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In the vacuum above surfaces, there are zero-point fluctuations in the electromagnetic field generated by
zero-point charge fluctuations in the substrate. A molecule near the surface will couple to such fluctuations,
with the consequence that excited states may decay via nonradiative transitions in which energy is transferred
to the electronic excitations of the substrate �surface plasmons, particle hole pairs�. In addition, coupling to the
fluctuations will produce energy-level shifts not included in the standard version of density-functional theory.
We develop a formalism that allows one to calculate the nonradiative lifetimes from this interaction, and also
the energy-level shifts. We treat the electric-field fluctuations within the framework of a phenomenological
theory that relates their amplitude and frequency spectrum to the optical dielectric constants of the materials
from which the substrate complex is fabricated. We demonstrate that when the formalism is applied to a
structureless, highly localized electron, the energy-level shift is just that given by the image potential of
classical dielectric theory. In real systems one must include the effect of virtual transitions to excited states in
the analysis of the level shifts. We present a quantitative study of the nonradiative lifetime of the lowest
unoccupied molecular orbital �LUMO�+1 state of the magnesium porphine molecule, adsorbed on the oxide
covered NiAl�110� surface, along with calculations of the energy-level shifts induced by the field fluctuations
for this system. Our calculated nonradiative lifetime is in good accord with experimental data.
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I. INTRODUCTION

It is the case in recent years that the scanning tunneling
microscope �STM� has emerged as a most powerful spectro-
scopic tool. By now the technique has been used to study the
vibrational normal modes of single molecules1 or atoms,2

and it is also used to study electronic energy levels of diverse
isolated, single adsorbate atoms or molecules, including the
vibronic sidebands.3 However, it is often difficult, indeed
impossible, to study details of electronic structure, including
vibronic sidebands, if the molecule of interest is chemisorbed
directly on the metallic substrate into which the electrons
from the STM tip tunnel. The reason is that the molecular
energy levels are broadened dramatically, by virtue of hy-
bridization between the molecular orbitals and the electronic
states of the substrate. In the latter, there will be a continuum
of final states, so the molecular level is broadened into a
virtual level whose width may be several tenths of an elec-
tron volt. Thus much detail is obscured in the spectroscopy
of such entities.

As a consequence, it is most useful to employ a metallic
substrate covered by a few Å of insulating oxide. If the oxide
layer is not too thick, electrons from the STM tip may still
tunnel through the oxide barrier, thus rendering STM based
single molecule spectroscopy viable. At least to first approxi-
mation, one may ignore direct hybridization between the mo-
lecular orbitals and the electron states of the metallic sub-
strate under the oxide layer. The excited states of the
molecule are thus quite sharp in energy, hence allowing fine
details of the electronic and vibrational structures to be re-
solved in STM based spectroscopy. The oxidized NiAl�110�
surface has emerged as an important oxide layer and sub-
strate combination. A very lovely example of this form of
STM based spectroscopy is found in Ref. 4.

Even though one may ignore the effects of direct hybrid-
ization between the molecule and the electrons in the metal-
lic substrate in the circumstances described in the previous
paragraph, it is the case that the molecule may couple to the
electronic degrees of freedom in the substrate. Electrons
within the substrate necessarily undergo thermodynamic
fluctuations in charge density. Even at zero temperature,
there are zero-point fluctuations present. These charge fluc-
tuations produce fluctuating electric fields in the vacuum just
above the surface, by virtue of the long-ranged character of
the Coulomb interaction. Electrons inside a molecule on the
oxide layer will interact with the electrons in the substrate
through these electric-field fluctuations, even though no di-
rect hybridization is present. Through this mechanism, the
continuum of particle-hole fluctuations in the substrate,
along with collective excitations such as surface plasmons of
the oxide-substrate complex, will influence the adsorbate. As
we shall see below, this interaction has two effects. Excited
states of the molecule acquire a finite lifetime by virtue of
nonradiative transitions to lower-lying unoccupied levels,
and in addition there are shifts in the energy levels of the
adsorbate.

It is the purpose of this paper to develop the theory of
interactions of molecules or other entities near substrates
with the fluctuations in electric field just described. After the
formalism is developed, we present explicit calculations for
the nonradiative lifetime of excited states of the magnesium
porphine molecule adsorbed on the oxide covered NiAl�110�
surface. This is the system studied in Ref. 4, and our results
are in good agreement with the measured width of the lowest
unoccupied molecular orbital �LUMO�+1 state of this spe-
cies. Some general remarks are in order before we proceed.

Our approach to the description of the electric-field fluc-
tuations above the substrate is closely related to an elegant
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discussion given some years ago of the nature of electromag-
netic fluctuations near solid materials, along with their
consequences.5 These authors begin by analyzing the struc-
ture of the full quantum field-theoretic Green’s functions for
the electromagnetic fields in and near materials. They point
out that if one may, within the framework of the full quantum
theory, define a dielectric response function for the material
system, then the retarded Green’s functions of the quantum
theory of the electromagnetic field obey precisely the same
differential equations and boundary conditions as the Green’s
functions of classical electromagnetic theory. Thus one may
express the spectral densities of the field-theoretic propaga-
tors in terms of the Green’s functions of the classical Max-
well equations. If the complex dielectric function measured
optically is employed in this theoretical structure, then one
obtains a rigorous account of those field fluctuations whose
length scale is long compared to a lattice constant. Within
this framework, one may analyze electric-field fluctuations
and their influence near real materials and material combina-
tions by utilizing measured data for the optical response
characteristic of the constituent materials.

This approach was used by one of the present authors
many years ago, to construct a general theory of the dipole
losses experienced by low-energy electrons as they reflect off
surfaces.6 Such dipole losses may be viewed as having their
origin in the inelastic scattering of electrons in the beam
from the electric-field fluctuations in the vacuum above the
crystal produced by the diverse elementary excitations
probed by this form of spectroscopy. This approach to the
theory led to very good accounts of electron energy-loss
spectra,7 including losses from structures whose length scale
extends down to microscopic lengths.8,9 By adopting this ap-
proach to address the issues of current interest to us, we put
forth in this paper a formalism which allows calculations to
be carried out readily for a given adsorbate on diverse sub-
strates, with knowledge of only the optical response of the
latter.

In addition to calculating the contribution to the nonradi-
ative lifetime of excited states, we address a second issue in
the theoretical structure set forth here. Density-functional
theory is, of course, used very widely in the analysis of ad-
sorbates on surfaces and by this time the approach enjoys
very impressive success. However, when applied to surfaces,
in this method �in its standard form�, the surface potential
experienced by the adsorbate falls off exponentially as one
moves into the vacuum from the substrate. It is the case, in
fact, that an electron near any solid surface experiences an
image potential whose origin is in the long-ranged Coulomb
interaction. Surely the image potential will produce shifts in
energy levels of adsorbed species such as we consider in the
present paper. Such level shifts are not incorporated in stan-
dard density-functional descriptions, and one must then in-
quire into their magnitude and thus the accuracy of density-
functional theory when applied to adsorbates. In our
formalism, the electric-field fluctuations outside the surface
lead to not only nonradiative decay of excited states but also
energy-level shifts of all states, as mentioned above. When
we apply our formalism to a highly localized “sterile elec-
tron,” which resides in a single orbital with no excited states,
our expression for the energy-level shift reduces exactly to

the shift in energy of the electron produced by the image
potential. A real system, of course, has a spectrum of excited
states and the electric-field fluctuations produce virtual tran-
sitions to these states, which we shall see also contribute to
the energy shift. Thus one cannot modify density-functional
theory to include image potential effects by simply introduc-
ing an effective image potential from electrostatic theory.
One should use the term dynamical image potential shift
when referring to this phenomenon, since virtual fluctuations
enter in addition to the shift produced by the static, classical
image potential. The calculations reported below explore
these effects through numerical calculations, for the particu-
lar system studied experimentally in Ref. 4.

We should note that it is possible to incorporate long-
ranged forces �image potentials, van der Waals forces� into
density-functional theory.10 However, to date the applications
are to systems considerably simpler than that explored here
and envisioned for our future work, and it is the case as well
that only rather few studies have appeared in the literature.
As we shall see below, for suitable systems our approach
allows one to extend standard density-functional calculations
to include such effects on both ground state and excited
states, through use of optical data on the substrate and other
constituents.

In this paper, our attention is confined to an adsorbate
which is near a metal surface, possibly covered by an oxide
layer. In the experiments reported in Ref. 4, of course, the
STM tip is very close to the adsorbed molecule as well. Its
presence will affect the nature of the electric-field fluctua-
tions in the vicinity of the adsorbate. Using the mathematical
description we have developed of the influence of STM tips
on nonlinear optical probes of molecules near and under the
tip,11 it is a straightforward matter in principle to extend the
analysis here to incorporate the role of the nearby STM
probe. This issue is under study at present.

The outline of this paper is as follows. In Sec. II, we
develop the formalism and discuss aspects of the results in
general terms. In Sec. III, we present density-functional stud-
ies of the uncharged and charged magnesium porphine mol-
ecule in free space, and compare the results with the data
reported in Ref. 4. We then discuss our studies of the lifetime
of the LUMO+1 level produced by coupling to the electric-
field fluctuations from the substrate, and we also discuss our
calculations of the dynamic image potential induced shifts of
the energy levels of the molecule. Section IV is devoted to
final remarks and comments on the implications of our re-
marks.

II. FORMALISM

A. General development

As discussed in Sec. I, we have in mind the following
geometry. One has a substrate, possibly metallic, on which
an oxide layer is grown. On top of the oxide layer, we have
an adsorbate atom or possibly a more complex molecule. We
shall describe electrons within the molecule by introducing
the appropriate many-body Green’s function. Our aim is then
to derive an expression for the contribution to the proper
self-energy associated with the Green’s function, along with
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the Dyson’s equation it obeys, where the origin of the proper
self-energy lies in the interaction of electrons within the mol-
ecule with the electric-field fluctuations discussed in Sec. I.
We should remark that the derivation below applies only to
the case where the temperature T is taken to be zero. This
will be quite fine for the applications we envision, where the
energy scale of interest is eV. Thus when we consider the
influence of electric-field fluctuations of frequency �, we
shall always be in the regime where ���kBT. It is the case,
however, that our description of the spectral character of the
electrostatic field fluctuations near the surface is carried out
for finite temperatures. This will allow us to extend our for-
malism to finite temperatures in the future, if desired, and the
resulting expressions may be useful for other applications.

We wish the oxide layer to be thick enough that to good
approximation the adsorbate is described by a set of wave
functions ����r��� which may be viewed as distinct from the
electrons in the metallic substrate and oxide layer. We as-
sume these wave functions and the associated energies ����
are generated through use of an appropriate density-
functional calculation. We shall use Ha to describe the
Hamiltonian from which the adsorbate eigenfunctions and
eigenvalues are generated. In the metal substrate and also the
oxide layer, we have electrons described by a set of eigen-
functions �	m�r���. In future applications we envision that an
STM tip will be located just above the adsorbate. In this
case, the set of eigenfunctions and eigenvalues associated
with the metallic structure will include those within the STM
tip as well. These various states and energy levels are de-
scribed by a Hamiltonian we call HM. We begin by thinking
of two distinct systems of electrons described by a fermion
field operator which takes the form, in the Schrödinger rep-
resentation,

	�r�� = 	a�r�� + 	M�r�� , �1�

where we may write 	a�r��=��c����r�� and 	M�r��
=�mcm	m�r��, with c� and cm the relevant fermion annihila-
tion operators. The Hamiltonian of these two sets of elec-
trons is then

H0 = Ha + HM , �2�

where we shall not need explicit forms for Ha and HM in
what follows.

The electrons in the adsorbate interact with those in the
substrate through the long-ranged Coulomb interaction,
which has the form

V = e� d3r	a
+�r��
�r��	a�r�� , �3�

where


�r�� = e�
V

d3r�
	M

+ �r���	M�r���
�r� − r���

. �4�

The integration in Eq. �4� extends over the substrate-oxide
complex, and the STM tip as well, if we wish to incorporate
its influence. The total Hamiltonian of our system is then

H = Ha + HM + V . �5�

We shall study the Green’s function of the adsorbate com-
plex, which is defined to be

Ga�r�,t;r��,t�� = − i�T„	a�r�,t�	a
+�r��,t��…	 , �6�

where 	a�r� , t�=exp�iHt�	a�r��exp�−iHt� is the adsorbate
electron Green’s function in the Heisenberg representation.
Our convention is that when the time arguments are omitted
from operators, it is understood that they are in the
Schrödinger representation, and when a time argument is
present, the operator is in the Heisenberg representation. In
this section, we shall employ units where �=1 to keep the
expressions simple. The factors of � will be restored in the
final expressions.

Through standard methods of many-body theory, it is pos-
sible to derive a Dyson equation, which is satisfied by the
adsorbated Green’s function. This has the form


i
�

�t
− Ha�Ga�r�,t;r��,t��

−� d3r�dt���r�,t;r��,t��Ga�r��,t�;r��,t��

= ��r� − r����t − t�� . �7�

To lowest order in the electrostatic potential fluctuations, the
proper self-energy in Eq. �7� is given by

��r�,t;r��,t�� = − e2Ga
�0��r�,t;r��,t���T„
�r��,t��
�r�,t�…	 , �8�

where Ga
�0��r� , t ;r�� , t�� is the adsorbate Green’s function, cal-

culated in the limit where the Coulomb interaction V is set to
zero. We next Fourier transform all quantities with respect to
time:

Ga�r�,t;r��,t�� =� d�

2
Ga�r�,r��;��exp�− i��t − t�� �9�

and

�T„
�r�,t�
�r��,t��…	 =� d�

2
��r�,r��;��exp�− i��t − t�� .

�10�

Then Dyson’s equation assumes the form

�� − Ha�Ga�r�,r��;�� −� d3r���r�,r��;��Ga�r��,r�;�� = ��r� − r��� ,

�11�

where we have

��r�,r��;�� = − e2�
−�

+� d�

2
Ga

�0��r�,r��;� + ����r��,r�;�� .

�12�

In what follows, it will be important to note the limits in the
integrations over internal frequency � which appear in the
various statements. It is an elementary matter to calculate the
adsorbate Green’s function which enters Eq. �12�:
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Ga
�0��r�,r��;�� = �

�

���r���a�r���*� �1 − f��
� − �� + i�

+
f�

� − �� − i�
� .

�13�

In Eq. �13�, the energies �� are those which emerge from the
solution of the Kohn-Sham equation, and the orbitals ����r���
are those which emerge from the same equation while f� is
unity if state � is occupied, and zero if it is not. The energies
�� are measured from the Fermi level.

The heart of our discussion is the means we use to de-
scribe the spectral density ��r�� ,r� ;�� associated with the
fluctuations in electrostatic potential in the vicinity of the
adsorbed molecule. In the next portion of our discussion, as
we derive the form of ��r�� ,r� ;��, we shall assume that the
temperature T is finite. As remarked in Sec. I, it will be
useful for other purposes to have the full finite temperature
description of the potential fluctuation spectrum. To remind
the reader that this is so, we use the notation
�T(
�r� , t�
�r�� , t��)	T to describe the finite temperature elec-
trostatic potential propagator.

Rather than deal with the time-ordered propagator men-
tioned in the previous paragraph, we will study the simple
correlation function �
�r� , t�
�r�� , t��	T, where we notice the
time-ordering operator is missing in this function. We write

�
�r�,t�
�r��,t��	T = �
−�

+� d�

2
P�r�,r��;��exp�− i��t − t�� .

�14�

It is a short exercise in Fourier analysis to obtain the rela-
tionship

��r�,r��;�� = �
−�

+� d�

2i

 P�r��,r�;��

�� + � − i��
−

P�r�,r��;��
�� − � + i��

� .

�15�

We may now insert Eqs. �13� and �15� into Eq. �12�, and
carry out the integration over �. The proper self-energy may
then be cast into the form

��r�,r��;�� = −
e2

2
�
�

���r�����r���*

�
�
−�

+� d��1 − f��P�r��,r�;��
�� − �� − � + i��

+ �
−�

+� d�f�P�r�,r��;��
�� − �� + � − i��� . �16�

To obtain an expression for P�r� ,r�� ;�� which appears in Eq.
�16�, we proceed as follows. We introduce yet another form
of the electrostatic potential propagator:

D

�r�,t;r��,t�� = i��t − t����
�r�,t�,
�r��,t��	T. �17�

If we define

�

�r�,r��;�� = i�D

�r�,r��;� + i�� − D

�r��,r�;� + i��*� ,

�18�

then one may establish the relationship

P�r�,r��;�� = �1 + n����

�r�,r��;�� , �19�

where n���=1/ �exp����−1 is the Bose Einstein function.
The reason for the above manipulations now follows. The

function D

�r� ,r�� ;�+ i�� is a response function with the
following physical meaning. Suppose we place some exter-
nal charge in the near vicinity of our substrate complex �with
adsorbate absent�. Let the external charge density have the
form �ext�r� ;��exp�−i��+ i��t. Then from linear-response
theory, one may show that the expectation value of the elec-
trostatic potential operator �
�r� , t�	T is given by

�
�r�,t�	T = exp�− i�� + i��t

�� d3r�D

�r�,r��;� + i���ext�r��;�� . �20�

Our remaining task is to construct the response function
which appears on the right-hand side of Eq. �20�. Here we
resort to the elegant arguments presented in Ref. 3. In prin-
ciple, we should study the structure in Eq. �17�, where the
right-hand side involves the stated commutator of the
Heisenberg operators associated with the electrostatic poten-
tial. The authors of Ref. 3 point out that if the response of the
media to external charge can be described in terms of
a possibly spatially varying, complex dielectric constant
��r� ,�+ i��, then the differential equation obeyed by the full
quantum theoretical response function introduced in Eq. �17�
is precisely the same as that obeyed by the Green’s function
of classical electromagnetic theory. In a complete theory, of
course, to calculate the dielectric response function one must
resort to a full quantum theory. However, if one expresses
the response function in Eq. �17� in terms of the appropriate
dielectric constants, and if one then obtains the dielectric
functions needed from experimental data, then one has a full
and rigorous account of the response of the system, and also
of the electromagnetic fluctuations in and around it. The lat-
ter follows when one uses the prescriptions we have given
above for the construction of the spectral density function
defined in Eq. �14�. In the numerical calculations reported in
Sec. II, we employ optically measured dielectric constants to
obtain a description of the electromagnetic fluctuations in the
spectral regions of interest to the present analysis. By this
procedure, we obtain a fully rigorous account, for real mate-
rials, of potential fluctuations whose length scale is long
compared to microscopic lengths, such as lattice constants.
We shall appreciate that for the large molecule of interest to
us, length scales large compared to a lattice constant provide
the dominant contribution to the self-energy.

Now in the applications we envision here, we will be
dealing with structures whose length scale is small compared
to the wavelength of electromagnetic radiation in the fre-
quency domain of interest. We shall suppose we are inter-
ested in frequencies in the optical frequency domain, and the
structures we explore have length scales of only a nanometer
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or so. Hence we shall use electrostatic theory to describe the
response of the system. We thus calculate the Green’s func-
tion by solving

�� · ���r�,� + i���� D

�r�,r��;� + i�� = − 4��r� − r��� .

�21�

For the case of a substrate with dielectric constant �sub���
covered by a film of thickness d whose dielectric constant is
�ox���, one may work out the form of the spectral density
function defined in Eq. �18�. One finds

�

�r�,r��;�� =
2


� d2Q�

Q�

exp�iQ� � · �r�� − r����

�exp�− Q��z + z��Im� − 1

1 + �̃�Q�,��� ,

�22a�

where

�̃�Q�,�� = �ox���
1 + ����exp�− 2Q�d�
1 − ����exp�− 2Q�d�� �22b�

with

���� = ��sub��� − �ox���/��sub��� + �ox��� . �22c�

It should be noted that we assume the outer surface of the
oxide layer is located in the xy plane, where z=0.

We have one final point to consider. The treatment given
of the fluctuations in the electrostatic potential applies to
finite temperatures, whereas the derivation of the expression
for the proper self-energy made explicit use of the fact that
the temperature was zero. Hence we need to insert the ex-
pression for the spectral density function in Eq. �16� appro-
priate to zero temperature. As the temperature T is taken to
zero, for positive frequencies 1+n���→1, while for negative
frequencies, 1+n���→0. Hence for the proper self-energy
we have the final form

��r�,r��;�� = −
e2

2
�
�

���r�����r���*

�
�
0

�

d�
�1 − f���

�r��,r�;��

�� − �� − � + i��

+ �
0

�

d�
f��

�r�,r��;��

�� − �� + � − i��� . �23�

We now have the Dyson equation in hand, and the proper
self-energy describes both energy-level shifts and also life-
times produced by nonradiative decay to the electronic exci-
tations in the substrate. The latter follow from the imaginary
part of the proper self-energy. In the next section we discuss
the means of solving the Dyson equation, for the system of
interest.

B. A perturbation theoretic solution of Dyson’s equation

We begin by expressing the proper self-energy in the form

��r�,r��;�� = − �
�

���r��S��r�,r��;�����r���*, �24�

where

S��r�,r��;�� =
e2

2
�

0

�

d��

�r�,r��;��
 �1 − f��
�� − �� − � + i��

+
f�

�� − �� + � − i��� . �25�

Notice, by the way, that the spectral density of the electro-
static potential fluctuations is unchanged when r� and r�� are
interchanged.

We next assume the functions ����r��� form a complete,
orthonormal set so that we can write

��r� − r��� = �
�

���r�����r���* �26�

and then we can seek a representation of the adsorbate
Green’s function in the form

Ga�r�,r��;�� = �
�,��

���r������r���
*g������ . �27�

Then Dyson’s equation becomes

�� − ���g�,����� + �
�

��,����g�,����� = ��,��, �28�

where

��,���� = �
�
� d3rd3r����r��*���r��S��r�,r��;�����r���*���r��� .

�29�

From the structure of Eq. �28�, one sees that the potential
fluctuations in which the adsorbate is embedded provide a
cross coupling between the states that are viewed as indepen-
dent eigenstates within the framework of density-functional
study theory.

Our interest is in the first correction to density-functional
theory. To lowest order, g�,a���� remains diagonal, and we
may write

��,����� =
e2

2�
0

�

d�� d2Q�

Q�

Im� − 1

1 + �̃�Q�,���
��

�

����exp�iQ� � · r�� − Q�z��	�2

�� f�

��� − �� + � − i��
+

�1 − f��
��� − �� − � + i��� .

�30�

In the sum over states in Eq. �30�, one should retain the
diagonal term with �=�. This particular term can be ar-
ranged in a more convenient form. For the moment, we de-
note it by ��,�

�D�, and upon setting ��=�� we have
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��,�
�D� =

e2

2 �2f� − 1� � d2Q�

Q�

����exp�iQ� � · r�� − Q�z���	�2

��
0

� d�

�
Im� − 1

1 + �̃�Q�,��� . �31�

If the state � is occupied, then of course f� is unity, and it is
zero if the state is unoccupied. Thus the self-energy correc-
tion in Eq. �31� has the opposite sign for occupied and un-
occupied states. Recall that the pole of the single-particle
Green’s function occurs at the excitation energies of the sys-
tem. If the state � is occupied, we have in Eq. �31� a contri-
bution to the excitation energy of an electron state. If the
state is unoccupied, it is the excitation energy of a hole state
that is described. We shall appreciate shortly that, in essence,
the real part of the self-energy describes an energy shift
which is, in essence, the image potential shift. The contribu-
tions of the image potential to the excitation energy of an
electron and a hole have opposite signs.

Now the response function �̃�Q� ,��, considered as a func-
tion of frequency in the complex � plane for fixed Q�, has
analytic properties identical to that of an optical dielectric
constant ����. For the latter, one has the sum rule12

��ix� − 1

��ix� + 1
=

4


�

0

� d��

�2 + x2 Im� − 1

1 + ����� . �32�

We may use this for x=0 to evaluate the frequency integral
in Eq. �31�. We then have

��,�
�D� =

e2

4
�2f� − 1� � d2Q�

Q�

����exp�iQ� � · r�� − Q�z���	�2

�� �̃�Q�,0� − 1

�̃�Q�,0� + 1
� . �33�

Our final expression for the proper self-energy can thus be
written in the form

��,� = ��,�
�D� + ���,�, �34a�

���,� = +
e2

2�
0

�

d�� d2Q�

Q�

Im� − 1

1 + �̃�Q�,���
� �

���

����exp�iQ� � · r�� − Q�z���	�2

�� f�

��� − �� + � − i��
+

�1 − f��
��� − �� − � + i��� .

�34b�

The first term on the right-hand side of Eq. �34a�, ��,�
�D� is, of

course purely real. The second term contains both a real and
an imaginary part. The real part is the contribution to the
energy shift of state � from fluctuation induced virtual tran-
sitions to other states, and the imaginary part of the second
term describes the nonradiative lifetime due to the transfer of
energy to the excitations in the substrate via the long-ranged
part of the Coulomb interaction. This is the nonradiative life-
time of the excited level.

We end this section by evaluating Eq. �34a� for a highly
localized “sterile” electron located a distance z0 above a sub-
strate whose dielectric constant is �sub���. The term “sterile”
refers to an electron with no excited state; it sits frozen in
state �. Then ���,� vanishes, and the only contribution to the
proper self-energy comes from ��,�

�D�. We omit the oxide layer
by setting its dielectric constant to unity. If the state � is
highly localized around a point located the distance z0 above
the substrate, then we have

����exp�iQ� � · r�� − Q�z���	�2 = exp�− 2Q�z0� . �35�

Thus for such an electron we have, assuming the state is
occupied,

��,�
�D� =

e2

4
��sub�0� − 1

�sub�0� + 1
� � d2Q�

Q�

exp�− 2Q�z0� . �36�

The integral in Eq. �36� is elementary, and we have

��,�
�D� =

e2

4z0
��sub�0� − 1

�sub�0� + 1
� . �37�

This is exactly the energy shift experienced by an electron
placed near a dielectric surface, by virtue of the classical
image potential �this shift is the work required to bring the
electron from infinity, to the distance z0 from the surface�.

Thus the energy-level shift produced by the lowest-order
self-energy correction associated with the interaction of the
electron with electric-field fluctuations above the surface is,
for the sterile electron, just the image potential energy from
classical dielectric theory. A real adsorbate, of course, has a
whole spectrum of energy levels, and in this circumstance to
evaluate the energy shift it is essential to take due account of
fluctuation induced virtual transitions to excited states, as
described by the second term on the right-hand side of Eq.
�34�. It is incorrect to use a simple static electrostatic poten-
tial to describe corrections to density-functional theory from
the long-ranged tail of the Coulomb interaction between the
electrons in the adsorbate, and those in a nearby substrate.

This completes our discussion of the formalism we have
developed. In the next section we describe the numerical
calculations we have carried out with it.

III. NUMERICAL CALCULATIONS

A. Free-standing magnesium porphine molecule

In this section, we shall describe our density-functional
studies of the free-standing magnesium porphine molecule.
We shall see that we can obtain quite a good account of the
data reported in Ref. 4 for the energy levels of this molecule
in both its charged and uncharged states, when it is adsorbed
on the oxide covered NiAl�110� surface. This reinforces the
notion that when we discuss the lifetime of excited states, to
good approximation our assumption that overlap between the
orbitals associated with the adsorbate and those associated
with the substrate electron can be set aside.

The calculations for the free Mg-porphine molecule are
conducted with the plane-wave and pseudopotential based
VASP code as well as the all-electron DMol method,13 at the

MILLS, CAO, AND WU PHYSICAL REVIEW B 75, 205439 �2007�

205439-6



level of generalized gradient approximation. The revised
Perdew-Burke-Enzerhof14 functional was adopted for the de-
scription of exchange-correlation interaction among elec-
trons. In DMol calculations, we used the double-numeric
quality bases with polarization functions and the global or-
bital cutoff was set to be 5.0 Å. In the VASP calculations, a
supercell of 25 Å in each dimension is used to mimic the
single Mg-porphine molecule. This unit cell is sufficiently
large that near its periphery, the amplitude of all the states is
very small. The atomic structures are optimized through
total-energy minimization procedures guided by the calcu-
lated atomic forces.

Calculations with both approaches give basically the same
results, indicating that the all-electron treatment is insignifi-
cant for the neutral Mg-porphine molecule. The Mg-N, N-C,
C-C, and C-H bond lengths are 2.08, 1.38, 1.40–1.45, and
1.09 Å, respectively. The calculated energy levels and the
wave functions of key states of the neutral Mg-porphine mol-
ecule are presented in blue color in Fig. 1. The wave function
of its LUMO state consists of eight major lobes in the
C-pentagons, in good accordance with the STM images. The
LUMO+1 state is more symmetric, with the C-C -bonding
feature. Note that the wave functions of LUMO and
LUMO+1 have nodes at the Mg site and hence the STM
tunneling current is zero at the center of molecule in the ideal
case. To investigate correlation effects, we also studied the
charged state of the molecule, produced when an extra elec-
tron is added. Significantly, we found through DMol calcu-
lations that the −e charged state is more stable than the neu-
tral state with an energy gain as large as 1.30 eV. This
energy corresponds to the strength of Coulomb correlation U
for the LUMO state. The experimental value of U in Ref. 4
deduced from the dI /dV curve is 1.15 eV, in excellent agree-
ment with our calculations. In the charged state, the Mg-
porphine molecule possesses a magnetic moment of 1.0�B.
Charge partitioning by the Hirshfeld method and Mulliken
population analysis indicate that the magnetization mainly
occurs on the C sites whereas the magnetic moments of N
and Mg are much smaller �by an order of magnitude�. As a
result, we find that the LUMO state splits to LUMO-� �or
spin up� and LUMO-� �or spin down� states, very much as

found experimentally by Wu, Ogawa, and Ho.4 Our calcu-
lated energy for the LUMO+1 state also nicely matches the
peak position in the dI /dV curve. We thus see that the DFT
calculations for the isolated molecule capture all the main
features of experimental data measured on the alumina/
NiAl�110� substrate.

B. Effect of substrate: Influence of electric-field fluctuations

To calculate the matrix elements which appear in the ex-
pression for the proper self-energy, we have used real-space
integration based on the wave function obtained through the
VASP calculations. To appreciate the range of wave vectors
which are significant in the integration over the variable Q�,

in Fig. 2 we show the matrix element M���Q� ��
= ����exp�iQ� � ·r���−Q�z��	�2 for the case where the state ��	 is
the LUMO orbital. The striking point is that this matrix ele-
ment drops to nearly zero by the time Q� is the order of
107 cm−1. This is a consequence of the fact that the Mg-
porphine molecule is rather large. We may expect, by virtue

of the factor of exp�iQ� � ·r��� in the matrix element, that the

matrix element falls off rapidly when �Q� �� becomes larger
than the inverse linear dimensions of the imprint of the mol-
ecule on the xy plane, and we see from Fig. 2 that this is

indeed the case. The matrix elements such as M���Q� �� de-

pend on the direction of Q� � as well as its magnitude. We find,
however, that virtually all of the matrix elements show only

a very modest dependence on the direction of Q� �. Thus when
we evaluated the various contributions to the proper self-
energy, we assumed all matrix elements are functions simply

of the magnitude of Q� �.
The fact that the matrix elements fall off so rapidly with

the magnitude of Q� � ensures that our description of the
electric-field fluctuations through use of the continuum ap-
proximation for the description of the substrate should be
quite adequate from the quantitative point of view, it should
be noted.

FIG. 1. �Color online� The calculated energy levels and wave
functions for neutral �in blue/dark gray� and −e charged �in red/light
gray� free-standing Mg-porphine molecules.

FIG. 2. The quantity M���Q� ��, defined in the text, is plotted as a

function of the LUMO orbital. Here the wave vector Q� � is directed
along the �100� direction.
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To complete the calculation of the proper self-energy, of
course we also need the function ��Q� � ,��=Im�−1/
��̃�Q� ,��+1�. In our calculations, we have taken the dielec-
tric constant of the oxide layer to be real, independent of
frequency, and equal to the value 4. Our final results are not
sensitive to the precise value of the dielectric constant of the
oxide layer. The primary role of the oxide is, as stressed in
Sec. I, to decouple the orbitals of the molecular adsorbate
from those of the electrons which reside in the substrate.

Of course, we require the real and the imaginary part of
the frequency-dependent dielectric constant of the NiAl sub-
strate. While we have found various papers which provide us
with the frequency dependence of the real part of the optical
conductivity of this material, from which the imaginary part
of the dielectric constant may be constructed, we are un-
aware of any papers in the literature which present us with
both the real and the imaginary part of the frequency-
dependent dielectric constant. Even data on the real part of
the optical conductivity does not extend over a wide enough
frequency range to allow construction of its imaginary part
via a Kramers-Kronig transform. We have been informed15

that Joo Yull Rhee has measured both the real and imaginary
part of the optical dielectric constant of NiAl, and he has
kindly provided us with his data, which extend from
0.5 to 5.5 eV.16 The data are reproduced in Fig. 3. Notice
that the black curve is the negative of �1���.

Upon examining the data in Fig. 3, it is evident that
throughout the optical frequency range, the imaginary part of
the dielectric constant is very substantial in magnitude. It
appears that this surface does not support surface plasmons
in the frequency range displayed. For this, the condition
�1���=−1 must be satisfied, and in this spectral range the
imaginary part should be small if the surface plasmons are to
exist as long-lived, well-defined excitations. The large imagi-
nary part will also make the function ��Q� ,�� rather modest
in value. Thus we can expect that the contribution of the
electric-field fluctuations to the real part of � ��� defined in
Eq. �34b� will be rather small, and we shall see that this is
indeed the case.

In Fig. 4, we show the wave-vector dependence of
��Q� ,�� for several frequencies of interest. We see that once
again the important wave vectors lie in the range of 107 cm−1

or below. This further reinforces the point that our long-
wavelength description of the electromagnetic fluctuations is
quite adequate for our purposes here, for quantitative calcu-
lations.

In Table I, we summarize our calculations of the real part
of the proper self-energy, for the highest occupied molecular
orbital �HOMO� orbital, the two �nondegenerate� LUMO or-
bitals, and also the LUMO+1 state. As remarked above, the
real part of the self-energy describes the change in excitation
energy associated with a given state. Thus the negative signs
in the LUMO states and the LUMO+1 mean that the energy
level of the orbital is shifted downward, so the excitation
energy to promote an electron from the Fermi energy has
decreased. Since the HOMO is occupied, an upward shift of
the orbital decreases the excitation energy of this state, which
involves hole creation. Thus all orbitals are shifted down-
ward by the energy correction described by the proper self-
energy.

In the sums over excited states, all states within ±20 eV
of the energy of the HOMO orbital were included. The real
part of the self-energy is dominated by the diagonal part
given in Eq. �33�, and for this system the contribution from
virtual fluctuations into excited states is rather small. We
hasten to remark that to calculate this contribution accu-
rately, unfortunately we need optical data that extend well
beyond 5.5 eV. One may appreciate this from Fig. 4, where

TABLE I. The real part of the self-energy for the four orbitals
indicated.

Orbital ���
�D� �meV� � ��� �meV�

HOMO 65.73 1.201

LUMO1 −64.24 −1.557

LUMO2 −66.01 −1.490

LUMO+1 −63.96 −5.000

FIG. 3. �Color online� The real and imaginary parts of the di-
electric constant of NiAl in the range 0.5 to 5.5 eV. The data have
been provided by Joo Yull Rhee. Notice that it is the negative of
�1��� that is plotted in the graph.

FIG. 4. �Color online� We show the wave-vector dependence
of the function ��Q� ,��=Im�−1/ ��̃�Q� ,��+1� for several
frequencies.
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one sees that the largest contribution to the energy shift
comes from the upper end of the data displayed in Fig. 3.
Thus our calculations may underestimate the contribution
from the virtual fluctuations by a considerable amount. It is,
unfortunately, rather difficult to develop an extrapolation of
the dielectric constant data to higher frequencies from the
data in hand. However, even if the errors introduced by the
5.5-eV upper cutoff in the frequency integration were sub-
stantial, it would seem that for the system explored here, the
contribution to the real part of the self-energy from virtual
fluctuations would remain a modest contribution in the end.
It is not clear to us that this will be the case for other adsor-
bate or substrate contributions, particularly when the sub-
strate supports surface plasmons in the frequency range
where the fluctuation induced virtual transitions to excited
states can occur. One can envision near resonant coupling
between the molecule and the surface plasmons when this
happens.

In our picture, if we set the small splitting between the
two LUMO states aside, then the lifetime of both the LUMO
complex and the HOMO state is infinite. Of course, hybrid-
ization between these orbitals and the conduction electron
states of the substrate, not considered here, will result in a
finite nonradiative lifetime for these states. There must be
empty, unoccupied states below an excited state for the elec-
tron to fall into in order for the state to acquire a finite non-
radiative lifetime within the picture set forth here. Thus we
do find a finite nonradiative decay rate for the LUMO+1
state probed in Ref. 4. For this state, the imaginary part of
the proper self-energy is 6.62 meV. The nonradiative life-
time �=� / Im����� of the LUMO+1 state would then be
very close to 0.1 ps. In the final section of the paper, we shall
discuss some implications of the results given above.

IV. GENERAL DISCUSSION AND CONCLUDING
REMARKS

We have developed the theory of the interaction of adsor-
bate molecules and atoms with electric-field fluctuations nec-
essarily present above any substrate on which the molecule is
adsorbed. The field fluctuations have their origin in the ther-
modynamic fluctuations in charge density necessarily present
within the substrate, and electrons within the molecule sense
these fluctuations through the long-ranged tail of the Cou-
lomb interaction. These fluctuations lead to energy shifts of
the various atomic or molecular orbitals not included in stan-
dard density-functional treatments of such systems, and in
addition to those excited states higher in energy than the
LUMO acquire a finite lifetime by virtue of nonradiative
transitions to lower energy unoccupied states. The descrip-
tion set forth here is particularly useful for the discussion of
entities adsorbed on oxide covered surfaces, since in the
presence of the oxide barrier direct hybridization between the
adsorbate and substrate orbitals can be overlooked to first
approximation. We do expect that for species strongly chemi-
sorbed on metal surfaces, the strong hybridization necessar-
ily present will dominate the fluctuation effects studied here,
though it remains the case that the interactions studied here
will also be present.

We have applied the theory to the calculation of the en-
ergy shift of the HOMO orbital, the LUMO orbitals, and the
LUMO+1 orbital, for the Mg-porphine molecule adsorbed
on the oxide covered NiAl�110� surface. This is the system
studied in detail in Ref. 4. The level shifts are in the range of
65 meV for all these states, and the dynamical contribution
to this effective image potential shift is a small fraction of
the total. As noted in Sec. III, this will not necessarily be the
case in other systems, in our view.

To make contact with the data of Ref. 4, it will be neces-
sary to take into account the influence of the STM tip, which
is physically large �200-Å radius of curvature, typically� and
as close to the molecule as the substrate itself. The formalism
here, in combination with the developments described in
Ref. 11, will allow this extension to be made. We may em-
ploy the same orbitals developed for the present study, and
the mathematical formalism developed in Ref. 11 will allow
the incorporation of the influence of the STM tip on the
electric-field fluctuations near the molecule. If the STM tip is
made from, say, Ag, the results described in Ref. 11 lead us
to expect that the influence of the tip may be significant.

We have seen that the width with origin in nonradiative
decay of the LUMO+1 state is in the range of 6.6 meV. We
have been informed that the width of the LUMO+1 state has
been inferred experimentally.17 The results vary from
2 to 10 meV for various molecules probed. Our calculated
width lies in the middle of this range, and we thus regard the
agreement between theory and experiment as quite satisfac-
tory.

It was found in Ref. 4 that the negatively charge state of
the Mg porphine molecule is stable, a result that follows also
from our density-functional studies reported in Sec. III A
above. In the experiments of Ref. 4, to form the negatively
charged state, the electron is injected into the LUMO+1 or-
bital. This electron will then decay to the LUMO manifold in
roughly 0.1 ps according to the calculation presented here,
through transfer of energy to the particle-hole pairs of the
NiAl substrate. This time is short compared to the radiative
lifetime of the LUMO+1 state, as we will see below. The
electron is then trapped in a long-lived LUMO state, and the
lifetime of the LUMO state is evidently long enough for the
nuclei in the molecule to relax, thus driving the LUMO state
below the Fermi level, to form the new level observed in
Ref. 4 and found also in our density-functional study. The
stability of the negative ion state, in our view, is a conse-
quence of the long lifetime of the LUMO state, when the
molecule sits on the oxide barrier.

It is highly desirable to detect photons radiated by mol-
ecules such as that studied in this paper, so one can do single
molecule spectroscopy on such entities. The STM can inject
electrons into excited states, possibly in a photon assisted
manner as in Ref. 4, and by detecting radiated photons one
can gain information regarding the electronic structure of the
adsorbate. In this regard, the quantum efficiency of the ra-
diation process is of great interest. To estimate this, we need
the probability that the molecule, with an electron in its ex-
cited state, will emit a photon. For the Mg-porphine mol-
ecule discussed above, a crude estimate of the quantum effi-
ciency may be obtained by simply calculating the transition
rate for transitions from the LUMO+1 to the LUMO state
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with the molecule in free space, and then we may compare
with the nonradiative transition rate discussed above. It turns
out that this transition is dipole allowed, and the transition
dipole moment is parallel to the surface. We have calculated
the dipole matrix element to find ��LUMO+1�px�LUMO	�2
= ��LUMO+1�py�LUMO	�2=3.79�10−20 cgs units while the
matrix element of pz vanishes. If this is inserted into the
Fermi Golden Rule for dipole transition rates for an entity in
free space, we find the free-space radiative lifetime to be
53 ns. This suggests that the quantum efficiency is very
small, in the range of 2�10−6. This estimate does not take
due account of the influence of the substrate on the radiation
rate, and for a parallel dipole the estimate just given should
be regarded as an upper bound on the radiative rate.

It is the case in the experiments reported in Ref. 4 that the
photon emission rate was found to be substantially enhanced
when a Ag-coated tip was employed rather than a W tip. This
suggests that surface plasmon enhancements of the sort dis-

cussed in Ref. 11 are present, by virtue of the Ag tip. Further
comments on this issue await incorporation of the role of the
STM tip on the electric-field fluctuations near the molecule.
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