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We study the mobility of electrons adsorbed on thin 4He films on flat, uniform, dielectric substrates. Utiliz-
ing the time-dependent version of the Euler-Lagrange, hypernetted chain variational theory, we compute the
inelastic scattering rate of an electron due to collisions with film excitations �third sound�. We obtain an
analytic result valid in the long-wavelength limit. In agreement with experiment, the mobility shows oscilla-
tions due to the underlying transverse film structure. The oscillations are due to the explicit appearance of the
third sound speed in the scattering rate, since the third sound speed itself oscillates in conjunction with the 4He
film structure. The calculated mobilities tend to be higher than reported mobilities on thin films. We attribute
this difference to the contribution to the mobility from substrate structure and defects that are omitted in this
model. We interpret our results as generic mobilities that are valid in the limit of perfectly smooth, structureless
substrates.
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I. INTRODUCTION

In this paper, we examine the physics of electrons phys-
isorbed on the surface of thin helium films, in particular,
those aspects that relate to the interaction of the electron with
the low-lying excitations of the helium. Our objective is to
introduce a first-principles theory for the electron mobility
and compare the predictions with existing experimental data.
This section shall comprise a very brief summary of the ex-
perimental and theoretical background concerning the study
of electrons and their interaction with a dynamic liquid he-
lium surface. We stress that the following material is not
meant to be an exhaustive review of the field, but simply a
summary of those aspects of the existing experimental and
theoretical results that we feel form the background for the
present study.

In 1964, Sommer1 showed that there exists an appreciable
barrier �on the order of 1 eV� for electron injection through a
helium surface. Cole and Cohen2 and Cole3 pointed out that
the external, attractive electrostatic image potential coupled
with the large repulsion localized at the helium surface
would create a potential well that could trap the electron on
the helium surface. In 1972, Brown and Grimes4 reported
mobilities in basic agreement with the measurements of Ref.
5 and the calculations of Ref. 3. The reported mobilities were
on the order of 104–105 cm2/V s at temperatures presum-
ably in the range 1.2–1.5 K. These mobilities are in the re-
gime dominated by scattering from helium vapor.

As the temperature is lowered, the vapor density becomes
small and the electron mobility increases. It eventually be-
comes limited by scattering from helium surface excitations
�ripplons� and is independent of temperature. This possibility
was first pointed out by Cole.3 The ripplon-limited
asymptotic regime was seen by Rybalko et al.,6 Grimes and
Adams,7 and Bridges and McGill.8 However, as pointed out
in Ref. 8, there is a spread of about a factor of 50 in the
reported values of the ripplon-limited mobility.

Following a suggestion by Gor’kov and Chernikova,9,10

Wanner and Leiderer11 showed that at a critical value of an

applied electric field, the surface excitation spectrum be-
comes soft and unstable. This phenomenon can also be
driven by electron density, and at zero applied field, it deter-
mines a maximum allowable surface electron density. Ikezi
and Platzman12 then suggested that for a thin film, the insta-
bility would occur at a higher electron density than for the
free helium surface because of the change in the helium sur-
face excitation spectrum. For a thin film, the restoring force
is the substrate van der Waals interaction �third sound� whose
spectrum is linear in the wave vector k, whereas for the free
surface, the restoring force is basically surface tension whose
spectrum goes like k3/2. In agreement with theoretical predic-
tions, Etz et al.13 demonstrated greatly increased maximum
electron surface density, on the order of 1011 cm−2, for ab-
sorption on a helium film with either insulating or conduct-
ing substrates. The first thin helium film experiment was
probably that reported by Kajita and Sasaki14 for a helium
film on a neon substrate. These authors worked at an electron
density of approximately 7�108 cm−2 and searched unsuc-
cessfully for a localization transition, that is, a rapid decrease
in the mobility due to the formation of a polaron.

Paalanen and Iye15 looked at electron mobility on a bare
H2 substrate and also one with a thin �unsaturated� helium
film. They explained a mobility minimum that occurs in the
very thin film regime �the immobile helium� as due to the
interplay between stiffening of the film modes in the zero
thickness limit and decrease in the image field for thicker
films. Most interestingly, they also reported an additional
pair of oscillations in the lowest-temperature sample
�1.45 K� that they attributed to layer formation in the mobile
helium film. The mobilities were on the order of
103 cm2/V s.

In 1987, Cieslikowski et al.16 reported mobility measure-
ments for 3He and 4He films on a H2 substrate. This experi-
ment extended the work of Ref. 15 to thicker helium films.
The authors stated that they were looking for a transition
from thin-film mobilities to thick-film mobilities. Surpris-
ingly, they found instead additional oscillations in the mobil-
ity that they attributed to layering in the mobile film. The
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mobilities were again in the range of 103 cm2/V s. The re-
markable aspect of these data is that they show �at 2.5 K�
evidence for at least nine oscillations in the mobility, imply-
ing physical layering in the helium film extending quite far
from the solid substrate. We note that this result is in marked
contrast to adsorption isotherm17 and superfluid fraction18

measurements, which sense only three or four layers. The
authors also noted that a 3He sample displayed qualitatively
similar modulations. However, as pointed out by Shikin et
al., 19 there is a many orders of magnitude difference be-
tween free-surface �ripplon-limited� mobilities and thin-film
mobilities. Indeed, Shirahama et al.20 report 4He free-
surface, ripplon-limited mobilities on the order of
107–108 cm2/V s. Building on a previous model introduced
by Monarkha et al.,21 the authors of Ref. 19 argue that the
mobilities being measured in the thin-film experiments may
be dominated by surface impurities or inhomogeneities.

Theoretical support for the important role played by sub-
strate inhomogeneities and defects in determining the elec-
tron mobility on helium films can be found in the work of
Studart and co-workers.22–24 In particular, in Ref. 22, this
group reports electron mobilities on a H2 substrate on the
order of 104 cm2/V s for a choice of potential parameters
that yield results in agreement with experiment. In contrast,
they also studied electron mobilities on 3He-4He mixture
films �no solid substrate� and report mobilities on the order
of 108–109 cm2/V s for systems with no holding field and at
the lowest temperatures.

From this concise history, a number of salient facts begin
to emerge. First, there is a many orders of magnitude differ-
ence between the measured electron mobilities on the free
helium surface and on the surface of thin films. Second, there
is a fairly large spread in measured mobilities from different
experiments. Finally, there is evidence that for thin films, the
mobility is strongly affected by substrate inhomogeneities
and defects.

In this paper, we address a specific aspect of the experi-
mental electron mobility, namely, the oscillations found by
Cieslikowski et al.16 and their correlation with the layering in
the mobile film. In particular, we want to explain why elec-
tron mobilities are highly sensitive to the layer structure,
whereas other experiments such as adsorption isotherms17

and the superfluid fraction18 are not. For that purpose, we
shall present a manifestly microscopic calculation of the he-
lium contribution to the electron mobility on thin 4He films.
Our calculations are based on the time-dependent, variational
theory developed for inhomogeneous, strongly interacting
boson systems.25 Technically, we introduce the concept of
time-dependent pair fluctuations. We provide a microscopic
definition of a transport current, as the expectation value of
the current operator evaluated to second order in the fluctu-
ating part of the wave function. This leads to the derivation
of elastic and inelastic currents. The energy loss of the elec-
tron is identified with the damped part of the inelastic cur-
rent. We also show how the concept of fluctuating pair cor-
relations is essential in obtaining both a nontrivial effective
mass and inelastic processes.

It is well understood25 that the helium film profile devel-
ops oscillations in density that are similar to layer formation
in a solid film. This layering is then reflected in many prop-

erties of the film including the excitation spectrum.26,27 Rel-
evant to the case of electron mobility is, as we shall see, the
nonmonotonic behavior of the speed of third sound that goes
through a series of oscillations in sync with liquid layer for-
mation as the film grows. Typically, the speed of sound has a
maximum at layer completion. We derive an explicit result
for the electron mobility. We can clearly separate the contri-
bution to the inelastic current into a smooth background con-
tribution due to elastic scattering off of high-lying helium
excitations and an oscillatory part coming from coupling to
surface excitations. The latter part oscillates, in agreement
with experiment, with the 4He film thickness through the
explicit appearance of the third sound speed. We will show
how these oscillations affect the electron mobility and why
this quantity is particularly sensitive against even small fluc-
tuations in speed of the surface excitation.

We refer to our calculated mobilities as generic since the
calculated electron scattering only includes coupling to the
excitations of the helium film �dominated by sound quanta�
and a uniform, perfectly flat dielectric substrate. We do not
include contributions to electron scattering from substrate
corrugation and substrate defects.

Our numerical results for the generic mobilities are re-
ported for a series of values of the substrate dielectric con-
stant, �S=3−5, that are in the range appropriate for a glass
substrate. This ensures that this calculation is consistent with
our previous microscopic calculations of the third sound
spectra. We note that the thin helium film experiments have
been reported only for a H2 substrate. Our generic mobilities
for the glass substrate are 1–2 orders of magnitude larger
than the magnitudes of the mobilities reported on the H2
substrate. We will suggest that, in line with the explanation
of Ref. 19, most of the disparity may be due to the neglected
effects of scattering due to substrate defects and inhomoge-
neities.

In Sec. II, we discuss the aspects of the theory necessary
to calculate scattering times for impurities adsorbed in a 4He
film. Technically, we have to deal with two tasks: One is the
calculation of coupling matrix elements between the elec-
trons and the 4He atoms, the other one is the calculation of
inelastic-scattering processes inside the medium. The case at
hand is simplified by the fact that the physics is dominated
by the long-wavelength properties of the electron-helium
coupling. This will permit a number of significant simplifi-
cations and allow us to express the essential physics solely in
terms of physical observables such as the 4He speed of sound
and the coverage dependence of the electron binding energy.
The necessary derivations are presented in Secs. III and IV.
In particular, we will derive there the result that displays
clearly the reason for why electron mobility measurements
are sensitive to the layer structure of the film. In Sec. V, we
show our numerical results and compare them with experi-
ment. Section VI is the conclusion. In the Appendix, we
derive various results in the limit of an infinitely thick he-
lium film and discuss some of the subtleties involved with
that limit.

II. GROUND STATE AND EXCITATIONS

A. Energetics and structure

The microscopic description of static and dynamic prop-
erties of helium films, including the dynamics of impurities,
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has been described in various papers,28–31 and the reader is
referred to these papers for general concepts and definitions.
The background 4He film is described by a Hamiltonian

HN = �
i
�−

�2

2m4
�i

2 + Usub�ri�� + �
i�j

V��ri − r j�� , �2.1�

where V��ri−r j�� is the 4He–4He interaction, and Usub�r� is
the external “substrate” potential. The ground-state wave
function is written in the Jastrow-Feenberg form as

�N�r1, . . . ,rN� = exp
1

2��i

u1�ri� + �
i�j

u2�ri,r j�

+ �
i�j�k

u3�ri,r j,rk�� . �2.2�

An essential part of the approach is the optimization of the
many-body correlations by solving the Euler equations

�EN

�un�r1, . . . ,rn�
= 0 �n = 1,2,3� , �2.3�

where EN is the energy expectation value of the N-particle
Hamiltonian �Eq. �2.1�� with respect to the wave function
�Eq. �2.2��. Executing the variations and manipulating the
Euler equations to bring them into a numerically tractable
form lead to an effective one-body Schrödinger equation

�−
�2

2m4
�2 + Uext�r� + VH�r��	�1�r� = 	4

	�1�r� �2.4�

for the one-body density �1�r� and the 4He chemical poten-
tial 	4, where VH�r� is a self-consistently determined “Har-
tree” potential. Optimization of the two-body correlations
leads to a normal mode equation as follows:


 d3r�H1�r��H1�r���r − r�� + 2Ṽp-h�r,r���
�m��r��

= ���m�2
�m��r� , �2.5�

where

H1�r� = −
�2

2m4
�2 + Uext�r� + VH�r� − 	4

= −
�2

2m4

1
	�1�r�

� �1�r� · �
1

	�1�r�
, �2.6�

and

Ṽp-h�r,r�� = 	�1�r�Vp-h�r,r��	�1�r�� , �2.7�

is the “particle-hole interaction” that is determined self-
consistently within the variational theory. In an exact theory,
the particle-hole interaction can also be defined through

Vp-h�r,r�� =
�VH�r�
��1�r��

. �2.8�

For our purposes, it is important to know that the eigenfunc-
tions 
�m��r�� can be identified with the physical density
fluctuations within a Feynman theory of excitations of the
liquid.

The Hamiltonian of the N+1 particle system consisting of
N 4He atoms and one impurity �an electron in our case�
located at r0 is

HN+1
�I� = −

�2

2mI
�0

2 + Usub
�I� �r0� + �

i=1

N

V�I���r0 − ri�� + HN.

�2.9�

The variational wave function �Eq. �2.2�� for an inhomoge-
neous N-particle Bose system with a single impurity atom is

�N+1
�I� �r0,r1, . . . ,rN� = exp

1

2�u1
�I��r0� + �

1�i�N

u2
�I��r0,ri�

+ ¯ ��N�r1, . . . ,rN� . �2.10�

Analogous to Eq. �2.4�, the impurity one-body density is
determined by a one-body Schrödinger equation in terms of
an effective Hartree potential,

�−
�2

2mI
�0

2 + Usub
�I� �r0� + VH

�I��r0��	�1
�I��r0� = 	I

	�1
�I��r0� ,

�2.11�

for the impurity density �1
�I��r0� and the impurity binding

energy 	I. Similar to Eq. �2.6� it is convenient to introduce
the one-body operator

H1
�I��r0� = −

�2

2mI
�0

2 + Uext
�I� �r0� + VH

�I��r0� − 	I

= −
�2

2mI

1

	�1
�I��r0�

� �1
�I��r0� · �

1

	�1
�I��r0�

�2.12�

and to use it to generate a basis of impurity wave functions

H1
�I��r0�
����r0� = ��
����r0� . �2.13�

The spectrum is �� and the set of states are the �
����r0��. In
the following, we will label impurity states with Greek let-
ters and the background phonons with Latin letters.

We also need the two-body equation because it contains
the basic ingredients needed for the dynamics of the system.
The pair equation is a relationship between a particle-hole

interaction Ṽp-h
�I� �r0 ,r�� and the “direct correlation function”

X̃�I��r0 ,r�� that is best written in a matrix representation in
terms of the states 
�m� and 
���,

�
����X̃�I��
�m�� = − 2
�
����Ṽp-h

�I� �
�m��
�� + ��m

, �2.14�

where the impurity particle-hole interaction is, in an exact
theory, given by

Ṽp-h
�I� �r0,r1� = 	�1

�I��r0�Vp-h
�I� �r0,r1�	�1�r1�

= 	�1
�I��r0�

�VH
�I��r0�

���r1�
	�1�r1� . �2.15�
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B. Excitations and linear response

Excitations and the response to perturbations are treated
analogously within the theory. The system is exposed to a
weak, time-dependent external perturbation �iUext�ri ; t�. As a
response, the wave function becomes time dependent. The
natural generalization of the variational approach to excited
states is to allow for time-dependent correlations
un�r0 , . . . ,rn ; t� of the form

��t� =
1

	
�I���I��
e−iEN+1

�I� t/���I��r0,r1, . . . rN;t� ,

�2.16�

where ��I��r0 ,r1 , . . .rN ; t� contains the dynamic, time-
dependent correlations. These are again written in a Jastrow-
Feenberg form as

��I��r0,r1, . . . ,rN;t� = exp�1

2
�U�r0,r1, . . . rN;t��

��N+1
�I� �r0,r1, . . . ,rN� , �2.17�

�U�r0,r1, . . . ,rN;t� = �u1�r0;t� + �
1�i�N

�u2�r0,ri;t� .

�2.18�

The time-dependent parts of the correlations,
�U�r0 ,r1 , . . . ,rN ; t�, are determined by the stationary prin-
ciple

�S = �

t0

t1

L�t�dt = �

t0

t1 ���t��HN+1
�I� − i�

�

�t
���t��dt = 0.

�2.19�

The variations of the action integral with respect to the ex-
citation amplitudes �u1

*�r0 ; t� and �u2
*�r0 ,r1 ; t� lead to

coupled one- and two-particle continuity equations for the
first-order density fluctuations. In the general impurity
theory,30 it was shown that the equation of motion can be
written in the form of a nonlinear eigenvalue problem as

��r� = �
�

������ + �������r�, �2.20�

where the r� are the expansion coefficients of the time �or
frequency-� dependent part of the impurity wave function in
terms of the states 
����r0�, and

������ = − �
�m

W�m
*���W�m

���

��m + �� − ��
�2.21�

is the impurity’s self-energy. The impurity-impurity-phonon
vertex function occurring in the self-energy �Eq. �2.21�� is30

W�m
��� =

1

2

 d3r0


����r0�
*����r0�
	�1

�I��r0�
��� − �� − H1

�I��r0��X̃m�r0�

= −
�2

2mI

 d3r0
*����r0�	�1

�I��r0� � Xm�r0� · �

����r0�
	�1

�I��r0�
,

�2.22�

Xm�r0� � 
 d3r1X�I��r0,r1�	�1�r1�
�m��r1� . �2.23�

The three-body vertex function W�m
��� describes an impurity

atom scattering off of a background excitation and is given in
terms of quantities obtained in the ground-state calculation.

C. Transport currents

The formulation of the theory up to this point provides the
material for calculating impurity motion. However, For the
problem at hand, we must introduce yet another quantity,
namely, the second-order current. The flux of impurities
�here, specifically, electrons� is given by the expectation
value of the current operator

ĵ�I��r� =
1

2mI
��

i
�0��r0 − r� + ��r0 − r�

�

i
�0� , �2.24�

with respect to the wave function �Eqs. �2.17� and �2.18��.
This expectation value must be calculated to second order in
the fluctuating correlations �un�r1 , . . . ,rn ; t� because the
first-order term is periodic in time and does not lead to mass
transport; thus,

j2
�I��r� �

1

4


�0��U*ĵ�I��r��U��0�

�0��0�

. �2.25�

The excitation operator �U�t� is understood to be obtained
from the first- order equations of motion �Eq. �2.19��. One
finds32

j2
�I��r0� = Re

�

4mIi
���1

*�I��r0;t� � �u1�r0;t�

+
 d3r1��2
*�I��r0,r1;t��0�u2�r0,r1;t�� ,

�2.26�

where ��i
�I� are the density fluctuations to first order. The

general second-order impurity current involves the three-
body distribution functions; a tractable form can be derived
within the same scheme that led in Sec. II B to the first-order
equations of motion:

j2
�I��r0� = Re

�

4mIi
���

* �r0;t� � ���r0;t�

+
 d3r1d3r2S�r1,r2��ũ2
*�r0,r1��0�ũ2�r0,r2��

� j2,el
�I� �r0� + j2,inel

�I� �r0� . �2.27�

Here, S�r1 ,r2� is background static structure function. ���r0�
is the electron wave function that was obtained from the
effective Schrödinger equation �Eq. �2.20�� and can, evi-
dently, be identified with the elastic channel wave function.
The form of Eq. �2.27� gives the decomposition of the cur-
rent into a one-body term, which describes the elastic chan-
nels, and a many-body term contributing to inelastic scatter-
ing. The latter term contains the fluctuating pair correlations
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�u2�r ,r2�, which demonstrates the importance of time-
dependent pair correlations for describing inelastic pro-
cesses. Using the two-body equations of motion, we can ex-
press the inelastic current as

j2,inel
�I� �r0;t� =

�

4mI
Im�	�1

�I��r0��
�


�
*�r0� �


��r0�
	�1

�I��r0�

��
m

W�m
*���W�m

���r�
* r�

��� + ��m − �� + i��2� , �2.28�

where the r� are the amplitudes of the electron in the indi-
vidual single-particle states, cf. Eq. �2.20�.

Equation �2.28� also demonstrates why we identify the
second term in Eq. �2.27� with an inelastic current. If the
self-energy �Eq. �2.21�� is complex, the current �Eq. �2.28��
has a double pole and the expression must be reinterpreted as
a rate equation.

III. ELECTRON: SELF-ENERGY

The problem at hand differs from the previously studied
problem of atomic impurities in the important aspect that the
most visible effect, namely, the oscillatory behavior of the
electron mobility as a function of the film thickness, can be
explained by looking at long-wavelength expansions for all
quantities involved. This does not necessarily imply that
other contributions are negligible; all we say is that these
can, at most, contribute a smooth background.

We assume that the system fills a box of area L2 with the
z axis oriented transversly to the substrate. The substrate fills
the lower half space. The 4He coverage n is defined by n
=N /L2= �1/L2��d3r�1�r�. In the plane surface geometry, the
electron single-particle basis functions, Eq. �2.13�, have the
form


����r0� = 
����z�eiq�·r, �3.1�

and the corresponding energies are

�� = �� +
�2q�

2

2mI
, �3.2�

where 
����z� and the �� are the eigenfunction-eigenvalue
pairs of Eq. �2.13� for q� =0.

We may assume that the electron remains in its transverse
ground state but has a parallel momentum and that transi-
tions to intermediate phonon states are negligible, i.e., we
keep only


�o,q���r0� =
1

L
	�1

�I��z�eiq�·r, �3.3�

�0=�2q�
2 /2mI, and the third sound mode is labeled by �m

→ �R ,qR��. In this limit we obtain

W�o,q���R,qR�
�o,q�� = −

�2

2mIL
2 
 d3r0�1

�I��z�e−iq�·r� � XR�r0� · �eiq�·r�

=
�2

2mIL
�qR+q�−q�

qR · q� 
 dz0�1
�I��z0�XR�z0,qR�

�
�2

2mIL
�qR+q�−q�

qR · q�Xo,R�qR� . �3.4�

If transitions to higher-lying electron and phonon states are
negligible, we can restrict the summation over intermediate
states to the lowest �third sound� excitation and write the
self-energy as

��q�,�� � ��o,q��,�o,q�����

= − �
q�qR

�W�o,q��,�R,qR�
�o,q�� �2

��R�qR� +
�2

2mI
q�

2 − ��

= − � �2

2mI
�2
 d2qR

�2��2

�
��qR · q��Xo,R�qR��2

��R�qR� +
�2

2mI
�qR + q��2 − ��

, �3.5�

where �R�qR�→c3qR for qR→0 is the ripplon and/or third-
sound dispersion relation. The long-wavelength expansion of
the ripplon and/or third-sound state 
R,qR

�z� has been worked
out in Ref. 33. In the limit qR→0, it factorizes as


R,qR
�z� = −	 n�qR

2

2m4�R�qR�
�R�z� =	 2n�qR

2

m4�R�qR�
d	�1�z�

dn
.

�3.6�

�R�z� is the shape function of the long-wavelength density
fluctuation; we have normalized it such that
�dz�R�z�	�1�z�=1. A useful property of the ripplon and/or
third-sound shape function �R�z� can be derived from the

fact that Ṽp-h
�I� �r0 ,r�� is rigorously defined from the variation

of the self-consistent one-body potential VH
�I��r0�, cf. Eq.

�2.15�. Hence, we have


 d3r�Vp-h
�I� �r0,r��

d�1�r��
dn

=
dVH

I �r0�
dn

�3.7�

as well as


 dz�1
�I��z�

dVH
I �z�

dn
=

d	I

dn
. �3.8�

We can therefore work out the long-wavelength limit of the
direct correlation function
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Xo,R�qR� =	 2n�qR
2

m4�R�qR�
d	I

dn

1

��R�qR� +
�2

2mI
qR

2

, �3.9�

and relate it directly to physical observables. Collecting ev-
erything, the electron dispersion relation is given by the im-
plicit equation

���q�� =
�2q�

2

2mI
− � �2

2mI
�2
 d2qR

�2��2

�
��qR · q��Xo,R�qR��2

��R�qR� +
�2

2mI
�qR + q��2 − ���q��

.

�3.10�

The integral is complex; its imaginary part is related to the
lifetime, and its real part to the effective mass. To be a bit
more general, we allow for an effective mass in the energy
denominator. Such an effective mass should not appear in the
Euler equation �Eq. �3.9�� because this is a static equation
between ground-state properties, whereas the effective mass
should be the same in all pieces of the energy denominator,
i.e., we also assume that ���q��=�2q�

2 /2mI
* in Eq. �3.10�.

Then, the energy denominator becomes

��R�qR� +
�2

2mI
* �qR + q��2 − ���q��

= �c3qR +
�2

2mI
*qR

2 +
�2

2mI
*qRq� cos � . �3.11�

To get an imaginary part, the energy denominator must be-
come zero somewhere in the integration regime. For that, we
need qR in the range

− 2q� −
2mI

*c3

�
� qR � 2q� −

2mI
*c3

�
, �3.12�

which says we can have an imaginary part only if �q� /mI
*

�c3, or that the speed of the thermal electrons is comparable
to the third sound speed. In particular, the self-energy is real
in the long-wavelength limit q�→0, which determines the
effective mass.

Thus, if �q� �mI
*c3, the self-energy is real and we get a

correction to the spectrum. In that limit, we simply have
from Eq. �3.10�

��q�,
�2q�

2

2mI
* � = −

�2q�
2

2mI



0

� dqRqR

4�

�2qR
2

2mI

�Xo,R�qR��2

��R�qR� +
�2qR

2

2mI
*

,

�3.13�

or an effective-mass ratio

mI

mI
* = 1 − 


0

� dqRqR

4�

�2qR
2

2mI

�Xo,R�qR��2

��R�qR� +
�2qR

2

2mI
*

. �3.14�

To get a qualitative idea of the dependence of the effective
mass on the various physical quantities, we insert the long-
wavelength expansion �Eq. �3.9��,

mI

mI
* = 1 −

1

2�

mI

m4
�n

d	I

dn
�2 1

n�2c3
2�2

r − 1 − log r

�r − 1�2 � ,

�3.15�

where r=mI /mI
*. The term in the square bracket goes to 1 as

r→1, and it falls off for large r; hence, it tends to suppress a
large effective mass. Both the numerator and the denomina-
tor go to zero in the limit of large film thicknesses. Com-
pared to the decay rate �see Eq. �4.5� below�, which contains
only one c3 factor in the denominator, the dependence of the
effective mass on the “softness” of the surface is obviously
much stronger and can occasionally overcome the mass ratio
of mI /m4 in front of the effective-mass correction.

The calculation of the electron effective mass has two
purposes: one is that the decay rate will be seen to be directly
proportional to the square of the effective-mass ratio, a
strongly fluctuating mass will therefore also enhance fluctua-
tions of the decay rate, and second, to assess the validity of
our theoretical scheme, especially the self-energy expression
�Eq. �2.21��. An effective-mass ratio that is of the order of 1
is necessary for the validity of the approximation �Eq. �2.21��
of the electron self-energy.

IV. ELECTRONS: ENERGY LOSS

We introduce the same approximations on the inelastic
currents as before: �1� we keep only the lowest state ��R�qR�
and �2� assume that the electron moves with a wave vector q�

in the lowest state �i.e., we keep only the basis function 
0�r�
or r�=��,0�. For the sake of generality, we also assume,
again, that the electron has an effective mass mI

*. Then, the
inelastic current becomes

j2,inel
�I� �r;t� =

1

2�L2� �2

2mI
�3

�1
�I��z� 
 d2qR

�2��2 �qR + q��

�� qR · q�Xo,R�qR�

��R�qR� +
�2

2mI
* �qR + q��2 − �� + i��

2

.

�4.1�

If the electron wave number satisfies the inequality �Eq.
�3.12��, the inelastic current has a double pole and must be
reinterpreted as giving a decay rate

E. KROTSCHECK AND M. D. MILLER PHYSICAL REVIEW B 75, 205440 �2007�

205440-6



lim
�→0+

d

dt
j2,inel

�I� �r;t� = lim
�→0+

d

dt

1

2�L2� �2

2mI
�3

�1
�I��z� 
 d2qR

�2��2 �qR + q��� qR · q�Xo,R�qR�e−�t

��R�qR� +
�2

2mI
* �qR + q��2 − �� + i��

2

=
1

�L2� �2

2mI
�3

�1
�I��z�Im 
 d2qR

�2��2

�qR + q���qR · q�Xo,R�qR��2

��R�qR� +
�2

2mI
* �qR + q��2 − �� − i�

. �4.2�

Due to symmetry, the total decay rate can only be in the
direction q� of the current. The decay rate relative to the
elastic current

j2,el
�I� �r;t� =

�

mIL
2�1

�I��z�Im�	�1
�I��r�
0

*�r� �

0�r�

	�1
�I��r�

�
=

�q�

mIL
2�1

�I��z� �4.3�

is then

1

�
=

1

�j2,el
�I� �r;t��

lim
�→0+

d

dt
�j2,inel

�I� �r;t��

=
1

2q�
� �2

2mI
�2

�Im 
 d2qR

�2��2

�q� + qR · q̂���qR · q�Xo,R�qR��2

��R�qR� +
�2

2mI
* �qR + q��2 − �� − i�

.

�4.4�

The calculation is somewhat tedious and complicated espe-
cially if the effective mass is different from the bare mass.
Defining the ratio between the electron thermal velocity and
the speed of third sound, �=mI

*c3 /�q� =c3 /ve, where ve
=�q� /mI

* is the electron velocity, the leading term in �−1 is

1

�
=

1

6�
�n

d	I

dn
�2�mI

*

m4
�2 m4

�2n

1

�
+ O��0�

=
1

6�
�n

d	I

dn
�2�mI

*

m4
�2 m4

�2n

ve

c3
+ O��0� . �4.5�

In the case mI
*=mI, one obtains the following less compli-

cated result that is valid for all ��1:

1

�
=

1

6�
�n

d	I

dn
�2�mI

m4
�2 m4

�2n
�	1 − �2�1 + 2�2�

�
−

3�

2

+ 3 arcsin �� . �4.6�

This expression gives the dependence of the decay rate on
the essential physical parameters. Our result is the ratio of
two terms that go to zero in the limit of thick films. The third
sound mode with velocity c3 will eventually turn into a rip-
plon mode with the familiar q�

3/2 dispersion relation for

which our theory does not apply. Also, the electron chemical
potential should approach a constant in the thick-film limit.
One expects, however, that the dependence of the electron
chemical potential as a function of film thickness is relatively
smooth, whereas the third sound speed is known to oscillate
strongly.27,29

The above calculation has omitted all but the transitions
in the lowest states, and has employed throughout long-
wavelength expansions. Our final result shows why this is
justified: other terms in the self-energy or the current would
describe coupling to higher-lying states. One may expect that
they contribute a smooth background correction, but the ap-
pearance of the third sound speed in the denominator is re-
sponsible for the characteristic oscillations of the lifetime
and, hence, of the electron mobility.

V. RESULTS

A. Substrate model

In this work, both the substrate and the helium films are
treated as homogeneous systems with individual dielectric
constants �S for the substrate and �H for 4He. We assume a
4He film of thickness h=n /�� whose surface is at z=0 and a
flat substrate half space between −��z�−h. The potential
seen by the electron is then34

Usub�z� = �� for z � 0

�VHe2

4z
+

e2

4

�VH
2 − 1

�VH
�
n=1

�
��VH�SH�n

z + nh
for z � 0,�

�5.1�

where

�VH =
1 − �H

1 + �H
and �SH =

�S − �H

�S + �H
. �5.2�

The hard core for the helium potential barrier is a reasonable
model because the measured potential barrier seen by the
electron at the 4He surface is about 1 eV.1

As the film thickness increases, the binding energy of the
electron varies between the binding energy of the electron on
the bare substrate and the one on a helium half space. Since
the binding on the 4He half space is much weaker than on the
substrate, the electron will, with increasing film thickness,
also move away from the surface.

Figure 1 shows the dependence of the electron binding
energy and the distance of the electron from the 4He surface
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as a function of 4He film thickness. For the computation, we
have assumed a range of substrate dielectric constants of 3
��S�5 and a 4He dielectric constant of �H=1.055. The val-
ues of the substrate dielectric constants model a glass sub-
strate as described in the following subsection. The film was
modeled as having constant density over a width h, which
was converted to 4He coverage n. In the limit of zero film
thickness, the binding energy to the substrate varies between
−4400 and −2500 K. In the limit of infinite film thickness the
binding energy approaches −7.12 K and the distance from
the 4He surface is over 80 Å. From Fig. 1, it is seen that even
a film of nominal thickness 100 Å is far from the bulk half-
space limit. Thus, the influence of the substrate reaches far
into the regime where the 4He film would otherwise be con-
sidered as “bulk.” This observation is relevant because it
demonstrates that thick-film approximations should not be
used to estimate the term d	I /dn in Eq. �3.15� and �4.5�.

B. Helium films and third sound

Recently, we have reported very extensive studies of the
dependence of the 4He third sound speed as a function of
both the nature of the substrate and the film thickness.27 For
films up to a coverage of 0.4 Å−2, we have fitted the 4He
chemical potential 	4�n� by a function

	4�n� = 	4��� −
�s�̄

3

n3 +
c

n4 +
d

n5 +
e cos�kn − ��

n4 , �5.3�

where �s is the van der Waals constant of the substrate and �̄
is an average density. We have derived from this fit, as well
as from the microscopic calculation of the speed of third
sound, values for the incompressibility m4c3

2=n�d	4 /dn�. We
base the calculations of this work on our results for a glass
substrate. The relevant parameters are27 �s=1260 K Å3, �̄
=.0228 Å−3, k=94.43 Å2, c=2.17�10−3 K Å−8, d=−0.89
�10−4 K Å−10, e=1.20�10−4 K Å−8, and �=1.27. These
parameters were derived from calculations for helium films
of six to seven layers.

Figure 2 shows the surface incompressibility of 4He on
the glass substrate as calculated in Ref. 27. The strong oscil-

lations as a function of coverage are characteristic of third
sound in thin 4He films. Note also that the “hydrodynamic
limit,” as described by the van der Waals form for the 4He
chemical potential, is far from being reached.

Of course, one must be cautious when extrapolating the fit
�Eq. �5.3�� to films that are much thicker than the regime
from which the results were obtained; we have therefore
used in our calculations a conservative extrapolation of our
fit �Eq. �5.3�� up to a coverage of n=0.6 Å−2, corresponding
to about nine layers.

C. Electron mobility

From the data on the energetics of electron bound states
and the 4He third sound speed, we can calculate the
effective-mass ratio �Eq. �3.15�� and the contribution of the
4He film to the loss rate �Eq. �4.5�� of the thermal electrons
and, from that, the electron mobility

	 =
e

mI
� . �5.4�

A quantitative calculation of the 4He contribution to the elec-
tron effective mass and the mobility is evidently delicate
because these quantities depend on the ratio of two quanti-
ties, n�d	I /dn� and c3, that both go to zero in the thick-film
limit. One expects that the electron binding energy is rela-
tively insensitive against the layer structure, because it is
dominated, for thin films, by the substrate and layering ef-
fects in the density profile are negligible for film thicknesses
of more than three or four layers. On the other hand, the
speed of third sound shows, for practically all substrates, the
pronounced oscillation seen in Fig. 2.

The primary quantities to calculate are the effective-mass
ratio �Eq. �3.15�� and the damping rate 1 /� �Eq. �4.5��. The

FIG. 1. The figure shows the electron binding energy 	e�n� as a
function of surface coverage n �lower scale� and film height h �up-
per scale�. The curves correspond to the substrate dielectric constant
�S=3,3.25,3.5, . . . ,5 from top to bottom.

FIG. 2. The figure shows the calculated incompressibilities m4c3
2

of 4He on the glass substrate as calculated from the long-
wavelength limit of the excitations �diamonds�. Also shown are the
results obtained by differentiating the fit �Eq. �5.3�� �solid line� and
the asymptotic form mc3

2�n��3�s�̄
3 /n3 for large n �short-long

dashed line�. The upper scale gives the thickness of the 4He films in
units of liquid layers. We have defined here the thickness of one
layer from the value k of the fit �Eq. �5.3��, with the number d of
layers as d=0.066n, which is somewhat less than the experimental
relationship d=0.077n. �Results from Ref. 27�.
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generic equation �Eq. �3.15�� has been used quite
successfully30 to predict the effective mass of 3He and hy-
drogen isotope impurities in the surface of 4He. The situation
here is different in the sense that we are looking at much
thicker films where, due to the fact that the speed of third
sound goes to zero, a single term becomes dominant. Figure
3 shows the effective-mass ratio mI

* /mI as a function of cov-
erage for the family of substrate dielectric constants men-
tioned above. Without the last term in square brackets in Eq.
�3.15�, the effective-mass ratio can come out negative, and
one must therefore solve the equation self-consistently. We
find that the electron effective mass depends relatively sen-
sitively on the substrate strength and can be as large as 5 for
�S=5. We note that this effect is present even in the absence
of substrate periodicity or defects. Figure 3 shows that for
thin 4He films, this behavior depends largely on the magni-
tude of the dielectric constant of the substrate. A less polar-
izable substrate, or a more highly compressed 4He film with
a larger speed of sound, can cause effective mass ratios that
are much closer to 1.

Figure 4 shows the decay rate 1 /�. For our calculations,
we have assumed a thermal speed of the electrons of ve
=5000 m/s. To be able to separate the influence of the
effective-mass ratio and the speed of third sound, these re-
sults do not contain the electron-effective-mass ratio that ap-
pears in Eq. �4.5�. We see again pronounced oscillations that
are obviously due to the oscillations of the third sound speed.

It appears that the two terms, �nd	I /dn�2 and c3, go to
zero at about the same rate, and the chemical potential term
falls off slightly faster. This leaves the decay rate oscillating
with roughly the same amplitude and a rather slow decay. In
the effective-mass ratio, the third sound speed appears
squared in the denominator; hence, the oscillations increase
with increasing coverage.

VI. CONCLUSION

In this paper, we have calculated the inelastic-scattering
rate for an electron on 4He film surfaces up to nine atomic

layers on a model glass substrate. Our major result, Eq. �4.6�,
is a first-principles microscopic derivation of the scattering
rate due to coupling to third sound �ripplons�. We have iden-
tified the term that is responsible for the behavior of the flux
decay rate and, consequently, for an electron mobility that
oscillates synchronously with layer formation of the under-
lying helium film. The reasons for this oscillatory behavior is
the dependence of the third sound speed on the layered struc-
ture of the film and the appearance of that third sound speed
in the denominator of the decay rate. This causes oscillations
whose amplitude does not appear to decay rapidly with the
film thickness.

We do not claim here that transitions to higher-lying ex-
citations are completely negligible; however, we have iden-
tified the oscillatory term. Other corrections can, at most,
contribute a smooth background of the same order of mag-
nitude. Thus, the dominant contribution to the mobility is
shown to depend explicitly on the ratio of the third sound
speed to the average electron speed and also the derivative of
the electron chemical potential with respect to the film cov-
erage. The third sound speed oscillates synchronously with
4He layer formation, but the electron chemical potential is a
smooth function. Thus, we have shown explicitly that, in
agreement with experiment,15,16 the electron mobility on thin
4He films should exhibit oscillations in concert with layer
formation.

When the scattering rate shown in Fig. 4 is turned into a
mobility via Eq. �5.4�, �cf. Fig. 5�, we find results on the
order of 102 m2/V s corresponding to the smallest values of
the dielectric constant. These results are roughly two orders
of magnitude larger than the reported electron mobilities on
thin helium films.15,16 It is our understanding that the mecha-
nism suggested by Monarkha et al.21 is at work and the ex-
isting two thin-film measurements of electron mobilities
have been dominated by scattering due to substrate surface
impurities and inhomogeneities. In Ref. 21, the authors re-
port, at their lowest temperature, a 2 orders of magnitude
increase in the electron mobility on a hydrogen substrate by

FIG. 4. The figure shows the contribution of the 4He film to the
electron-energy-loss rate calculated from Eq. �4.5� as a function of
4He coverage n �solid line, left scale� for the substrate dielectric
constants �S=3,3.25, . . . ,5. The strongest substrate corresponds to
the largest decay rate.

FIG. 3. The figure shows the contribution of the 4He film to the
electron effective-mass obtained from solving Eq. �3.15� self-
consistently as a function of 4He coverage n for the substrate di-
electric constants �S=3,3.25, . . . ,5. The strongest substrate corre-
sponds to the largest effective mass.
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simply annealing the substrate. Further theoretical support is
found in Refs. 23 and 24.

We specifically point out the fact that the experiments of
Refs. 15 and 16 show small mobility oscillations on top of a
smooth background, whereas our results of Figs. 4 and 5
indicate that the oscillations of the mobility due to coupling
to the 4He film are in size comparable to the total scattering
rate off the helium film. Experiments indicate �a� that the
oscillatory terms are a small correction on a smooth back-
ground and �b� that the background contribution can be
changed by orders of magnitude by annealing the substrate.
We therefore conclude that we have identified the essential
cause of the mobility oscillations as being due to the form
�Eq. �4.5�� of the helium-induced flux loss rate. Moreover,
although we started from a highly sophisticated and mani-
festly microscopic many-body description of the compound
dynamical system, we have arrived at plausible working for-
mulas for the dominant terms that depend only on physical
observables.

To conclude, we should mention the findings by Paalanen
and Iye15 and by Cieslikowski et al.35 �Fig. 9 of Ref. 35� who
observe a decrease of the electron mobility with increasing
film thickness. In fact, in Ref. 35, the decrease in maximum
amplitude as a function of film thickness is shown to follow
a power law. This effect is somewhat counterintuitive; it has
been interpreted as “due to the stiffening of the film surface
caused by the van der Waals term in the ripplon spectrum.”15

However, the ripplon stiffening is one of the outcomes of our
description. A possible explanation is the softening of the
ripplon mode with increasing film thickness. The limit of our
equations �Eq. �4.5�� is delicate since both the numerator and
the denominator go to zero and it might well be that the
behavior of the mobility as the film thickens depends sensi-
tively on the effects of substrate preparation.
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APPENDIX: THICK-FILM LIMIT

Although the mobility of electrons on an infinite half
space of 4He is not the concern of this paper, it is important
to examine whether the theory has a well-defined limit. Both
the numerator and the denominator of the effective-mass ra-
tio �Eq. �3.15�� and the damping rate �Eq. �4.5�� go to zero in
the thick-film limit. However, the physical mechanisms are
different: the numerator term �nd	I /dn�2 depends on the in-
teraction of the electron with the substrate, whereas the de-
nominator term is determined by the helium-substrate inter-
action and the internal structure of the helium film.

There are three basic differences between films of finite
thickness and the thick-film limit. First, in that limit, the third
sound speed c3 appearing in the denominator of Eqs. �3.15�
and �4.5� goes to zero. At the same time, the regime where
the spectrum is linear also shrinks. Instead, the spectrum be-
comes dominated by the ripplon dispersion relation

�r
2�qR� =

�qR
3

m4��

, �A1�

where �� is the bulk density and � is the surface energy.
Second, the derivative nd	I /dn goes to zero with increas-

ing 4He film thickness. This balances the fact that the speed
of third sound also goes to zero. Our numerical calculations
indicate that the coverage dependence of the electron chemi-
cal potential is extremely slow; even films of 100 Å thick-
ness are far from the asymptotic limit. Similarly, the speed of
third sound has not reached its asymptotic limit for those
film thicknesses where reliable statements can be made.36

Third, the sound modes within the background film be-
come dense and it becomes energetically feasible to also ex-
cite sound waves that penetrate into the film, perpendicular
to the free surface. These excitations have a linear dispersion
law and are therefore above the ripplon excitation, which
should remain the dominant energy-loss mechanism; this is
the basic assumption of this section.

For thick films, we can use the interpolation formula37 for
the third-sound �ripplon� dispersion relation,

�2�R
2 = ��2c3

2

h
+

�2qR
2�

m4��

�qR tanh qRh , �A2�

where h=n /�� is the average height of the film. The shape of
the long-wavelength density oscillation in an infinite half
space follows directly from Eq. �3.6�,

d

dn
→ −

1

��

d

dz
as n → � . �A3�

FIG. 5. The figure shows the contribution of the 4He film to the
electron mobility, calculated from Eq. �5.4� as a function of 4He
coverage n �solid line, left scale� for the substrate dielectric con-
stants �S=3,3.25, . . . ,5. The effective-mass ratio �m* /m�2 appear-
ing in Eq. �4.5� is included in these results; the results with the
lowest mobility correspond to the largest substrate dielectric con-
stant. Note that the mobility 	 should not be confused with the 4He
chemical potential 	4 or the electron binding energy 	I.
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Only the momentum-dependent normalization factor de-
pends on the dispersion relation, and thus33


R�z� = −	2���qR tanh qRh

m4�R�qR�
d	�1�z�

dn
. �A4�

We keep the coverage dependence of the particle-hole inter-
action,

Vo,R�qR� = −	���qR tanh qRh

2m4�R�qR�
d	I

dn
�A5�

and determine Xr,kr
�z�, for small kr, from Eq. �3.9� as fol-

lows:

X̃r,qr
�z� = −	2���qR tanh qRh

m4�R�qR�
d	I

dn

1

��R�rR� +
�2qR

2

2mI

.

�A6�

We first use this in the effective-mass formula �Eq.
�3.15��. We introduce a new variable x=hqR; with this, the
interpolation formula �Eq. �A2�� reads

�R
2�qR� = � 3�s

m4h4 +
qR

2�

m4��

�qR tanh qRh

=
1

m4h5�3�s +
h2x2�

��
�x tanh x . �A7�

We can also take the asymptotic form m4c3
2=3�s /h3 for

the incompressibility. After this change of variables, the ex-
pression �Eq. �3.15�� for the effective mass becomes

mI

mI
* = 1 − 


0

� dqRqR

2�
�Xo,R�qR��2

�2qR
2

2mI

��R�qR� +
�2qR

2

2mI
*

= 1 −
1

��
�d	I

dh
�2


0

� dqRqR

�

�qR tanh qRh

m4�R�qR�

�

�2qR
2

2mI

���R�qR� +
�2qR

2

2mI
* �3

� 1 −
1

�mIm4��
�d	I

dh
�2


0

�

dqR

qR
4 tanh qRh

�R
4�qR�

= 1 −
m4

2�mI��
�d	I

dh
�2

h5

0

�

dx
x2

�3�s +
h2x2�

��
�2

tanh x

→ 1 −
m4

2�mI��
�d	I

dh
�2

h5 ��

6��sh
2 as h → � . �A8�

If 	I�h� goes as 1/h, then the effective-mass correction goes
as 1/h for large h, i.e., the effective mass goes to mI in the
thick-film limit.

Since the inverse lifetime has one factor of c3 less in the
denominator, it is not necessary to calculate this limit explic-
itly.

Things change somewhat if we also allow for retardation
of the substrate potential. Then, the substrate potential as-
sumes the asymptotic form38

Uext�z� �
�s

z3�1 + z/��
as z → � . �A9�

In that case, the effective mass goes to a constant, but the
inverse lifetime still goes to zero.

We should, of course, point out that the above half-space
limit is never really reached because for thick �saturated�
films or the bulk free surface, gravity will eventually take
over. The purpose of our exercise was to show that the theory
does not have any undesirable divergences in the thick-film
limit.
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