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We propose a quantitative model explaining the mechanism of light collimation by leaky surface modes that
propagate on a corrugated surface around the output of a photonic crystal waveguide. The dispersion relation
of these modes is determined for a number of surface terminations. Analytical results obtained on the basis of
the model are compared to those of rigorous numerical simulations. Maximum collimation is shown to occur
at frequency values corresponding to excitation of surface modes whose wave number retains a nonzero real
part.
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I. INTRODUCTION

One of the problems hindering wider commercial applica-
tion of photonic crystals �PCs� is the difficulty in coupling
PC waveguides to conventional dielectric waveguides or op-
tical fibers. A possible solution consists in tapering the wave-
guide so as to achieve better coupling with the fiber; this has
been the subject of a number of publications, e.g., Refs. 1
and 2. Recently, Moreno et al.3 and Kramper et al.4 indepen-
dently suggested that collimation of the light emitted by a
waveguide �beaming� could also occur due to excitation of
surface modes in the proximity of the waveguide exit. Based
on the earlier discovery of a similar effect in metallic struc-
tures supporting surface plasmons,5 the idea has been ex-
panded in several articles following the original papers.6–11

Moreno et al. propose a simple qualitative theory to ex-
plain the novel effect.3 The radiation reaching the waveguide
outlet can couple to surface modes; if the surface around the
outlet is corrugated �i.e., modulated with period different
from that of the underlying crystal�, its eigenstates become
“leaky,” since energy is emitted as the radiation scatters at
the perturbed surface cells. Under appropriate conditions, the
scattered waves interfere constructively along the surface
normal, thus producing a collimated beam. According to Ref.
3, this constructive interference takes place for surface
modes of wave vector kx=0 �shifted to the first Brillouin
zone of the surface�, with the phase difference between two
successive scatterers equal to an integer multiple of 2�.

The purpose of this work is to formulate a quantitative
model of the beaming effect in PCs, taking explicitly into
account the imaginary component of the leaky-mode wave
vector. The model predictions are tested against results of
numerical simulations. We also show that, for practically re-
alizable PCs, maximum beaming occurs for surface modes
with Re kx�0.

II. MODEL

The system to be considered is depicted in Fig. 1. Excited
by a source at the waveguide input �left�, a guided mode
propagates towards the crystal surface �right�. On reaching
the output, the radiation is partially reflected, partially emit-
ted directly into free space, and the remainder excites leaky
modes propagating upward and downward along the surface

corrugated with period �. Either side of the waveguide com-
prises N surface unit cells. Our aim is to calculate the radia-
tion intensity ���� defined as

���� � lim
r→�

rSr�r,�� , �1�

where Sr�r ,�� denotes the radial component of the time-
averaged Poynting vector at the point specified by the polar
coordinates �r ,��.

Without losing generality, we restrict our attention to E
polarization �with the electric field parallel to the cylinder
axes�. Since all sources of the electromagnetic field are lo-
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FIG. 1. A waveguide embedded in a PC with corrugated
surface.
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cated in the z�0 half space, the crystal can be regarded as an
aperture antenna, with radiation pattern proportional to the
Fourier transform of the electric-field distribution at the z
=0 axis,12

E�r,�� � ŷei�k0r−�/4� k0

�k0r
f�k0 sin ��cos � , �2a�

where

f�k0 sin �� �
1

�2�
�

−�

�

Ey�x,0�e−ik0x sin �dx , �2b�

k0�� /c denotes the free-space wave number and r is as-
sumed to be large compared to the system dimensions. Since
the crystal is symmetric with respect to the z axis, Ey�x ,0�
=Ey�−x ,0� and

f�k0 sin �� = f+�k0 sin �� + f+�− k0 sin �� , �3�

where f+�k0 sin �� is defined as

f+�k0 sin �� �
1

�2�
�

0

�

Ey�x,0�e−ik0x sin �dx . �4�

The field Ey�x ,0� consists basically of three major compo-
nents: the beam stemming directly from the waveguide outlet
�Ey

wg�x ,0��, the leaky mode propagating along the corrugated
surface �Ey

surf�x ,0��, and the residual radiation extending past
the crystal boundaries �Ey

res�x ,0��. In this section, we focus
on the surface-mode contribution, assuming that Ey�x ,0�
=Ey

surf�x ,0�; the effect of the other components is discussed
in Sec. IV.

Neglecting the fringe effects at the surface boundaries, we
can apply the Bloch theorem to the field related to the leaky
mode. This yields

Ey
surf�x,0� = 	u
�x� −

d

2
�eikx��x�−d/2� if 0 � �x� −

d

2
� N�

0 otherwise.

�5�

Function u�x� is � periodic and kx�kx�+ ikx� �kx�	0� denotes
the leaky-mode wave number. We assume that the waveguide
output has effective width d, which is the lattice constant of
the underlying PC, and do not consider this area to belong to
the crystal surface. With Eq. �5� substituted into Eq. �4�, we
get through integration,

f+�k0 sin �� = ��
n=0

N−1

ei�kx−k0 sin ��n��e−i�k0 sin ��d/2F�k0 sin ��

=
1 − ei�kx−k0 sin ��N�

1 − ei�kx−k0 sin ��� e−i�k0 sin ��d/2F�k0 sin �� , �6�

where the structure factor F�k0 sin �� is defined as

F�k0 sin �� �
1

�2�
�

0

�

u�x�ei�kx−k0 sin ��xdx . �7�

Being a periodic function, u�x� can be Fourier expanded,

u�x� = �
n=−�

�

une2�inx/�, �8�

resulting in the following form of the formula for F�k0 sin ��,

F�k0 sin �� =
1

�2�
�

n

un�
0

�

ei�kx+2�n/�−k0 sin ��xdx

=
1

�2�
�

n

un
ei�kx−k0 sin ��� − 1

i�kx + 2�n/� − k0 sin ��
. �9�

In the first approximation, which is often used in analytical
treatment of leaky-wave antennas,13 only the term with de-
nominator of the smallest magnitude �the zeroth term in the
case of near-zero kx� needs to be kept in the above sum.
Substitution of this approximate structure factor into Eq. �6�
leads to

f+�k0 sin �� =
iu0

�2�

1 − ei�kx−k0 sin ��N�

kx − k0 sin �
e−i�k0 sin ��d/2. �10�

From the Maxwell equations, it can be shown that in vacuum

Sr�r,�� =
1

2Z0
�E�r,���2 with Z0 ��
0

�0
. �11�

Therefore, using Eqs. �2a�, �3�, �10�, and �11�, and definition
�1�, we arrive at

���� =
k0

4�Z0
�u0�2 cos2 ��1 − ei�kx−k0 sin ��N�

kx − k0 sin �

+
1 − ei�kx+k0 sin ��N�

kx + k0 sin �
�2

. �12�

The unknown coefficient u0 can be determined from the
principle of energy conservation. Consider a semi-infinite
section of the crystal surface along which the leaky mode in
question propagates. By a procedure analogous to that fol-
lowed above, we obtain the radiation intensity generated by
the leaky wave in this configuration,

���� =
k0

4�Z0
�u0�2

cos2 �

�kx − k0 sin ��2
. �13�

Integrated over the interval �− �
2 , �

2
�, this yields the total

power radiated into free space, which must be equal to the
power P0 exciting the leaky mode. Therefore,

P0 =
k0

4�Z0
�u0�2�

−�/2

�/2 cos2 �

�kx − k0 sin ��2
d� . �14�

The integral in the above equation can be evaluated analyti-
cally. Thus,

�u0�2 =
4�Z0k0P0

J�kx/k0�
, �15�

where
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J��� � − � −
1

i Im ����2 − 1�arctan
1 − �

��2 − 1

− arctan
1 + �

��2 − 1
� − ���*�2 − 1�arctan

1 − �*

���*�2 − 1

− arctan
1 + �*

���*�2 − 1
�� . �16�

By substituting Eq. �15� into Eq. �12�, we obtain the final
formula for the radiation intensity in the system shown in
Fig. 1, normalized to the accepted power P0 and expressed
solely in terms of the leaky surface-mode parameters,

����
P0

=
k0

2 cos2 �

J�kx/k0�
�1 − ei�kx−k0 sin ��N�

kx − k0 sin �
+

1 − ei�kx+k0 sin ��N�

kx + k0 sin �
�2

.

�17�

III. NUMERICAL DETERMINATION OF SURFACE
MODES

To apply the above-discussed model to a specific photonic
surface, e.g., for the determination of the frequency most
conducive to beaming, it is necessary to calculate the disper-
sion relation of the modes supported by the surface. In this
section, we shall briefly outline the method we employed for
this purpose.

In our approach, we consider a semi-infinite PC with pos-
sible surface reconstruction. The whole system is divided
into three parts: the homogeneous region, the surface, and
the underlying semi-infinite, but otherwise ideal, photonic
crystal. The electromagnetic field in the homogeneous mate-
rial is represented as a Rayleigh expansion, i.e., a linear com-
bination of discrete plane waves, whereas in the semi-infinite
crystal the field is expanded into the eigenmodes of the cor-
responding infinite structure �a procedure suggested by Is-
trate et al.14�. Since we are searching for states leaking en-
ergy away from the surface, in both regions we only consider
waves that propagate or decay in this direction; the precise
rules of choosing these waves are specified in the Appendix.
The complex band structure necessary to find the field rep-
resentation in the PC is calculated by the differential method
�see Ref. 15 for details�.

The fields in the homogeneous region and in the PC are
linked by the scattering matrix15 of the surface layer, which
provides the necessary boundary conditions. This leads to a
homogeneous system of linear equations, which must have a
nontrivial solution for surface states to exist. The search for
surface modes is thus reduced to a search for roots of the
determinant of a matrix dependent on kx�, kx�, and �.

IV. RESULTS

A. Surface-mode dispersion

In the following, we shall focus on crystals of the type
shown in Fig. 1, considering a truncated square lattice of
dielectric cylinders of permittivity �=11.56 embedded in
vacuum, with bulk cylinder radius 0.18d, surface cylinder

radius 0.09d, surface corrugation period �=2d, and three
values of corrugation depth zcorr: 0 ,−0.1d, and −0.3d �the
minus sign indicates that the perturbed cylinders are shifted
toward the crystal�. For future reference, we denote these
three crystals with letters A, B, and C, respectively. Figure 2
presents the dispersion curve of surface modes supported by
crystal A �in the extended Brillouin-zone scheme�, while in
Fig. 3 the dispersion curves corresponding to crystals B and
C are plotted in the vicinity of the center of their first Bril-
louin zone. All these dispersion relations have been deter-
mined by the method described in the previous section. Only
the modes with kx�0 are shown.
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FIG. 2. Crystal A surface-mode dispersion curve. The hatched
areas represent bulk bands, and the gray triangle denotes the
bounded-wave region, in which all spatial harmonics are evanescent
in vacuum for kx�=0.
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In the frequency range ��0.409�2�c /d, crystal A sup-
ports proper �nonleaky, i.e., with kx�=0� surface waves, since
this fragment of the dispersion curve lies in the bounded-
wave region �shaded in Fig. 2�, in which all spatial harmon-
ics are evanescent in vacuum. Figure 4�a� shows the field
map of a sample mode from this part of the dispersion curve.
The range 0.409��d /2�c�0.438 corresponds to a stop
band, where the surface-mode wave number takes values of
� /d+ ikx�; see Fig. 4�b� for the field map of a typical stop-
band state. Characteristic for periodic structures, the occur-
rence of a stop band at the Brillouin-zone boundary has been
observed in surface-mode dispersion relations of periodic di-
electric waveguides embedded in homogeneous media.16,17

In contrast, the shape of the dispersion curve at kx�	� /d
stems directly from the presence of the underlying PC, i.e.,
from the periodicity of the “substrate.” Although the disper-
sion curve remains within the bounded-wave region, the
surface-mode wave number retains a large imaginary part,
since the wave leaks energy into the crystal, as can be ob-
served in Fig. 4�c�, showing the field magnitude of the mode
labeled III in Fig. 3. This field structure is analogous to that
of leaky modes propagating in periodic waveguides adjacent

to homogeneous media: the wave amplitude in the PC grows
as z→−�. As observed in early studies of leaky waves,18 this
behavior is not unphysical, since in real systems the field
extent is limited by the location of the source exciting the
leaky wave.

Let us proceed to the case of nonzero corrugation �crys-
tals B and C�. Doubling the surface period results in the first
Brillouin zone folding away to the range �−� /2d ,� /2d�;
consequently, at frequency values above 0.25�2�c /d, at
least one spatial harmonic is radiative and the originally
bound surface states become leaky. As shown in Fig. 3, the
surface-mode dispersion curve smooths out, shifting toward
negative kx� and larger positive kx�, as the corrugation depth
increases. Interestingly, at frequency values above 0.438
�2�c /d, the substrate PC supports bulk states characterized
by essentially imaginary kx �kx� ikx��0.66i�2� /d� and
purely real kz. In consequence, in all three crystals consid-
ered here, the leaky modes from the immediate vicinity of
the kx�=0 line are propagative in the −z direction. Therefore,
this line serves as a boundary between leaky modes expo-
nentially decaying �kx��0� and growing �kx�	0� inside the
substrate. Figures 4�d�–4�f� show maps of the field corre-
sponding to points IV–VI on the dispersion curve of crystal
C.

B. Light collimation: Frequency dependence

Let us now proceed to the analysis of beaming itself. Fig-
ure 5 presents the electric-field magnitude calculated by the
multiple-scattering �MS� method �see Ref. 19 for details�,
with geometry parameters and frequency value conducive to
directional emission. In Fig. 6, the frequency dependence of
the radiation intensity �sim��=0� calculated by the MS
method is compared to that obtained on the basis of our
model, for crystals B and C with N=9 and N=15 corruga-
tions. In these MS simulations, we consider the system de-
picted in Fig. 1, with the waveguide nwg=12 cylinders long
and cladding nclad=5 cylinders wide; a waveguide mode is
excited by a point source near the inlet. The results depicted
in Fig. 6 clearly show that our model reproduces the basic
feature of the effect in question, i.e., the existence of a dis-
tinct transmission maximum at a well-defined frequency
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FIG. 4. ��a�–�f�� Maps of the electric-field magnitude for surface
modes labeled I–VI in Fig. 3. The frequency and wave number
values are expressed in units of 2�c /d and 2� /d, respectively.
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FIG. 5. �Color online� Electric-field magnitude for crystal C
with N=9 corrugated surface cells at frequency �=0.410�2�c /d.
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value. The relative height of the �sim��=0� curve peaks for
different crystals is rendered reasonably well too. There are
some visible differences between the model predictions and
the simulation results, though. Most notably, the absolute
maxima in the theoretical curves are shifted by approxi-
mately 0.002�2�c /d to the right with respect to those
found numerically. Furthermore, at frequency values smaller
�larger� than those corresponding to the main peaks, the
model generally predicts radiation intensity values several
times smaller �larger� than those calculated numerically. Pos-
sible causes of these discrepancies are analyzed in the fol-
lowing subsection by scrutinizing the angular dependence of
the radiation intensity.

C. Light collimation: Angular dependence

Figure 7�a� shows the angular dependence of the radiation
intensity �sim��� calculated by the MS method for crystal C
with N=9 corrugations at frequency �=0.400�2�c /d. To
help evaluate the relative importance of the three regions
mentioned in Sec. II—the waveguide outlet, the corrugated
surface, and the crystal exterior—we have also plotted sepa-
rately the contributions of sections �x��d /2, d /2� �x�
�N�+d /2, and �x�	N�+d /2, calculated by aperture for-
mula �2� with the values of Ey�x ,0� obtained by the MS
method. The radiation intensity produced by each of these
regions will be labeled �sim

wg , �sim
surf, and �sim

res , respectively.
The graph shows that while surface modes play the most

important part and are responsible for the formation of the
major lobes, the radiation coming directly from the wave-
guide outlet has an impact as well. In particular, it makes the

main beams shift by several degrees toward the surface nor-
mal. As a result, they begin to overlap at frequency values
below those predicted by leaky-wave considerations alone.
This explains the discrepancy in position of the absolute
maxima between the theoretical and the numerical curves in
Fig. 6 mentioned in the previous subsection.

The radiation pattern in the large-angle ���15° � region
is also affected by the field stemming from the outlet: the
destructive interference of this field with that emitted from
the corrugated surface causes an offset of the sidelobe posi-
tions. The contribution of the residual radiation, however,
remains negligible throughout the angular range covered by
the plots in Fig. 7.

Let us compare the results presented in Fig. 7�a� with the
predictions of our model plotted in Fig. 7�b�. The solid curve
has been calculated with the approximate leaky-mode struc-
ture factor �i.e., with the series in Eq. �8� truncated to a single
term, as discussed in Sec. II�; the dashed line results from
calculations with the full structure factor �with amplitudes of
the individual harmonics computed numerically by the
method outlined in Sec. III�. In both curves, the main peaks
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FIG. 6. Frequency dependence of the collimated beam intensity
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results of MS calculations �lines� and the model predictions
�circles�, respectively.

(b)

0

20

40

60

Φ
(θ

)/
P 0

Φ
(θ

)/
P 0

−60 −30 0 30 60

θ (deg)θ (deg)

one harm.

all harm.

all harm.
+ refl.

(a)

0

1

2

3

Φ
(θ

)
(a

rb
.

un
its

)
Φ

(θ
)

(a
rb

.
un

its
)

Φsim

Φ
wg
sim

Φsurf
sim

Φres
sim
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tensity; dotted line: contribution of the waveguide outlet region cal-
culated by Eq. �2� with the integration interval restricted to �x�
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lines�. The data plotted with the dotted line result from computa-
tions taking into account surface wave reflections at the crystal
boundaries.
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occur at �0�11°, in good agreement with the �sim
surf curve

plotted in Fig. 7�a�. However, the field structure at angles far
from �0 is seen to depend strongly on the structure factor; in
general, the radiation intensity obtained with the one-
harmonic approximation is much smaller than that calculated
without this simplification. This may be the reason why at
low-frequency values, the model-predicted ���=0� value is
very small compared to that resulting from MS calculations,
since for these frequency values the surface normal lies far
from the direction �=�0.

Another difference between the theoretical plots in Fig.
7�b� and the �sim

surf curve is a distinct dip of the latter at �
�6°. This turns out to follow from surface wave reflections
occurring at the crystal boundaries, which have been ne-
glected in our model, but are of some importance for crystals
with shallow corrugations �involving weakly leaky modes�
or of small size; see Fig. 8. The dotted curve in Fig. 7�b�
shows the radiation intensity angular dependence after taking
these reflections into account, with the reflection coefficient
at the surface termination calculated by the method outlined
in Ref. 20. Evidently, this curve is in excellent agreement
with the results of MS simulations.

Lastly, let us consider the frequency �=0.420�2�c /d,
which lies to the right of the main peak in the �sim��=0�
curve shown in Fig. 6�b� and for which the model-predicted
radiation intensity at �=0 is too large. Figure 9�a�, a coun-
terpart of Fig. 7�a�, shows that at this frequency value, the
radiation stemming from the waveguide output has magni-
tude larger than in the low-frequency case analyzed previ-
ously. However, since in the small-angle region it is out of
phase with the field produced by the leaky modes, the total
radiation intensity becomes significantly smaller than it
would be without the direct beam from the waveguide outlet.
In addition, as indicated in Fig. 9, neglecting higher harmon-
ics in the surface field expansion used in the model-based
calculations leads to some overestimation of the leaky-mode-
induced radiation intensity at �=0. Together, these two fac-
tors explain the theory-versus-simulation discrepancy ob-
served in Fig. 6 in the frequency range �	0.41�2�c /d.

V. DISCUSSION

As indicated in Fig. 6, maximum beam collimation occurs
at a frequency value of around 0.41�2�c /d, which, accord-
ing to Fig. 3, corresponds to surface modes with kx��−0.01
�2� /d �crystal B� and kx��−0.025�2� /d �crystal C�
rather than to modes from the center of the Brillouin zone
�kx�=0�. Incidentally, the kx�=0 modes, being delocalized
�propagative inside the crystal�, could not be responsible for
beaming. However, the nonzero real part of the wave vector
of the surface modes for which maximum beaming is ob-

served is easily explained on the basis of the model dis-
cussed in Sec. II. It is a consequence of the competition
between the tendency to reduce �kx�� in order to obtain better
phase matching of waves emitted from individual unit cells
and, on the other hand, the negative effect of too large a kx�
on the effective length of the “grating.” Since in the
negative-kx� region a decrease in �kx�� is always accompanied
by an increase in kx�, the most intensive beaming occurs for
moderate �“balanced”� values of both parameters.

The model also sheds light on why in negatively corru-
gated crystals, the frequency value corresponding to maxi-
mum beaming lies remarkably close to that of the surface
mode from the edge of the unperturbed crystal surface
Brillouin-zone �kx=� /d�. This proves to be a resultant of
two opposing effects. It has been pointed out10 that bringing
surface cylinders closer to the bulk crystal causes a blueshift
of the surface-mode dispersion relation due to a decrease of
the fraction of electromagnetic energy contained within the
dielectric. However, since beaming occurs at nonzero kx� val-
ues, this shift starts from an initial frequency value lower
than that of the Brillouin-zone-edge mode �which moves to
the new Brillouin zone center after an infinitesimal

FIG. 8. Electric-field magnitude in the surface region of crystal B with N=9 corrugations at frequency �=0.405�2�c /d. An interference
pattern resulting from surface wave reflections at the crystal boundaries is clearly visible.
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FIG. 9. Same as Fig. 7, but at frequency �=0.420�2�c /d.
Since at this frequency virtually no power reaches the crystal
boundaries, �sim

res ��� and the reflected surface wave contribution are
not calculated.
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2d–periodic corrugation is introduced�. As a consequence,
the resultant optimum beaming frequency nears the original
frequency of the kx=� /d mode.

The accuracy of the model could be considerably im-
proved by taking into account the radiation emitted directly
from the waveguide outlet. This, however, would require a
detailed investigation of the interactions between the outlet
and the surface cylinders in its immediate vicinity, as these
interactions determine the amount of power transferred to
surface modes and that emitted directly into free space. An
analytical formulation of these effects seems hardly feasible,
though.

VI. CONCLUSIONS

We have presented a quantitative analysis of a model ex-
plaining the effect of surface corrugation on the collimation
of radiation leaving the outlet of a photonic crystal wave-
guide, on the basis of the dispersion relation of leaky modes
supported by the corrugated surface. The dispersion relation
has been calculated and discussed for a number of surface
terminations. The model has been shown to reproduce the
basic features of the investigated effect, and the significance
of the factors left out of account has been evaluated. Besides
clarifying the conditions necessary for optimum beaming,
the model also explains the relative insensitivity of the maxi-
mum collimation frequency value to the degree of surface
modulation. We believe that our results will contribute to a
deeper understanding of the physical grounds of the beaming
effect.
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APPENDIX: THE CHOICE OF BASIS STATES

In this section, we specify the selection rules for the states
to be used as the expansion basis for fields in the homoge-
neous and periodically modulated system regions considered
in Sec. III. Let us begin with the homogeneous region. Here,
the electric field can be written as a Rayleigh expansion, i.e.,
a linear combination of spatial harmonics,

E�x,z� = �
n

Anei�kxnx+kznz�, �A1�

where kxn=kx+2�n /�, and the condition kzn
2 =k0

2−kxn
2 holds;

kx and k0 are fixed. For real kx, the obvious choice for the
sign of kzn is

kzn 	 0 if kzn
2 	 0, �A2a�

kzn/i 	 0 if kzn
2 � 0, �A2b�

so that the propagating harmonics �Eq. �A2a�� carry energy
in the +z direction, and the evanescent ones �Eq. �A2b�� de-
cay with z→�. When kx is complex, the sign of kzn should
be chosen so as to assure analytical continuity with the kx
�R case, i.e.,

Re kzn 	 0 if Re kzn
2 	 0, �A3a�

Im kzn 	 0 if Re kzn
2 � 0. �A3b�

It is easy to show that these rules can be combined into

Re kzn + Im kzn 	 0, �A4�

in accordance with Refs. 16 and 21.
In the semi-infinite PC, the field can be expanded in the

crystal eigenstates corresponding to the fixed kx and k0. For
real kx, these eigenstates are either purely propagative in the
z direction, with kz�R, or purely evanescent, with kz= ikz� or
kz= ±� /d+ ikz�, where kz��R. In the former case, the states to
be included in the expansion are those with negative z com-
ponent of their energy flux vector E, and in the latter case,
those decaying when z approaches −�, i.e., those with kz�
�0. When kx is allowed to be complex, the kz component of
a crystal eigenstate wave vector can take arbitrary complex
values too. However, the eigenmodes can still be classified as
“essentially propagative,” with kz=kz�+ ikz� fulfilling the con-
dition

�kz�� � �kz�� and �kz�� � �/d − �kz�� , �A5�

and “essentially evanescent” otherwise. States of these two
families to be included in the expansion should then be se-
lected according to the E · ẑ�0 and kz��0 rules, respectively.
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