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Gases adsorb readily on surfaces and inside porous materials when there exists a sufficiently strong attrac-
tion provided by these materials. In the extreme opposite situation, little or no adsorption occurs when the
attraction is weak. This paper derives a criterion distinguishing which of these two scenarios occurs at zero
temperature. The calculations needed to solve these problems employ a set of simple models, adapted to a wide
range of geometries. These include cylindrical, spherical, and slit pores, corners formed at the intersection of
flat surfaces, interstitial regions within nanotube bundles, and flat surfaces. In each case, the distinguishing
criterion is based on a small number of interaction parameters.
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I. INTRODUCTION

Simple models have played an important role in statistical
physics, often leading to robust qualitative conclusions about
fundamental physical phenomena. Such models have been
widely exploited to describe adsorption phenomena. A fa-
mous example is the lattice-gas application of the nearest-
neighbor Ising model. Although this model oversimplifies
the interaction, it yields exact critical exponents in two di-
mensions, confirmed by experiments for adsorbed gases.1,2

Similar experimental confirmations of solvable models’ pre-
dictions have been found for the roughening transition �and
the related layering transitions�, the three-state Potts model
�applied to commensurate phases� and the Kosterlitz-
Thouless theory of superfluid films.3–7

Our group has been concerned especially with wetting
transitions.8 Such transitions were predicted many years
ago,9 using simple physical arguments as well as quite reli-
able models, and have been observed experimentally for a
wide variety of gas/surface combinations.10–20 In predicting
these transitions, a so-called simple model has proved quite
helpful in identifying candidate systems for such transitions
and predicting the wetting temperature TW.21 This prediction
arises in implicit form when the free-energy cost of adsorb-
ing a film is compared with the energy gain associated with
the gas-surface interaction. The model has been found to be
semiquantitatively accurate by comparing predictions with
results from experiments and computer simulations.22

With a similar goal of characterizing adsorbed films in
simple terms, this paper addresses the problem of quasi-one-
dimensional and quasi-two-dimensional adsorption in vari-
ous geometries such as wedges, slits, cylinders, and intersti-
tial channels. For each geometry, we ask whether a specific
type of film occurs at chemical potential below that of the
bulk ground state. The specific geometries considered here
include quasi-one-dimensional and monolayer films, but do
not include multilayer films, thus excluding some possible
wetting transitions. If the film’s chemical potential lies above
that of the bulk, no such film phase occurs below saturation.
Since the calculations presented here are classical, the term
ground state means literally the state of lowest potential en-

ergy E per particle. Our focus on the ground state is a re-
striction that allows us to exploit its known properties. An
alternative approach might use the triple point for such a
comparison.22

This paper is organized as follows. In Sec. II, we present
the very general considerations that lead us to establish a
universal power-law rule for the condensation threshold of a
classical fluid onto a two- or three-dimensional substrate.
Specific geometries and results for particular adatom-
substrate combinations are discussed in Sec. III. The discus-
sion and summary are the subjects of Sec. IV.

II. UNIFIED DESCRIPTION OF THE ENERGETIC
BALANCE

Our general goal is to establish an equilibrium condition
between a three-dimensional �3D� state of bulk matter and a
hypothetical one-dimensional �1D� or two-dimensional �2D�
system confined by an external potential. We specify the lat-
ter as created by either a smooth and continuous 2D sheet or
by a 3D �bulk solid� source. The equilibrium coexistence
condition of the adsorbed phase is that its energy per particle
equals that of the ground state of the bulk material Ebulk. The
binding energy �chemical potential� of the adsorbed phase
has additive contributions from adhesive and cohesive inter-
actions, leading to the following condition:

Ecohension
D + Eadhension

d = Ebulk, �1�

where D=1,2 is the dimensionality of the adsorbate phase
and d=2,3 is that of the substrate. If the left side of this
equation exceeds the right side, the bulk phase is favored and
the adsorbed phase is absent at saturation; otherwise, the
adsorbed phase appears at, or below, the chemical potential
of the bulk material. Note that Eq. �1� represents an equilib-
rium condition, essentially different from the criterion of
self-binding or positive cohesion of the adsorbate, where the
right-hand side should be set equal to zero.

One can establish various common characteristics of a
large class of systems of interest. Neglecting many-body in-
teractions, as is customary, the cohesive energy is attributed
to a Lennard-Jones �LJ� pairwise interaction of strength �gg
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and hard-core diameter �gg, and its ground-state value can be
obtained by minimizing the total LJ potential energy with
respect to the lattice constant. This leads to a dependence on
the LJ well depth of the form

Ecohension
D = �D�gg, �2�

with a coefficient �D that contains specific details of the
system dimensionality D. For the ground-state crystalline
configuration in one and two dimensions, the optimum cohe-
sive energies are,3 respectively,

Ecohension
1D = − 1.03�gg, �3�

Ecohension
2D = − 3.382�gg. �4�

In a similar way, one may think that the particles comprising
the adsorbate interact with those of the substrate through
another LJ potential with corresponding parameters � and �.
In the present study, we seek to optimize the cohesive energy
by varying the geometry. The binding energy to the substrate
is computed by minimization with respect to a parameter
characterizing the geometry and is always of the form

Eadhension
d � ���2 for d = 2

� �n�3 for d = 3, �5�

where � and n respectively denote the areal density of a
planar sheet and the bulk density of a continuum solid. In
particular, the relation between areal density of a 2D sub-
strate and the LJ hard-core parameter for atoms in the ad-
sorber, �ss, is

� = �22/3

31/2� 1

�ss
2 =

0.916

�ss
2 , �6�

whereas for bulk material under the continuum approxima-
tion, one has

n =
�

21/6�ss
=

0.816

�ss
3 . �7�

We then see that the adhesive energy due to a substrate of
dimension d can be expressed as

Eadhension
d = �d�� �

�ss
�d

. �8�

Finally, the energy per particle in the vapor phase is propor-
tional to the gas-gas interaction strength, i.e.,

Evapor = 	�gg. �9�

In particular, for a 3D LJ lattice one has Ebulk=−6.7�gg.
Collecting Eqs. �2�, �8�, and �9� into Eq. �1�, we reach the

universal rule

�gg

�
=

�d

	 − �D
� �

�ss
�d

. �10�

This relation provides a threshold criterion for condensa-
tion and divides the parameter space into wetting �below�
and nonwetting �above� regions. In other words, if a given

combination of strength and hard-core parameters lies above
the curve �10�, the adsorbate does not condense on the spe-
cific substrate. The geometry of the confinement—i.e., cylin-
der, flat sheet or semi-infinite solid, wedge, interstitial
channel—enters the coefficient �d and can be worked out for
specific examples as shown in the next section.

III. SPECIFIC EXAMPLES

In this section, we illustrate the detailed form of the uni-
versal power law �10� for a variety of adatom-substrate com-
binations. We focus on the cases of �a� 1D matter within
cylindrical pores created by rolling up a flat sheet and by
drilling a cavity in a bulk material and �b� 2D matter on a
planar sheet and on a semi-infinite solid. For completeness,
we also examine condensation of 1D adsorbates in wedges
and interstitial channels, and of 2D matter inside slit pores,
i.e., monolayer films sandwiched between substrate half-
spaces. We first note that according to Eqs. �3� and �4� and
the bulk value Egg=−6.7�gg, the threshold values of the ad-
hesive energy are

Eadhension
1d = − 5.67�gg, �11�

Eadhension
2d = − 3.318�gg. �12�

A. One-dimensional matter „D=1…

1. Two-dimensional substrates „d=2…

The first example we consider is a hypothetical 1D phase
�axial phase� of matter within a cylindrical tube made of a
monolayer sheet of matter, e.g., a carbon nanotube. The po-
tential energy on the cylinder axis is23

V�0� = 3
2���2�21

32
��

R
�10

− ��

R
�4� . �13�

The optimal geometry �most strongly bound adsorbate� can
be obtained by minimization with respect to the cylinder
radius R and corresponds to

Ropt = �105

64
�1/6

� � 1.086� . �14�

Consequently, the optimal potential energy is

Eadhension
2d = −

144
2

5�105�2/3���2 = − 12.8���2 = − 11.72�� �

�ss
�2

.

�15�

Condition �10� then gives

�gg

�
= 2.07� �

�ss
�2

. �16�

We comment further about two other possible 1D phases
originating from sheetlike substrates. One involves a wedge
formed by two converging sheets. If the opening angle is
small, there can be a strongly bound 1D queue of atoms
parallel to the line of contact of the sheets. The adhesive
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energy in this small-angle case is twice the value derived
below for the case of a single planar sheet. The multiplica-
tive factor becomes smaller than 2 as the opening angle of
the wedge increases, but we do not evaluate this dependence
here. The other related 1D phase is found at the interstitial
channel in a nanotube bundle. The optimal energy in this
case is three times the minimum energy provided outside of
a single tube, since the coordination number is 3. The actual
value of this optimum energy depends on the radius of the
tubes; for any specified radius the optimal spacing between
tubes �which in general does not correspond to the actual
spacing� can be determined.

2. Three-dimensional substrates „d=3…

In this geometry, one pore of interest is a cylindrical cav-
ity. In this case, the potential energy on the cylinder axis is

V�0� = 
�n�3� 7

32
��

R
�9

− ��

R
�3� �17�

and the optimal radius and potential energy are, respectively,

Ropt = �21

32
�1/6

� � 0.932� , �18�

Eadhension
3d = −

2

3
�32

21
�n�3 = − 2.59�n�3 = − 2.11�� �

�ss
�3

.

�19�

Thus, from condition �10� we get

�gg

�
= 0.37� �

�ss
�3

. �20�

For the wedge and interstitial channels, the same consider-
ations hold as for the two-dimensional substrates.

B. Two-dimensional matter „D=2…

1. Two-dimensional substrates „d=2…

Here, the characteristic adsorbing substrate is a planar
sheet, where the adsorbate experiences a potential energy of
the form

V�z� = 2
���2�2

5
��

z
�10

− ��

z
�4� , �21�

with optimal distance and energy

zopt = � , �22�

Eadhension
2d = −

6


5
���2 = − 3.77���2 = − 3.45�� �

�ss
�2

.

�23�

Condition �10� then gives

�gg

�
= 1.04� �

�ss
�2

. �24�

2. Three-dimensional substrates „d=3…

The confinement is now given by a semi-infinite solid
with potential energy

V�z� =
2

3

�n�3� 2

15
��

z
�9

− ��

z
�3� , �25�

with optimal distance

zopt =�2

5
� �26�

and optimal potential energy

Eadhension
3d = −

2�10


9
�n�3 = − 2.21�n�3 = − 1.8�� �

�ss
�3

.

�27�

Condition �10� now gives

�gg

�
= 0.54� �

�ss
�3

. �28�

It is worth noting that for matter in a planar slit made out
of a 2d or a 3d material, the optimized potential energy is
just twice that for a single wall.

We now exhibit in Figs. 1 and 2 the universal behavior for
1D and 2D adsorbates in various environments, respectively.
Figure 1 displays the universal rule for a rolled-up cylindri-
cal sheet and for a cylindrical cavity drilled within a solid
material. For comparison, we also show the change in slope
corresponding to planar and solid wedges and for an intersti-
tial channel between three cylinders. The various points cor-
respond to the LJ parameters for combinations of noble gases
and hydrogen as adatoms, with alkali- and alkaline-earth
metal substrates. Different symbols characterize various sub-
strates; the specific numerical values of the parameters char-
acterizing the noble gases and H2 are given in Table I. Figure
2 displays the universal behavior of 2D matter on a planar
surface corresponding to either a planar sheet or a semi-

FIG. 1. The universal power law for 1D matter in several envi-
ronments. The points represent the adatom-substrate combinations
whose parameters ratios are listed in Table I.
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infinite substrate. For comparison, we also show the curves
for corresponding slits. The points are the same as in Fig. 1.

IV. DISCUSSION AND SUMMARY

This paper presents the results of simple model calcula-
tions of the ground state of various phases of matter in dif-
ferent geometries. The figures permit conclusions to be
drawn about whether a specific pair of gas-surface interac-
tion parameters yields wetting vs nonwetting behavior. The
selected systems, with parameters presented in these figures
and the table, are physisorption systems that either exhibit
wetting transitions on flat surfaces or are close to exhibiting
such transitions.24 These weakly interacting systems are
noble gases or hydrogen near alkali- or alkaline-earth metal
surfaces. There exist many other gas/surface combinations
whose wetting behavior is not known, or less interesting be-

cause the adhesion is strong enough to ensure wetting in all
geometries discussed here. �For example, the case of graphite
would involve points close to the abscissa.�

Among the various geometries depicted in the two fig-
ures, the highest curve corresponds to the interstitial channel
case. The reason is that the adhesive interaction is quite
large, relatively speaking, and the cohesive interaction of the
1D phase is particularly small. Hence, all but a few of the
systems shown exhibit wetting at T=0. Among the other 1D
phase geometries, the extreme opposite is the cylindrical
cavity, which exhibits nonwetting for all the cases shown.
One might wonder why a cylindrical cavity is less adhesive
�more nonwetting� than a cylindrical sheet substrate. This
difference is a consequence of our continuum substrate as-
sumption. In a more realistic �discrete lattice� treatment of a
multiwall nanotube, for example, the adhesive interaction
would be greater than that of the single sheet and the oppo-
site comparison would be drawn than one infers from the
figure. Evidently, if one knows the actual interaction for such
a specific case, one can make precisely the same kind of
energetic comparison as that presented here in order to de-
rive this more realistic conclusion.

In comparing Figs. 1 and 2, one observes more points
above the curves of Fig. 2. This means that more 2D systems
are nonwetting; the reason is the much larger �factor of 3�
cohesive energy of the 2D phase. In such cases, wetting tran-
sitions are expected to occur at some finite temperature, ex-
cept in a handful of ultraweakly interacting cases.25 Comput-
ing this temperature is beyond the scope of the present paper.
However, the simple model, described in the Introduction,
provides a means of estimating such a transition temperature;
based on previous experience,22 we expect this prediction to
have an accuracy of perhaps 20.

As mentioned above, the present calculations derive a
unified picture of wetting behavior in various geometries.
The goal of universality was achieved by simplifying the
interactions �as is commonly done� and focusing on tempera-
ture T=0. Treating the more realistic case of finite T requires
a significant increase in complexity of the calculations, but
the qualitative behavior can be guided by the present results.

In comparing the present results with those of other cal-
culations or experiments, it is useful to know the accuracy of
the calculated energies, which is similar to that of other stud-
ies. As an example of 1D matter, we address the adsorption
of H2 in carbon nanotubes, a much-studied system. Theoret-
ical values of the binding energy per molecule are sensitive
to the assumptions concerning the geometry and adsorption
interactions, and, indeed, a wide variety of assumptions have
been explored. A few general remarks about the effect of
geometry can be made. One is that there is a possibility of
considerable enhancement of the adsorption potential due to
the high coordination within either a single nanotube or an
interstitial channel within a nanotube bundle. For a cylindri-
cal tube of optimized radius R�1.086�, for example, the
well depth of the adsorption potential is a factor of 3
 /2
greater than the well depth on a planar sheet of the same
material.23 For a specific comparison with such an adhesive
energy, the cohesive energy of the quantum ground state of
H2 in mathematical one dimension is just 4.8 K26; this value
is a small fraction of the energy scale associated with the

TABLE I. Ratios of LJ strengths and hard-core radii entering the
universal law �10� for combinations of noble gases and hydrogen on
alkali- and alkaline-earth metal substrates. The interactions are de-
duced from the gas-surface interactions of Ref. 24.

He Ne H2 Ar Kr Xe

Mg �gg /� 2.11 2.32 0.71 1.45 1.18 0.72

� /�ss 1.28 1.12 0.99 1.01 0.96 0.86

Li �gg /� 6.22 6.2 2.1 3.18 2.60 2.26

� /�ss 1.56 1.33 1.23 1.15 1.10 1.08

Na �gg /� 6.7 5.92 2.29 2.78 2.26 2.09

� /�ss 1.36 1.12 1.07 0.94 0.90 0.90

K �gg /� 16.3 6.24 2.83 2.51 1.91 1.78

� /�ss 1.70 0.96 0.95 0.77 0.72 0.72

Rb �gg /� 8.54 6.18 3.03 2.33 1.69 1.57

� /�ss 1.17 0.92 0.93 0.72 0.66 0.66

Cs �gg /� 7.80 5.22 2.72 1.82 1.27 1.24

� /�ss 1.09 0.84 0.86 0.64 0.58 0.59

FIG. 2. Same as Fig. 1 but for 2D matter.
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adsorption potential in strongly attractive environments. In-
side an interstitial channel, for example, calculations find
that the binding energy is increased to 500–600 K, depend-
ing on whether or not dilation of the nanotube bundle is
taken into account; such dilation, alone, increases the bind-
ing by nearly a factor of 2.27,28 The computed binding energy
is particularly sensitive to the gas-surface interaction param-
eters in the case of interstitial adsorption. For example, a
2.5% decrease in the hard-core distance parameter increases
the computed binding energy by 25%, to more than 600 K.
These computed energy values are �linearly� sensitive to any
uncertainty in the gas-substrate energy prefactor, which is
usually derived from combining rules; these are known to
have limited accuracy for gas phase interactions �see Ref.
29�. In addition, most calculations, like ours, employ an im-
plicit assumption of additivity of gas-surface interactions,
which neglects screening and solid-state effects on the elec-
trons within the nanotubes, as well as the effects of surface
stress.30,31

Finally, our calculations make the conventional approxi-
mation that the molecule is spherically symmetric. In con-
trast, some calculations and experimental data find large ef-
fects of asphericity.31 Evidently, all of these considerations

represent potential deficiencies of calculated interactions
near nanotubes.

These estimates of binding in various geometries may be
compared with experimental results in some cases. For ex-
ample, Wilson et al.32 derived an experimental value of the
isosteric heat Q of nearly 900 K at the lowest coverage and a
value near 400 K over a range of higher coverages. The lat-
ter value is consistent with predictions based on comparisons
with adsorption on graphite, for which Q and the binding
energy are 499 and 482 K, respectively.33 However, no cal-
culations of endohedral, groove, or interstitial adsorption has
yielded values of Q comparable to the highest measured
value, suggesting that the present model potentials are not
quantitatively accurate.
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