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The dynamical dielectric function of two-dimensional graphene at arbitrary wave vector q and frequency �,
��q ,��, is calculated in the self-consistent-field approximation. The results are used to find the dispersion of
the plasmon mode and the electrostatic screening of the Coulomb interaction in two-dimensional �2D�
graphene layer within the random-phase approximation. At long wavelengths �q→0�, the plasmon dispersion
shows the local classical behavior �cl=�0

�q, but the density dependence of the plasma frequency ��0

�n1/4� is different from the usual 2D electron system ��0�n1/2�. The wave-vector-dependent plasmon disper-
sion and the static screening function show very different behavior than the usual 2D case. We show that the
intrinsic interband contributions to static graphene screening can be effectively absorbed in a background
dielectric constant.
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I. INTRODUCTION

There has been a great deal of recent interest in the elec-
tronic properties of two-dimensional �2D� graphene, a
single-layer graphite sheet, both theoretically and
experimentally.1,2 The main difference of 2D graphene com-
pared with other �mostly semiconductor-based� 2D materials
is the electronic energy dispersion. In conventional 2D sys-
tems, the electron energy with an effective mass m* depends
quadratically on the momentum, but in graphene, the disper-
sions of electron and hole bands are linear near K, K� points
of the Brillouin zone. Because of the different energy band
dispersions, screening properties in graphene exhibit signifi-
cantly different behavior from the conventional 2D systems.3

The screening of Coulomb interaction induced by many-
body effects is one of the most important fundamental quan-
tities for understanding many physical properties. For ex-
ample, dynamical screening determines the elementary
excitation spectra and the collective modes of the electron
system, and static screening determines transport properties
through screened Coulomb carrier scattering by charged im-
purities. In this paper, we theoretically obtain the �dynamical
and static� screening behavior of 2D graphene by calculating
the polarizability and the dielectric function within the self-
consistent field approximation �i.e., random-phase approxi-
mation �RPA�� for gated-2D graphene free carrier systems.
We apply our theory to calculate the 2D graphene plasmon
dispersion and the static screening function, finding some
interesting qualitative differences between graphene and the
extensively studied 2D electron systems based on semicon-
ductor heterostructures and metal-oxide-semiconductor field-
effect transistors �MOSFETs�.

In this paper, we calculate the dielectric function of
graphene at arbitrary wave vector q and frequency �,
��q ,��, within RPA, in which each electron is assumed to
move in the self-consistent field arising from the external
field plus the induced field of all electrons. This is the model
which leads to the famous Lindhard dielectric function for a
three-dimensional �3D� �Ref. 4� and 2D �Ref. 5� electron gas.
One of the immediate theoretical consequences of the dielec-
tric function is that its zeros give the wave-vector-dependent

plasmon mode �pl�q�, which is a fundamental elementary
excitation and a collective density oscillation mode. Using
the theoretical dielectric function, we provide the plasmon
mode dispersion both for single-layer and bilayer graphene.
Another important consequence of the dielectric function is
the static screening function which can be obtained as the
static limit �→0 of the dielectric function, describing the
electrostatic screening of the electron-electron, electron-
lattice, and electron-impurity interactions.

II. POLARIZABILITY: �+ AND �−

The electron dynamics in 2D graphene is modeled by a
chiral Dirac equation, which describes a linear relation be-
tween energy and momentum. The corresponding kinetic en-
ergy of graphene for 2D wave vector k is given by �we use
�=1 throughout this paper�

�sk = s��k� , �1�

where s= ±1 indicate the conduction �+1� and valence �−1�
bands, respectively, and � is a band parameter �essentially,
the 2D Fermi velocity, which is a constant for graphene in-
stead of being density dependent�. The corresponding density
of states �DOS� is given by D���=gsgv �� � / �2��2�, where
gs=2 and gv=2 are the spin and valley degeneracies, respec-
tively. The Fermi momentum �kF� and the Fermi energy �EF�
of 2D graphene are given by kF= �4�n /gsgv�1/2 and EF

=�kF, where n is the 2D carrier �electron or hole� density.
For the sake of completeness, we also mention that the di-
mensionless Wigner-Seitz radius �rs�, which measures the
ratio of the potential to the kinetic energy in an interacting
quantum Coulomb system,4 is given in doped 2D graphene
by rs= �e2 /����4/gsgv�1/2, where � is the background lattice
dielectric constant of the system. We note in the passing the
curious fact that the dimensionless rs parameter is a constant
in graphene unlike in the usual 2D �rs�n−1/2� and 3D �rs

�n−1/3� electron liquids, where rs �and, therefore, interaction
effects� increases with decreasing carrier density. The con-
stancy of rs in graphene arises trivially from the relativistic
Dirac-like nature of the free carrier graphene dynamics im-
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plying that the “relativistic” effective mass, mc=EF /�2, de-
pends on carrier density precisely as �n canceling out the
corresponding �n term in the potential energy. Equivalently,
rs here is just the “effective fine structure constant” for
graphene, with a value of rs�0.5, assuming gs=gv=2 and
�=4 �using SiO2 as the substrate material�. This small �and
constant� value of graphene rs indicates it to be a weakly
interacting system for all carrier densities, making RPA an
excellent approximation in graphene since RPA is asymptoti-
cally exact in the rs	1 limit.

In the RPA, the dynamical screening function �dielectric
function� becomes


�q,�� = 1 + vc�q���q,�� , �2�

where vc�q�=2�e2 /�q is the 2D Coulomb interaction, and
��q ,��, the 2D polarizability, is given by the bare bubble
diagram

��q,�� = −
gsgv

L2 �
kss�

fsk − fs�k�

� + �sk − �s�k� + i�
Fss��k,k�� , �3�

where k�=k+q, s ,s�= ±1 denote the band indices, and
Fss��k ,k�� is the overlap of states and given by Fss��k ,k��
= �1+ss� cos 
� /2, where 
 is the angle between k and k�,
and fsk is the Fermi distribution function, fsk= �exp	���sk
−��
+1�−1, with �=1/kBT and � the chemical potential. Af-
ter performing the summation over ss�, we can rewrite the
polarizability as

��q,�� = �+�q,�� + �−�q,�� , �4�

where

�+�q,�� = −
gsgv

2L2 �
k
� �fk+ − fk�+��1 + cos 
kk��

� + �k+ − �k�+ + i�

+
fk+�1 − cos 
kk��

� + �k+ − �k�− + i�
−

fk�+�1 − cos 
kk��

� + �k− − �k�+ + i�
�

�5�

and

�−�q,�� = −
gsgv

2L2 �
k
� �fk− − fk�−��1 + cos 
kk��

� + �k− − �k�− + i�

+
fk−�1 − cos 
kk��

� + �k− − �k�+ + i�
−

fk�−�1 − cos 
kk��

� + �k+ − �k�− + i�
� .

�6�

For intrinsic �i.e., undoped or ungated with n and EF both
being zero� graphene, in which the conduction band is empty
and the valence band is fully occupied at zero temperature
�i.e., EF=0�, we have fk+=0 and fk−=1. Then the polariz-
ability becomes ��q ,��=�−�q ,��, which has been previ-
ously obtained in the renormalization group approach.6 Re-
cently, �−�q ,�� has been reconsidered to discuss screening
effects of Coulomb interaction in intrinsic graphene.7 In gen-
eral, �+�q ,�� does not vanish for most systems because the
Fermi energy is typically located in the conduction or the
valence band. However, graphene is a most peculiar zero-gap

semiconductor system, where EF=0 in the intrinsic undoped
situation. In the doped or gated situation n, EF�0 in
graphene, and now �+ is finite. In the following, we provide
the zero-temperature polarizability in the doped or gated
case, where the Fermi energy is not zero.

By introducing the dimensionless quantities x=q /kF and

�=� /EF, and �̃�q ,��=��q ,�� /D0, where D0
D�EF�
= �gsgvn /��1/2 /� is the DOS at Fermi energy, we have

�̃+�x,�� = �̃1
+�x,��
�� − x� + �̃2

+�x,��
�x − �� , �7�

where the real parts of the polarizability are

Re �̃1
+�x,�� = 1 −

1

8��2 − x2
	f1�x,��
��2 + �� − x�

+ sgn�� − 2 + x�f1�x,− ��
��2 − �� − x�

+ f2�x,���
�x + 2 − �� + 
�2 − x − ���
 , �8�

Re �̃2
+�x,�� = 1 −

1

8�x2 − �2� f3�x,��
�x − �� + 2��

+ f3�x,− ��
�x − �� − 2�� +
�x2

2
�
��� + 2� − x�

+ 
��� − 2� − x��� , �9�

and the imaginary parts of the polarizability are

Im �̃1
+�x,�� =

− 1

8��2 − x2� f3�x,− ��
�x − �� − 2��

+
�x2

2
�
�x + 2 − �� + 
�2 − x − ���� ,

�10�

Im �̃2
+�x,�� =


�� − x + 2�
8�x2 − �2

�f4�x,�� − f4�x,− ��
�2 − x − ��� ,

�11�

where

f1�x,�� = �2 + ����2 + ��2 − x2

− x2 ln
��2 + ��2 − x2 + �2 + ��

���2 − x2 + ��
, �12�

f2�x,�� = x2 ln
� − ��2 − x2

x
, �13�

f3�x,�� = �2 + ���x2 − �2 + ��2 + x2 sin−1 2 + �

x
, �14�

E. H. HWANG AND S. DAS SARMA PHYSICAL REVIEW B 75, 205418 �2007�

205418-2



f4�x,�� = �2 + ����2 + ��2 − x2

− x2 ln
��2 + ��2 − x2 + �2 + ��

x
, �15�

and �̃−�x ,�� can be calculated to be

�̃−�x,�� =
�x2
�x − ��
8�x2 − �2

+ i
�x2
�� − x�
8��2 − x2

. �16�

Equations �7�–�16� are the basic results obtained in this pa-
per, giving the 2D-doped graphene polarizability analyti-
cally. Note that our 2D graphene polarizability is completely
different from the corresponding 2D Lindhard function first
calculated in Ref. 5 which is appropriate for the usual 2D
systems with parabolic band dispersion.

III. PLASMONS IN RPA

As a significant consequence of the dielectric function, we
calculate the long-wavelength plasmon dispersion for single-
layer graphene and for bilayer graphene. The longitudinal
collective-mode dispersion, or plasmon mode dispersion, can
be calculated by looking for poles of the density correlation
function, or equivalently, by looking for zeros of the dynami-
cal dielectric function, ��q ,��=1−v�q���q ,��. In the long-
wavelength limit �q→0�, we have the following limiting
forms in the high- and low-frequency regimes:

��q,�� � �D0�2q2

2�2 �1 − ��2/4EF
2�� , �q � � � 2EF

D0�1 + i��/�q�� , � � �q .
�
�17�

In the q→0 limit, we have the plasmon mode dispersion
�p�q� for a single-layer graphene as

�cl 
 �p�q → 0� = �0
�q , �18�

where �0= �gsgve2EF /2��1/2. The leading order �or local�
plasmon has exactly the same dispersion, q1/2, as the normal
2D plasmon.3 However, the density dependence of the
plasma frequency in graphene shows a different behavior,
i.e., �0�n1/4 compared with the classical 2D plasmon behav-
ior, where �0�n1/2. This is a direct consequence of the quan-
tum relativistic nature of graphene. Even though the long-
wavelength plasmons have identical dispersions for both
cases, the dispersion calculated within RPA including finite-
wave-vector nonlocal �i.e., higher order in q� effects shows
very different behavior. In normal 2D,3,5 the nonlocal correc-
tion leads to an increase in plasma frequency, ��p�q� /�cl

=1+ �3/4��q /qTF��, where qTF=gsgvme2 /� is the usual 2D
Thomas-Fermi wave vector, but in graphene the correction
within RPA leads to a decrease in plasma frequency com-
pared with �cl ��p�q� /�cl=1−q0q /8kF

2�, where q0

=gsgve2kF /�� is the corresponding graphene Thomas-Fermi
wave vector. Recently, the plasmon mode of graphene has
been considered numerically in the presence of spin-orbit
coupling.8

For bilayer graphene, without interlayer hopping, we have

the leading order q dependence of the collective modes by
solving a two component determinantal equation,9,10

�+�q� � �0
�2q ,

�−�q� � 2�0
�dq , �19�

where d is the layer separation between the two 2D graphene
sheets. The �+ mode, the optical-plasmon mode �in-phase
mode of the coupled system�, has the well-known q1/2 behav-
ior, independent of the layer separation d at long wave-
lengths. The other mode �− is the acoustic plasmon mode
�out-of-phase mode of the coupled system�, which goes as q
in long wavelengths and depends on the separation d. Thus,
the coupled plasmons in graphene show the same long-
wavelength behaviors as those of normal 2D systems. How-
ever, the density dependences of the plasma frequency and
the large wave-vector dependences are again very different
from the corresponding normal 2D systems.9 When inter-
layer hopping is included in a bilayer system, the in-phase
plasmon mode is qualitatively unaffected by tunneling. How-
ever, the out-of-phase plasmon mode develops a long-
wavelength gap �depolarization shift� in the presence of
tunneling,14 i.e., �−�q→0�= �2t��2�1+q0d�, where t� is the
interlayer hopping. Due to strong interlayer coupling in bi-
layer graphene, in general, we have �+	�− at long wave-
lengths.

In Fig. 1, we show the calculated plasmon dispersion
within RPA �solid line� compared with the classical local
plasmon �dashed line�. We use the following parameters: �
=2.5, �=6.5 eV Å, and a density n=1012 cm−2. In Fig. 1�b�,
we show the corresponding 2D regular plasmons with
n-GaAs parameters �n=5�1011 cm−2�. In Fig. 1, we also
show the electron-hole continuum or single-particle excita-
tion �SPE� region in �q ,�� space, which determines the ab-
sorption �Landau damping� of the external field at given fre-
quency and wave vector. The SPE continuum is defined by
the nonzero value of the imaginary part of the polarizability
function, Im ��q ,���0. For a normal 2D system, only in-
direct �q�0� transition is possible within the band, and the
SPE boundaries are given by �1,2=q2 /2m±qkF /m. However,
for 2D graphene, both intraband and interband transitions are
possible, and the boundaries are given in Fig. 1�a�. The in-
traband SPE boundaries are �1=�q �upper boundary� and
�2=0 for q�2kF, �2=�q−2EF for q�2kF �lower bound-
ary�. The direct transition �q=0� is also possible from the
valence band to the empty conduction band. Due to the
phase-space restriction, the interband SPE continuum has a
gap at small wave vectors. For q=0, the transition is not
allowed at 0���2EF. If the collective mode lies inside the
SPE continuum, we expect the mode to be damped. Since the
normal 2D plasmon lies, at long wavelengths, above the SPE
continuum, it never decays to electron-hole pair within RPA.
However, for graphene, the plasmon lies inside the interband
SPE continuum decaying into electron-hole pairs. Only in
the region I of Fig. 1�a� the plasmon is not damped. The
other different feature between a normal 2D plasmon and a
graphene plasmon occurs at large wave vectors. The normal
2D plasmon mode enters into the SPE continuum at a critical
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wave vector, and, therefore, does not exist at very high wave
vectors. All spectral weight of the plasmon mode is trans-
ferred to the SPE. However, the graphene plasmon does not
enter into the intraband SPE and exists for all wave vectors,
except for its decay into real interband electron-hole pairs in
theSPEinter regime.

IV. STATIC SCREENING

Now we consider the static polarizability ��q ,�=0�.
From Eq. �9�, we have

�̃+�q� = �1 −
�q

8kF
, q � 2kF

1 −
1

2
�1 −

4kF
2

q2 −
q

4kF
sin−1 2kF

q
, q � 2kF,�

�20�

and from Eq. �16�, we have

�̃−�q� = �q/8kF. �21�

Thus, the total static polarizability becomes a constant at q
�2kF as in a normal 2D systems, i.e., ��q�=�+�q�+�−�q�
=D�EF� for q�2kF. In Fig. 2, we show the calculated static
polarizability as a function of wave vector. For a normal 2D
system, the screening wave vector, qs=qTF=gsgvme2 /�, is
independent of electron concentration, but for 2D graphene,
the screening wave vector is given by qs=gsgve2kF /��,
which is proportional to the square root of the density, n1/2.
In the large momentum transfer regime, q�2kF, the static
screening increases linearly with q due to the interband tran-
sition. This is a very different behavior from a normal 2D
system where the static polarizability falls off rapidly for q
�2kF with a cusp at q=2kF.3 The linear increase of the static
polarizability with q gives rise to an enhancement of the
effective dielectric constant �*�q→��=��1+gsgv�rs /8� in
graphene. Note that in a normal 2D system, �*→� as q
→�. Thus, the effective interaction in 2D graphene de-
creases at short wavelengths due to polarization effects. This
large wave-vector screening behavior is typical of an insula-
tor. Thus, 2D graphene screening is a combination of “me-
tallic” screening �due to �+� and “insulating” screening �due
to �−�, leading to overall rather strange screening properties,
all of which can be traced back to the zero-gap chiral rela-
tivistic nature of graphene.

In may be worthwhile to ask whether the intrinsic
graphene contribution, arising strictly from the interband
transitions due to the filled valence band �i.e., the �− term in
our graphene polarizability�, can be absorbed in the effective
background lattice dielectric constant �, just as one does in a
regular semiconductor ��Si=11.5; �GaAs=12.9� or insulator
��SiO2

=3.9� in discussing free carrier screening by doping or
gating, indeed, free carriers in conduction �electrons� or va-
lence �holes� bands. In particular, only intraband free carrier
screening is explicitly considered in the usual 2D screening
function3,5 extensively used13,14 in the quantitative analysis
of quantum transport in 2D semiconductor devices, such as
Si MOSFETs, GaAs modulation-doped high-mobility tran-
sistors, and undoped gated GaAs heterostructures. The inter-

FIG. 1. �Color online� �a� Plasmon mode dispersion in 2D
graphene �solid thick line� calculated within RPA. The dashed line
indicates the local long-wavelength plasmon dispersion. Thin solid
lines represent the boundaries of the single-particle excitation �SPE�
Landau damping regime for intra- and interband electron-hole ex-
citations. �b� The plasmon dispersion and SPE for a normal 2D
system with a quadratic energy dispersion.

FIG. 2. Static polarizability for 2D graphene: �tot=�++�−.
Here ��0�=D�EF�=gsgvkF /2��.

E. H. HWANG AND S. DAS SARMA PHYSICAL REVIEW B 75, 205418 �2007�

205418-4



band transition induced screening in the semiconductor-
based 2D structures is included in the theory simply by
appropriately modifying the effective background lattice di-
electric constant from the usual vacuum value of unity to a
value around 10.

To see whether the effect of the interband �− polarizabil-
ity can be “trivially” absorbed in a background lattice dielec-
tric constant, we rewrite a 2D graphene dielectric function
��q�=1+vc�q���q� to obtain

��q� = 1 +
2�e2

�q
��−�q� + �+�q�� . �22�

Using Eq. �21�, �−�q�=D�EF��q /8kF, we get vc�q��−�q�
=

gsgv�

8
e2

�� =
gsgv�

8 rs. Thus, we have

��q� = 1 +
gsgv�

8
rs + vc�q��+�q� . �23�

Introducing an effective intrinsic background graphene di-
electric constant

�* = 1 + gsgv�rs/8, �24�

we have

��q� = �*�1 +
2�e2

��*q
�+�q�� . �25�

Writing an effective free carrier 2D graphene dielectric func-
tion

�+�q� 
 1 + vc
+�q��+�q� , �26�

where vc
+�q�=2�e2 /��*q, we have

��q� 
 �*�+�q� . �27�

Equation �27� shows that the intrinsic screening contribution
arising from the interband �− term can be completely sub-
sumed by introducing an effective graphene background lat-
tice dielectric constant �*=1+gsgv�rs /8, and by making the
replacement �→��* throughout. Introducing the effective
dielectric constant �* allows one to use only the free carrier
screening function,

�+�q� = 1 +
2�e2

��*q
�+�q� , �28�

for describing free carrier screening properties of 2D
graphene. We note that � itself here is the background lattice
dielectric constant arising from the insulating substrate �i.e.,
SiO2 in most situations� with �= �1+�SiO2

� /2�2.5, and �*

=1+gsgv�rs /8�2.3 with rs=e2 /����0.7 for graphene on
SiO2 substrate. Thus, the substitution �→��*, arising from
the interband contributions, enhances the effective back-
ground graphene dielectric constant to ��*�6—this ap-
proximate factor of 2 increase in the background dielectric
constant arising from interband contributions further sup-
presses Coulomb interaction effects in extrinsic graphene.

The large q behavior of graphene dielectric screening,
��q→��→�*=1+gsgv�rs /8, again demonstrates that the
short-wavelength screened Coulomb potential in 2D
graphene goes as 2�e2 /��*q, with an enhanced background

effective dielectric constant ��*, where � is the effective
background dielectric constant arising from the substrate and
�* arising from graphene interband polarizability �− as dis-
cussed above. This implies that a suspended 2D graphene
film, without any substrate �i.e., �=1�, would have an effec-
tive background lattice dielectric constant of �*=1
+gsgv�rs /8 with rs=e2 /�� �since �=1�. Putting in gsgv=4,
we get �*�4. Thus, the background static lattice dielectric
constant of intrinsic graphene, due to interband transitions, is
around 4.

If the T=0 transport properties of graphene are dominated
by charged impurity scattering, as is thought to be the case,15

then the long-wavelength Thomas-Fermi screening becomes
an important input for calculating the screened charged im-
purity potential: �TF�q�
�RPA�q→0� becomes

�TF�q� = 1 + qTF/q , �29�

where qTF
qs=gsgve2kF /��. Note that one can equivalently
define a long-wavelength effective TF screening function
�TF

+ �q�, where interband screening effects are absorbed in an
effective background dielectric constant �*;

�TF
+ �q� = 1 + qTF

* /q , �30�

where qTF
* =qTF /�*. As discussed above, the identity, ��q�


�*�+�q�, guarantees the equivalence between Eqs. �29� and
�30� for long-wavelength graphene screening. We note also
that the q=0 screening wave vector qTF is simply propor-
tional to the graphene density of states at the Fermi level at
T=0.

Although the two screening descriptions, based on ��q�
with the background dielectric constant being just � and on
�+�q� with the background dielectric constant being ��*, are
precisely equivalent for T=0 static screening properties, the
two descriptions are not inequivalent at finite temperatures.
Therefore, it is more appropriate to use the full dielectric
function ��q� in theoretical work on 2D graphene.

V. CONCLUSION

In conclusion, we have theoretically obtained analytic ex-
pressions for doped �i.e., EF�0� 2D extrinsic graphene po-
larizability, dielectric function, plasmon dispersion, and
static screening properties, finding a number of intriguing
qualitative differences with the corresponding normal �and
extensively studied� 2D electron systems. The differences,
with interesting observable consequences, can all be under-
stood as arising from the zero-band gap intrinsic nature of
undoped graphene with chiral linear relativistic bare carrier
energy band dispersion. Some of our qualitatively predic-
tions, such as the n1/4 dependence of the long-wavelength
graphene plasma frequency in contrast to the well-known
n1/2 behavior of classical and normal 2D plasmons, should be
easily verifiable experimentally using the standard experi-
mental techniques of infrared absorption11 and/or inelastic
light scattering12 spectroscopies. Similarly, our prediction of
the peculiar nature of the graphene plasmon damping �i.e.,
no Landau damping due to intraband electron-hole pairs, but
finite Landau damping due to interband electron-hole pairs�
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should be easily verifiable. Our predicted different screening
behavior in graphene at large wave vector should have con-
sequences for transport properties. Our RPA theory should be
an excellent qualitative approximation for 2D graphene prop-
erties at all carrier densities �as long as the system remains a
homogeneous 2D carrier system, which may not be true for
n�1012 cm−2�, since the effective rs parameter for graphene
is a constant ��1�, making RPA quantitatively accurate in
graphene. Finally, we point out that the effective Fermi tem-
perature, TF=EF /kB, being very high ��1300 K for n
�1012 cm−2� in graphene; our T=0 theory should apply all
the way to room temperatures. We note that the long-
wavelength dielectric function for bulk graphite was earlier
considered within an approximation scheme in Ref. 16 and
the zero-frequency limit was recently considered in Ref. 17

Before concluding, we point out that some aspects of
graphene collective modes and linear response have been

discussed in the recent literature. In particular, the intrinsic
situation without any free carriers has been considered in
Ref. 7, whereas our emphasis in this work has been extrinsic
graphene with free carriers �electrons and/or holes in conduc-
tion and/or valence band� induced by external gating or dop-
ing. There has been a recent purely numerical study8 of
graphene collective-mode spectra in the presence of spin-
orbit coupling.

Note added. Recently, we became aware of related
work.18
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