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Intervalley mixing between conduction-band states in low-dimensional Si/SiGe heterostructures induces
splitting between nominally degenerate energy levels. The symmetric double-valley effective mass approxi-
mation and the empirical pseudopotential method are used to find the electronic states in different types of
quantum wells. A reasonably good agreement between the two methods is found, with the former being much
faster computationally. Aside from being an oscillatory function of well width, the splitting is found to be
almost independent of in-plane wave vector, and an increasing function of the magnitude of interface gradient.
While the model is defined for symmetric envelope potentials, it is shown to remain reasonably accurate for
slightly asymmetric structures such as a double quantum well, making it acceptable for simulation of
multilayer intersubband optical devices. Intersubband optical transitions are investigated under both approxi-
mations and it is shown that in most cases valley splitting causes linewidth broadening, although under extreme
conditions, transition line doublets may result.
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I. THEORETICAL CONSIDERATIONS

A. Intervalley mixing and the effective mass approximation

The conventional single-valley effective mass and enve-
lope function approximation �EMA� is computationally effi-
cient and remains remarkably accurate at the atomic scale.1

The behavior of carriers in a two-dimensional heterostructure
is modeled by introducing an effective mass m*�z� and an
envelope function potential V�z� which depends on the ma-
terial composition.2 The band nonparabolicity is optionally
incorporated into the effective mass, via m*�z�=m0�1+��E
−V�z���. The Hamiltonian for such a system is

H�z� = −
�2

2

�

�z

1

m*�z�
�

�z
+ V�z� . �1�

If there are multiple equivalent valleys in k space, these
must be considered independently within the “pure” EMA,
with any intervalley mixing effects neglected. The
conduction-band edge is located in the six � valleys for
Si1−xGex alloys with x�85%.3 Strain effects split the degen-
erate valleys into four �� valleys and two �� valleys. As the
� valleys are ellipsoidal, a different effective mass is used
for each degenerate set.

With two equivalent �� valleys, their quantum confine-
ment subbands are predicted by the EMA to be degenerate.
In reality, there is a coupling between the two sets of states,
which results in a splitting, i.e., lifting of the degeneracy.
This effect has been observed experimentally in
Shubnikov–de Haas oscillation measurements in high mag-
netic fields4–11 with energy splitting up to a few meV. Boykin
et al. presented a tight-binding model of the ground-state
splitting in a biased square quantum well with both hard-wall
and cyclic boundary conditions.12–14 The ground-state split-
ting in an unbiased square well was shown to be approxi-
mated by

�E1 �
16�2u

�S + 2�3 sin	�min

2

�sin	�S + 2�

�min

2

� , �2�

where �min=k0a, and k0 denotes the position of the valley
minimum in the Brillouin zone, a is the lattice constant, S is
the number of crystalline monolayers in the quantum well,
and u is a fitting constant. From this model, it is clear that the
ground-state splitting oscillates with well width; the fre-
quency being dependent on the location of the valley
minima. Similar results have been obtained for the two low-
est subbands in an unbiased well by Chiang15 in an antibond-
ing orbital model, and recently by Nestoklon16 in a slightly
different tight-binding model.

Splitting due to an electric field has been considered by
modeling a triangular quantum well. The composition profile
of the structure in this case is selected to provide a potential
gradient, i.e., an internal electric field. Although an effective
mass model by Sham17 proposed that the splitting is simply
proportional to the applied field, Boykin et al.18 and Grosso
et al.19 show that the splitting is a nonlinear function of both
the well width and the electric field.

Modifications to the EMA have been introduced in order
to describe the intervalley mixing effects in an infinite square
well20–22 and a finite square well with impurity states.23 Ting
and Chang’s double valley effective mass approximation
�DVEMA� �Ref. 24� provides an elegant self-contained EMA
description of intervalley mixing effects. This model allows a
computationally fast simulation of long structures such as
quantum cascade lasers �QCLs�,25 where the use of atomistic
methods would be extremely cumbersome. The model is ap-
plicable to any symmetric conduction band-edge envelope

potential V̂�z�. The kinetic energy operator in the Hamil-

tonian is unchanged, but a splitting potential Û�z� is included
to account for intervalley mixing
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Ĥ�z� = −
�2

2

�

�z
	 1

m�z�
�

�z

 + V̂�z� ± Û�z� . �3�

The derivation of Ting and Chang’s DVEMA �Ref. 24� starts
with the assertion that in k space there are two equivalent ��

valleys at wave vectors, k±k0. By symmetry, the wave func-
tion can be decomposed into either even or odd symmetric
combinations of functions centered at the valley minima with
equal and real weighting coefficients

�k1,2 =
1
�2

��k + k0 ± �k − k0� . �4�

In the most general case, the weighting factors of the two
terms may become complex conjugates, with magnitude 1

�2
.26

The complete wave function is now defined as

��1,2 = �
k

�1,2�k��k1,2 . �5�

The matrix elements of the envelope potential operator in the
Hamiltonian are written in the basis defined by Eq. �4�:

Vnm = �kn�V̂�km = 1
2 ��kn + k0� ± �kn − k0��V̂��km + k0

± �km − k0� . �6�

Rearranging this expression yields

Vnm = 1
2 ��kn + k0�V̂�km + k0 + �kn − k0�V̂�km − k0�

± 1
2 ��kn + k0�V̂�km − k0 + �kn − k0�V̂�km + k0� . �7�

Using the discrete to continuous approximation, Vnm= Ṽ�km

−kn�, the intervalley envelope term can be written as

Ṽ1,2�k� = Ṽ�k� ± 1
2 �Ṽ�k − 2k0� + Ṽ�k + 2k0�� , �8�

where Ṽ�k� is the Fourier transform of the conduction-band-
edge envelope potential. The configuration-space form of the
intervalley envelope function is found by taking the inverse
Fourier transform of this result and the splitting potential is
therefore extracted as

Û�z� = 1
2F−1�Ṽ�k − 2k0� + Ṽ�k + 2k0�� = V�z�cos�2k0z� ,

�9�

where F−1 denotes the inverse Fourier transform. This form
of real-space splitting potential is more general than the spe-
cial case of a square well with abrupt interfaces.24 It applies
to any symmetric potential, but does not explicitly show that
the splitting potential oscillates as a function of well width W
of the form sin�k0W� /k0.24 In addition, the numerical solu-
tion is complicated by the presence of a continuous, rapidly
varying splitting function, as opposed to a pair of delta func-
tions at the square well interfaces.24 However, since the
problem is one-dimensional, this is not a major concern. For
asymmetric envelope functions, the simple cosine form is no
longer strictly valid as the Fourier coefficients in Eq. �4�
become a complex conjugate pair. However, it will be shown
here that the symmetric approximation still gives excellent
results for structures with a moderate degree of asymmetry.

B. Empirical pseudopotential calculation

An empirical pseudopotential method �EPM� is used here
to calculate electronic states in Si/SiGe based quantum well
structures, and provide a comparison with the results of the
DVEMA simulation. Being a microscopic method �in com-
mon with tight binding�, it normally reveals intervalley in-
terference induced splitting of size-quantized subbands,
without any adjustable parameters introduced for this pur-
pose. The supercell implementation of the EPM was used,
with a continuous atomic form function V�g�. The “modified
Falicov” form function described by Friedel et al.27 was se-
lected:

V�g� =
a1�g2 − a2�

1 + e�a3�g2−a4��

1

2
�tanh	a5 − g2

a6

 + 1� . �10�

This form function has been used by Fischetti and Laux,28 as
well as in previous work by the authors.29 It gives reasonable
agreement with experimental data for both bulk Si and Ge
band structure and for band discontinuities at the interface. A
cutoff energy of 4.5 Ry was used, which gives an acceptable
number of plane waves for accurate and rapid computation
with all the structures considered. The parameters for Si and
Ge are given in Table I, and the virtual crystal approximation
was used for the alloy.

The EPM can be used for structures with either abrupt
interfaces or graded compositions. In the latter case, the in-
terface grading is piecewise constant �i.e., within the crystal-
line monolayer width�. Individual layers are given the re-
quired alloy compositions. In contrast, the DVEMA uses a
continuous potential profile, though features smaller than the
width of a monolayer have little practical meaning.

It is important to note that effective mass based calcula-
tions �like the DVEMA� can never fully reproduce the results
of microscopic EPM modeling. This is because the DVEMA
only handles four bulk states explicitly, while the EPM im-
plicitly includes many evanescent states, stemming from re-
mote bulk bands. Furthermore, the location of indirect val-
leys may vary between the bulk materials used in the well
and barrier—a situation which is difficult to handle with ef-
fective mass methods. Given that remote bands are usually
less important than the bands from which the quantized
states are derived, one can expect reasonable accuracy from
the DVEMA. This may be validated by comparison against
the EPM calculation.

II. NUMERICAL RESULTS AND DISCUSSION

DVEMA and EPM calculations were performed for a
range of Si/SiGe quantum wells �QWs�, using the material
parameters as follows. The lattice constant a�x� of relaxed

TABLE I. Pseudopotential parameters �Ref. 27�.

Parameter a1 a2 a3 a4 a5 a6

Si 212.1372 2.2278 0.6060 −1.9720 5.0 0.3

Ge 108.9024 2.3592 0.7400 −0.3800 5.0 0.3
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SixGe1−x alloy is found by interpolation of the elemental lat-
tice constants, given in Table II according to a�x�=aSi�1
−x�+aGex−bbowx�1−x�,3 with the bowing parameter bbow

=0.2733 pm.30 In a structure coherently grown in the �001�
direction, comprising layers of different compositions on a
relaxed virtual substrate, the strain results in the perpendicu-
lar lattice constant of a particular layer being equal to
a��x�=a�x�(1− �2C12�x� /C11�x����a0�x�−a�x�� /a�x��), while
the in-plane lattice constants equal that of the substrate. The
elastic constants for SiGe are found by linear interpolation of
the values given in Table II, and a0�x� is the bulk lattice
constant of the relaxed virtual substrate on which the struc-
ture is grown.

In this work, the Ge fraction in the virtual substrate is
fixed at 20%. For the DVEMA calculation, the � valley lon-
gitudinal and transverse effective masses are mL=0.916 and
mT=0.19, respectively, and do not depend on the alloy com-
position. In the EPM calculations the total length of the
structure �i.e., the supercell period� which includes the well
and barrier layers, was set to a fixed value of 35 monolayers
�MLs�, where 1 ML is half the lattice constant �i.e., twice the
crystalline monolayer width of Eq. �2��. This maintained a
constant number of plane waves in the pseudopotential basis
set, and avoided fluctuations in the results caused by variable
size of basis. This is important since intervalley splitting is
relatively small on the energy scale covered by EPM.31

A. Finite square well

The first set of calculations was for a simple square QW
with abrupt interfaces. Figure 1 shows the influence of bar-
rier composition �potential height� on the splitting of the
lowest two subbands, obtained by both the DVEMA and

EPM calculations, for a fixed, 8-ML-wide Si quantum well.
The confining potential of the quantum well increases almost
linearly with the Ge content in the barriers.34 The results
show a clear increase in valley splitting with increasing con-
fining potential, with the two sets of results being broadly in
good agreement, and with the most obvious discrepancy be-
ing the discontinuities in the DVEMA plot.

The effect of well width upon state splitting was investi-
gated next, for a structure with a fixed barrier composition of
50% Ge. The well width was varied between 1 and 25 MLs
in a supercell of total length 35 MLs. This leaves a minimum
10-ML barrier region, thus ensuring decoupling of neighbor-
ing quantum wells under periodic boundary conditions. It
also represents the realistic range of well widths within in-
tersubband optical devices. Figure 2 shows the EPM and
DVEMA results. As predicted by Eq. �2�, the valley splitting
is a decaying oscillatory function of well width, originating
from interference of the wave-function components reflect-
ing at the quantum well interfaces. Since the number of
monolayers in the structure is restricted to the set of positive
integers, the splitting function is undersampled to show the
precise value of the period of oscillations. DVEMA shows
good agreement with the EPM results for the envelope of the
splitting, while the oscillatory component is approximately
correct. For very small well widths, however, the results for
higher subbands deviate from the theory, as the states are no
longer bound in the well.

The tight-binding results presented by Boykin12 consider
wide quantum wells, with low-energy ground state and ef-
fectively infinite barriers. The decaying oscillatory form is,
however, the same as that obtained from DVEMA calcula-
tions. Equation �2�, extracted from the tight-binding model,
predicts a period of around 6 MLs as observed in Fig. 2.
Setting u�3 yields a match in the amplitude between the
three models. This figure is somewhat higher than the value
given in the reference above, although Eq. �2� has been fitted
to the DVEMA results for loosely bound states in a finite
square well as opposed to being derived from bulk dispersion
characteristics.

B. Influence of in-plane wave vector

For nonzero in-plane wave vector k�, the size-quantized
subbands in QWs generally acquire their k�-dependent con-
tributions from remote bulk bands. For bulk materials this is

TABLE II. Material parameters for silicon and germanium.

Parameter Si Ge Unit

a 543.1a 563.3a pm

C11 167.5b 131.5c GPa

C12 65.0b 49.4c GPa

aReference 30.
bReference 32.
cReference 33.
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FIG. 1. Intervalley splitting �E in the lowest two subbands of an
8-ML quantum well as a function of barrier composition.
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FIG. 2. Intervalley splitting in a Si/Si0.5Ge0.5 quantum well as a
function of well width.
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manifested as nonparabolicity of the in-plane dispersion, and
in the problem under consideration, k�-dependent splitting
would result. The EPM calculation automatically accounts
for these effects, while the DVEMA would require
k�-dependent “correction” terms as remote bands are not ex-
plicitly included in the model. The in-plane nonparabolicity
of the �� valley is relatively low, and indeed a rather weak
dependence of splitting on k� is found. In the EPM calcula-
tion for a 10-ML quantum well, the splitting in the first and
second subbands increased approximately linearly by 17%
and 8%, respectively, when k� changed from zero to 10% of
the Brillouin-zone edge �i.e., in the range with non-negligible
electron occupancy at any reasonable temperature�. This im-
plies that k�-dependent corrections in the DVEMA are not
mandatory.

C. Graded barrier potential

In real Si/SiGe quantum wells, surface segregation effects
are well documented.35 This refers to the “preference” of Ge
atoms to exist on the surface of the material rather than in the
bulk during molecular beam epitaxial �MBE� growth, lead-
ing to a decrease in the magnitude of the Ge composition
gradient at the nominal interfaces. Recent work36 has shown
that atomic hydrogen etching reduces the effects of surface
segregation, but this is impractical in a multilayer structure
as it is extremely time consuming and surface defects caused
by the etching are likely to accumulate. It is therefore unre-
alistic to model a Si/SiGe quantum well as having abrupt
interfaces. The effect of graded interfaces on subband split-
ting is therefore considered. The linear-graded structure
shown in the inset of Fig. 3 is modeled first.

Within the EPM calculation, the linear-graded interfaces
on either side of the QW are modeled as three-step
piecewise-linear, i.e., the interfaces spread across three MLs,
with Ge content of 17%, 33%, and 50% sequentially. The
results are shown in Fig. 3. The well width is defined as the
full width at half maximum �FWHM� of the envelope poten-
tial. The results of DVEMA and EPM are in good agreement
for larger well widths—those which allow for more than a
single bound state. The plots show that the oscillatory com-
ponent of the valley splitting is unchanged, although the en-
velope decreases in magnitude. This is because graded inter-
faces have reduced large-wave-vector Fourier components in

the envelope potential, which mix the two �� valleys and
hence the splitting is generally smaller.

As the width of the graded interfaces increases, the split-
ting is further reduced, as shown in Fig. 4 for a four-step
graded interface with Ge content of 13%, 25%, 38%, and
50%, sequentially. Again, there is a very good agreement
between the two models.

A linear graded interface is a somewhat idealized model
as experimental evidence shows that the interface profile is
decidedly nonlinear. A three-step grading with germanium
concentrations of 13%, 38%, and 50% is therefore used as an
approximation to a typical interface composition. The results
of EPM and DVEMA calculation are shown in Fig. 5.

The magnitude of the splitting is somewhat larger than for
the case of linear grading, apparently because the potential
gradient at the interface is now larger over a wide range of
energies, thus corresponding to a steeper linear grading at the
energies of the first and second subband minima. The
DVEMA results are again in close agreement with the EPM
results.

D. Double quantum well

Next, the valley splitting in a double quantum well struc-
ture is considered. This relatively simple structure usually
provides sufficient design freedom for the required subband
spacing in an optically pumped intersubband laser. Such a
structure is also a good test of the validity of the DVEMA
described above, as it is asymmetric and the simple cosine
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FIG. 3. Valley splitting in lowest two subbands as a function of
well width W in a QW with three-step linear graded interfaces. The
inset shows the general structure of a linear graded QW.

5 10 15 20
Well Width (ML)

0

5

10

15

V
al

le
y

Sp
lit

tin
g

(m
eV

) ∆E
1

(EPM)
∆E

2
(EPM)

∆E
1

(DVEMA)
∆E

2
(DVEMA)

FIG. 4. Valley splitting in lowest two subbands as a function of
well width in a quantum well with four-step linear graded
interfaces.
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modulated splitting envelope potential is no longer strictly
applicable. The simulated structure, shown in the inset of
Fig. 6, has a fixed 1-ML well separated from the second well
by a 1-ML, 50% Ge barrier. All other parameters are un-
changed.

The results for the EPM and DVEMA calculations are
shown in Fig. 6. In this case, the structure is assumed to
deviate only slightly from the square well, and therefore the
periodic structure may be considered approximately symmet-
ric about the z=0 position �i.e., the left-hand side of the
structure shown in the inset of Fig. 6�. The axis of symmetry,
zs is therefore set at this point. As the structure only contains
a relatively small perturbation from a symmetric quantum
well, the DVEMA and EPM results are still in good agree-
ment. The splitting energy is again lower than the simple
square well case, since the left-hand side �with a thin well
and a thin barrier� can be viewed as a “soft,” nonabrupt
interface. Figure 6 also shows the DVEMA results when the
axis of symmetry is shifted to zs= �

4k0
such that the splitting

potential becomes sine modulated as opposed to cosine
modulated. This represents worst-case selection of the axis
of symmetry, if zs=0 is assumed to be the best. The oscilla-
tory component of the valley splitting now appears out of
phase with the EPM results, although the envelope of the
oscillations is approximately correct. The symmetric ap-
proximation is therefore dependent on the origin of the co-
ordinate system. However, a good estimate of the range of
the valley splitting is possible, even with a poor choice of
origin.

E. Intersubband optical transitions

Optical matrix elements were calculated for intersubband
transitions in the square well �Sec. II A�. The results from the
EPM and DVEMA simulations are shown in Fig. 7 along
with the separation of the transition energies. The difference
between the optical matrix elements is small and approaches
zero as the transition energies converge. This implies a simi-
lar magnitude of spectral contribution from each pair of
valley-split states. The two methods are in close agreement
for lower well widths, with the DVEMA predicting larger

matrix elements at higher widths. In most cases, when con-
sidering valley splitting of states, the permitted optical tran-
sitions are from the upper “excited state” to the upper
“ground state” and between the two lower states. However,
when close to the splitting minima �at well widths of 17 and
23 MLs�, the converse situation sometimes applies with the
EPM �Fig. 8�. The DVEMA always finds transitions to be of
upper→upper and lower→ lower character. Transitions ex-
hibit linewidth broadening by interface roughness and carrier
scattering, typically of the order 5–10 meV. In the majority
of cases, valley splitting is relatively small and will only
cause an increase in linewidth broadening by the amount
shown in Fig. 7. However, when the valley splitting is large
�for example, at around 8 ML well width�, a transition line
doublet may become apparent.

III. CONCLUSION

The DVEMA method presented by Ting and Chang24 has
been extended to model intervalley-mixing in any symmetric
structure. DVEMA and EPM methods have been used to
calculate � valley subband splitting in a range of symmetric
and asymmetric Si/SiGe heterostructures, with both abrupt
and graded interfaces. This provides a much closer approxi-
mation to intersubband optical device structures than has
been achieved previously. The results of the two methods are
in good or reasonably good agreement with each other as
well as with published tight-binding results, with DVEMA
demanding less than 0.5% the computational run-time of
EPM. Subband splitting of the order of 10 meV was pre-
dicted for abrupt-interface square quantum wells in the range
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FIG. 8. Permitted optical transitions in a square quantum well
are usually between the two upper or lower valley-split states �left�.
When close to splitting minima, however, this situation is some-
times reversed in EPM simulation �right�.
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of well widths of interest for silicon intersubband
devices.37–42 It has been shown that this will typically lead to
linewidth broadening, although at narrow well widths a tran-
sition line doublet may form, with both valley-split states
contributing equally to the spectrum. The effect of surface
segregation was modeled by considering both linear and
nonlinear composition grading at the interfaces. This was
found to reduce the valley splitting, as it is dependent upon
the potential gradient at the interfaces. Modeling of valley
splitting is therefore important for the development of the as
yet unrealized n-Si/SiGe quantum cascade laser. As these
structures consist of many heterolayers, the extended
DVEMA method presented in this work, is a valuable tool
for rapid simulation.

An important question for future designs of n-Si/SiGe
intersubband lasers is whether a fast depopulation of the
lower laser state may be assisted by scattering between
valley-split subbands. Alternatively, by careful selection of
well widths it may possible to design structures for which the
valley splitting is minimized.
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