enlarge the effective inter-
action range, and the manifestations of these effects in pho-
non spectra of transition metals were discussed by some
authors.1,2 However, it seems difficult to obtain any quanti-
tative estimates for the effects considered within the phe-
nomenological approaches used by these authors. Let us also
note that the most probable origin for possible long-range
interactions in metals seem to be just the correlation effects,
as the electrostatic screening length is here usually quite
short, while Friedel’s tails in inter-ionic interactions are typi-
cally small and insignificant �see, e.g., Ref. 5�.

In this Brief Report, we note that there exist two simple
but nontrivial relations between the elastic constants and the
phonon frequencies in an hcp crystal which are violated by
interactions of only the 11th or more distant neighbors in the
crystal. Thus, an experimental check of these relations can
provide the quantitative information about the long-range in-
teraction effects in hcp crystals, in particular, in many metals.
For brevity, these relations will be called “the elastic-optic
vibrational relations” �EOVRs�.

The derivation of EOVR in this work is based on the
analysis of the general form of the dynamical matrix of an
hcp crystal illustrated by the seven-neighbor interaction
model which is published elsewhere.6 In Sec. II, we describe
the necessary results of that analysis and extend it to the case
of more distant interactions under consideration. In Sec. III,
we derive the EOVR. In Sec. IV, we compare the predictions
of EOVR to the available experimental data and discuss the
results of this comparison.

II. DYNAMICAL MATRIX OF AN HCP CRYSTAL
WITH INTERACTIONS IN THREE NEAREST

BASAL PLANES

Let us denote the period of the hcp lattice along the hex-
agonal axis z as c and the periods in the basal plane �x ,y� as
b1, b2, and b3=−�b1+b2�, where �bs� is a. The components
of the lattice vector R along and normal to the z axis are
denoted as H and r: R=H+r. Atoms in basal planes with
H=nc and H=nc+h �where h=c /2� form sublattices 1 and
2 shifted relative to each other by the vector R21=h+ds,

where ds is �bs+1−bs+2� /3, and index s is 1, 2, or 3 being
defined by modulo 3: s+2=s−1.

Let us write the pth vector in the nth atomic coordination
sphere �“in the star n”� as Rnp=rnp+Hnp, and define the aux-
iliary unit vectors np and np

z by the relations

np = rnp/rn, np
z = Hnp/Hn, �1�

where rn= �rnp� and Hn= �Hnp�. Then, in the standard repre-
sentation of the force constant matrix A as the sum of ma-
trices An

���Rnp�=Anp
��,8 these matrices can be written in the

following form convenient for general treatments6:

Anp
�� = annp

�np
� + bn���

� + cn���
zz + dn�np

�np
z� + np

z�np
�� + en���

� Ip.

�2�

Here, � and � are Cartesian indices; coefficients an, bn, cn,
dn, and en are the Born–von Karman �BvK� parameters; ���

�

is the Kronecker symbol for transverse components; ���
zz is

unity at �=�=z and zero otherwise; an is nonzero only when
rn�0, while dn is nonzero when both rn�0 and Hn�0; and
���

� =−���
� is the unit antisymmetric tensor for transverse

components. The last term in Eq. �2� with Ip�±Rnp�= ±1 is
nonzero only for some special stars n discussed in Ref. 6, but
it makes no contribution to EOVR and will be not considered
below.

To write the dynamical matrix, one should consider the
differences of lattice vectors Rnp

kl = �Rk−Rl�np, where indices
k and l are equal to 1 or 2. To this end, it is convenient to
denote the vectors Rnp with Hnp= ±mh belonging to the mth
basal plane as Rnp�m�. Below, we mainly consider the inter-
action models with m�2 which include interactions up to
the 11th neighbor when the hexagonal ratio c /a exceeds
1.5811 �which is the case for the 15 of total 22 elemental hcp
metals7� and up to the 10th neighbor at smaller c /a. Then,
the differences Rnp

11 and Rnp
22 are Rnp�0� or Rnp�2�, while the

differences Rnp
12 =−Rnp

21 are Rnp�1�. Vectors Rnp�m� for the 11
nearest neighbors are

�0�: R0 = 0, R2p = ± bs, R4p = ± 2h ,

R6p = ± 3ds, R8p = ± 2bs,

�1�: R1p = − ds ± h, R3p = 2ds ± h ,

R5p = − ds ± bs�1 ± h, R9p = − ds ± 2bs ± h ,
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R11p = − ds ± 2bs�1 ± h ,

�2�: R4p = ± 2h, R7p = ± bs ± 2h ,

R10p = ± 3ds ± 2h , �3�

where �−ds±bs�1� means �−ds+bs−1� or �−ds−bs+1�, and
similarly applies for �−ds±2bs�1�.

The six-row dynamical matrix D�k� can be written in the
form of three-row blocks Dkl�k� as follows6:

�D11 D12

D12
* D11

* � = �Ak
�0� + Ak

�2� Ak
�1�

Ak
�1�* Ak

�0�* + Ak
�2�* � , �4�

where three-row matrices Ak
�m� are defined by the relations

Ak,��
�m� = �

n��m�
Ank

���m�, Ank
���m� = �

p

Anp
��e−ikRnp�m� �5�

and symbol n� �m� means that the star n belongs to the mth
basal plane. If we sum the second equation in Eq. �5� over
components Hnp, we can write matrices Ank�m� in the form
of blocks of transverse and z components:

Ank�0� = �An
� 0

0 cn	n
� ,

Ank�1� = � An
� cos�kh� − iAn

�z sin�kh�
− iAn

z� sin�kh� cn	n cos�kh�
� ,

Ank�2� = � An
� cos�2kh� − iAn

�z sin�2kh�
− iAn

z� sin�2kh� cn	n cos�2kh�
� , �6�

where two-row matrices An
� and vectors An

�z=An
z� are ex-

pressed via enp=exp�−ikrnp� and 	=�penp as follows:

�An
���� = bn���

� 	n + �
p

�annp
�np

� + en���
� Ip�enp,

�An
�z�� = dn�

p

np
�enp. �7�

Points � and A in the Brillouin zone correspond to the
wave vectors k�=0 and kA=
h /2h2. If we denote the ele-
ments of the dynamical matrix �4� at these points as D��

kl,� and
D��

kl,A, and the elements A0,,xx
�m� or A0,zz

�m� in Eqs. �5� as A�
�m� or

A	
�m�, then the nonzero elements D��

11,�, D��
12,�, and D��

11,A can
be written as

Dxx
11,� = Dyy

11,� = A�
�0� + A�

�2�, Dzz
11,� = A	

�0� + A	
�2�,

Dxx
11,A = Dyy

11,A = A�
�0� − A�

�2�, Dzz
11,A = A	

�0� − A	
�2�,

Dxx
12,� = Dyy

12,� = A�
�1�, Dzz

12,� = A	
�1�, �8�

while quantities A�
�m� and A	

�m� are related to the BvK param-
eters an, bn, and cn as follows:

A�
�m� = �

n��m�
zn�an

2
+ bn�, A	

�m� = �
n��m�

zncn, �9�

where zn is the coordination number for the star n. In the
derivation of Eq. �9�, we took into account that each star n
with rn�0 consists of triads of vectors Rs related to each
other by turns around the z axis at ±120°, and the sums of ns
in Eq. �7� for these triads obey the relations

�
s

ns = 0, �
s

ns
�ns

� = 3���
� /2. �10�

Note also that the translation invariance conditions, �lD��
kl,�

=0,8 imply the quantities A�
�m� and A	

�m� in Eq. �8� to obey the
relations

�
m=0

2

A�
�m� = 0, �

m=0

2

A	
�m� = 0. �11�

Eigenvalues �i of the dynamical matrix are related to the
phonon frequencies �i as �i=M�i

2, where M is atomic mass.
Using Eqs. �4�, �8�, and �11�, we can express the sums A�

�m�

and A	
�m� in Eqs. �9� via the phonon frequencies �i at points �

and A:

A�
�1� = − M��

2 ��5
+�/2, A	

�1� = − M�	
2��3

+�/2,

A�
�0,2� = M
��

2 ��5
+�/4 ± ��

2 �A3�/2� ,

A	
�0,2� = M
�	

2��3
+�/4 ± �	

2�A1�/2� , �12�

where we use the standard notation for phonon modes �see,
e.g., Ref. 9�, while symbols � or 	 mean the phonon polar-
ization to be normal or parallel to the z axis.

III. RELATIONS BETWEEN THE ELASTIC CONSTANTS
C33 AND C44 AND THE PHONON FREQUENCIES

AT POINTS A AND �

Expressions for the elastic moduli c�,�� via the BvK pa-
rameters can be found from the expansion of the dynamical
matrix D�k� at small k.8 As an hcp crystal has no inversion
symmetry, these expressions include two different terms:
ch

�,�� related to the homogeneous shift of all atoms of an
elementary cell in the long-wave acoustic mode under con-
sideration, and cr

�,�� related to the relative atomic displace-
ments in this mode:

c�,�� = ch
�,�� + cr

�,��. �13�

To find tensors ch and cr, we expand matrices Dkl�k� in Eq.
�4� at small k,

�D11
���k��k→0 = �

�

d11
��,�kk�,

�D12
���k��k→0 = − i�



d12
��k + �

�

d12
��,�kk�, �14�

and define the tensor d by the relation
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d��,� = d11
��,� + d12

��,�. �15�

Then, the first term in Eq. �13� is expressed via the compo-
nents d��,� in Eq. �15� as follows8:

ch
�,�� = �d��,� + d�,�� − d��,��/�a, �16�

where �a is volume per atom. The second term in Eq. �13�
makes no contribution to the elastic constants C33 and C44

discussed in this Brief Report 
it affects only constant B̃ in
Eq. �21��; thus, this term is not considered below.

Using Eqs. �4� and �5�, we can express the tensor d in Eq.
�15� via matrices Anp in Eq. �2� as follows:

d��,� = �
n

dn
��,�, dn

��,� = − �
p

Rnp
 Rnp

� Anp
��/2. �17�

Summations over vectors p in Eq. �17� can be easily made if
we write Rnp as rnnp+Hnnp

z and use both Eqs. �10� and simi-
lar relations for products of four-vectors ns:

�
s

ns
�ns

�ns
ns

� = 3����
� /8,

����
� = ���

� ��
� + ��

� ���
� + ���

� ��
� . �18�

Therefore, each quantity d��,� /�a in Eq. �16� has the form

d��,�/�a = A����
� + B���

� ��
� + C���

� ��
zz + D���

zz ��
�

+ E���
zz ��

zz + F���
� ���

zz + ���
� ��

zz + ���
� ��

zz

+ ���
� ��

zz � , �19�

where constants A–F can be expressed via the BvK param-
eters using Eqs. �17�, �2�, �10�, and �18�. In particular, for the
constants C and E, we obtain

C = −
1

4�
n

zn�an + 2bn�Hn
2, E = −

1

2�
n

zncnHn
2. �20�

Substituting Eq. �19� into Eq. �16�, we find that the con-
dition of symmetry of elastic moduli,8 c�,��=c��,�, implies
the relation D=C. Finally, we express the elastic constants
Cik �in standard Voigt notation10� via constants A–F in Eq.
�19� putting indices �, �, , and � in our tensor equations
equal to x, y, or z. It yields

C11 = 3A + B̃, C12 = A − B̃, C33 = E ,

C13 = 2F − C, C44 = C , �21�

where constant B̃ differs from B in Eq. �19� due to the con-
tribution of terms cr

�,�� mentioned above.6

For the three-plane interaction models discussed in Sec.
II, the sums over n in Eqs. �20� include contributions of only
two planes �m� with m equal to 1 and 2, and these contribu-
tions are proportional to quantities A�

�m� and A	
�m� in Eqs. �9�.

Combining Eq. �9�, �12�, �20�, and �21�, we obtain the fol-
lowing relations between the elastic constants C44 and C33
and the phonon frequencies �i�A� and �i���:

C44 = M
��
2 �A3� − ��

2 ��5
+�/4�c/a2�3,

TA
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C33 = M
�	
2�A1� − �	

2��3
+�/4�c/a2�3, �22�

where c and a are the hcp lattice parameters. The first and the
second of these relations will be called “the transverse
EOVR” and “the longitudinal EOVR.”

IV. COMPARISON OF ELASTIC-OPTIC VIBRATIONAL
RELATIONS TO THE EXPERIMENTAL DATA

AND DISCUSSION

In Table I, we compare the predictions of EOVR 
Eq.
�22�� to the experimental data for 17 hcp metals. In this table,
c /a is the hexagonal ratio taken from Ref. 7, Cii

expt is the
experimental elastic constant taken from Ref. 10, Cii

EOVR is
the right-hand side of Eq. �22� calculated with the experi-
mental �i taken from the source quoted, and �Cii

expt is the
error in Cii

EOVR estimated supposing the distribution of ex-
perimental errors in �i�A� and �i��� to be noncorrelated and
Gaussian. All the data in Table I usually correspond to room
temperature.

The results presented in Table I can be analyzed from
both experimental and theoretical points of view. Here, we
present only two general comments.

�i� For the nontransition metals from Be to Tl, both the
transverse and the longitudinal EOVR seem usually to hold
within the scale of experimental errors. The disagreements
for Zn and Mg �which formally exceed �Cii

EOVR� can be re-
lated to underestimating the errors ��i in the papers quoted.
In particular, for Mg, the 30% disagreement in C44 is related
to using for ��A3� in Eq. �22� the value 2.94 THz from Ref.
12, while using for it the value 2.72 THz implied by the BvK
interpolation suggested in Ref. 22 yields C44

EOVR17 GPa, in
agreement with C44

expt. Thus, more precise measurements of
�i in Mg and Zn seem desirable.

�ii� For the transition and rare-earth metals, except for Tc,
the transverse EOVR seems usually to hold within the scale

of experimental errors, while the longitudinal EOVR typi-
cally overestimates C33 by about 20%. The violations of this
tendency for Sc and Lu may deserve further experimental
studies, similar to the case of Mg and Zn. For Hf, and pos-
sibly also for Y, Ru, and Tb, the deviations from EOVR can
be insignificant. For Tc, both the transverse and the longitu-
dinal EOVR are violated drastically.

Most of observations �ii� agree qualitatively with those
made by Wakabayashi et al.2 in their analysis of manifesta-
tions of the long-ranged interaction effects in phonon spectra
of transition metals. These authors found such effects to be
very strong in Tc and Re where they also lead to the drastic
softening of the �3

+ mode. These effects were also found to
be quite pronounced for the longitudinal branch 
0,0 ,�� in
Ti, Zr, Co, and Hf, being somewhat less in Ru, while for the
transverse branches such effects were not revealed, and in Sc
and Y, Wakabayashi et al. did not observe any long-range
interaction effects. All these conclusions are similar to those
obtained in our analysis of data for the transition metals in
Table I, with a possible exception for Hf. At the same time,
the present approach also enables one to quantify the scale of
the effects under consideration.

To conclude, presently the experimental examination of
EOVR seems to provide mainly qualitative information
about the scale of the long-range interaction effects in hcp
metals. However, a further progress in accuracy of phonon
measurements can allow making more definite and quantita-
tive conclusions basing on such analyses.
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