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We present a closed description of the charge-carrier injection process from a conductor into an insulator.
Common injection models are based on single electron descriptions, being problematic especially once the
amount of charge-carriers injected is large. Accordingly, we developed a model, which incorporates space-
charge effects in the description of the injection process. The challenge of this task is the problem of self-
consistency. The amount of charge carriers injected per unit time strongly depends on the energy barrier
emerging at the contact, while at the same time the electrostatic potential generated by the injected charge
carriers modifies the height of this injection barrier itself. In our model, self-consistency is obtained by
assuming continuity of the electric displacement and the electrochemical potential all over the conductor/
insulator system. The conductor and the insulator are properly taken into account by means of their respective
density of state distributions. The electric-field distributions are obtained in a closed analytical form and the
resulting current-voltage characteristics show that the theory embraces injection-limited as well as bulk-limited
charge-carrier transports. Analytical approximations of these limits are given, revealing physical mechanisms
responsible for the particular current-voltage behavior. In addition, the model exhibits the crossover between
the two limiting cases and determines the validity of respective approximations. The consequences resulting
from our exactly solvable model are discussed on the basis of a simplified indium tin oxide/organic semicon-
ductor system.
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I. INTRODUCTION

Once a conductor forms contact with an insulator, an en-
ergy barrier is formed between the two materials, which im-
pedes the charge-carrier injection into the insulator. Although
this injection barrier in general sways charge transport
through the conductor/insulator system, only the two limiting
cases of very low or very high injection barriers are often
considered.

For low injection barriers, one expects the contact to be
Ohmic, meaning that the contact is able to supply more
charges per unit time than the bulk of the insulator can trans-
port. In this case, a space-charge region is formed and the
electric field at the interface vanishes.1 Because excess
charge carriers dominate charge transport in insulators, one
observes a space-charge-limited current �SCLC� density of
the form j�V2 /L3 �in the absence of charge-carrier traps�,
where L is the sample thickness and V is the applied voltage.
The current-voltage characteristic �IV characteristic� is deter-
mined by the bulk properties of the material with no influ-
ence of the contact properties.2–4

For high injection barriers, one anticipates the injection
rate across the conductor/insulator interface to dominate the
IV characteristic of the system. The models to describe in-
jection are the Fowler-Nordheim �FN� tunneling model5 or
the Richardson-Schottky �RS� model5,6 for thermionic injec-
tion. The FN model describes the charge-carrier injection by
tunneling through a triangular barrier into an unbound con-
tinuum of states. The current takes then the temperature-
independent form,

j�V� = B
V2

L2 exp�−
4L�2mef f�

3/2

3�eV
� , �1�

where e is the elementary charge, mef f being the effective
mass of a charge carrier, � is Planck’s constant, B is a con-

stant, and � is the height of the barrier. The RS model on the
other hand describes charge injection as a thermally activated
hopping over the potential barrier, where barrier lowering
due to the superposition of the external electrostatic potential
and the image-charge potential is considered. The RS model
predicts the IV characteristics to follow

j�V� = CT2 exp�−
�

kT
�exp� 1

kT
� eV

4���0L
� . �2�

Here, T is the temperature, k is the Boltzmann constant, C
represents the effective Richardson constant, � is the relative
permittivity of the insulator, and �0 is the permittivity of
vacuum.

An alternative description of the injection process is given
by the drift-diffusion theory involving electron-electron in-
teraction in a mean-field approximation.7,8 In this homoge-
neous continuum model widely used for the description of
conventional crystalline semiconductors, the steady-state
current density exemplarily given for holes in one dimension
is

j = e�sps�x�Fs�x� − eDps��x� = const, �3�

where �s is the hole mobility, ps is the hole density, Fs is the
electric field in the insulator, and D is the diffusivity of holes.
Fs and ps are coupled by the Poisson equation. The drift-
diffusion equation in combination with the Poisson equation
involves space-charge effects, but meets the problem of self-
consistency in the boundary conditions. The electrostatic po-
tential generated by the injected charge carriers modifies the
injection barrier, but on the other hand the amount of charge
carriers injected per unit time depends strongly on the barrier
height. Therefore, a proper description of the injection pro-
cess by means of the drift-diffusion theory has to involve
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both the insulator and the conductor sides of the system. This
can be seen in analogy to a strongly asymmetric p-n junc-
tion.

Different attempts to numerically describe the injection
process in insulators with account of the space charge were
made recently.9–11 In transitive finite element simulations in
one- and two-dimensional geometries by Christen and
Seeger,11 both injection-limited and space charge-limited re-
gimes were presented. However, the injection description
was still not self-consistent, imposing some phenomenologi-
cal values for the field and the carrier density at the contact.
A comprehensive one-dimensional numerical model account-
ing for space-charge effect was developed by Tutiš et al.9

which comprised the hopping transport and the tunnel injec-
tion from electrodes. Unfortunately, this sophisticated nu-
merical tool does not allow analytical fitting of current-
voltage characteristics which gives insight in major
mechanisms controlling injection. In the work of Neumann
et al.,10 a self-consistent numerical treatment of the injection
and transport processes in a conductor/insulator/conductor
device was presented in which continuity of the electro-
chemical potential and the electric displacement was as-
sumed everywhere in the system, in particular, at the con-
tacts. The conductor and the insulator were characterized by
their specific density of state �DOS� distributions. In present
work, we obtain an exact analytical solution for the injection
across the conductor/insulator interface in a self-consistent
manner. To focus on the consequences of the self-consistent
treatment, we discuss our results on the basis of a simplified
indium tin oxide/organic semiconductor system used as hole-
injecting contact in organic optoelectronic devices, shifting
the comparison with experimental data to a future time.

II. MODEL

Let us consider a single conductor/insulator interface lo-
cated at a position x=0. The conductor is supposed to extend
over the semispace with x�0, whereas the insulator covers
the semispace with x�0. All energies are measured down-
ward with respect to the top of the valence band in the con-
ductor, in order to account for hole transport in the system. In
the following sections, the theoretical models describing the
insulator and the conductor are introduced.

A. Electrode

The conductor electrode is characterized by its DOS as a
function of the energy E. For our purpose, it is sufficient to
assume the free electron approximation, in which the DOS
function reads

gc�E� =
1

3�2�2mef f

�2 �3/2
�E , �4�

where mef f is the effective mass in the conductor. In the
Thomas-Fermi approximation,6 one can deduce the electro-
chemical potential �c of the conductor as a function of the
spatial coordinate x,

�c�x� =
�2

2mef f
�3�2pc�x��2/3 + e	�x� , �5�

where pc�x� is the hole density in the electrode and 	�x� is
the electrostatic potential. In general, the electrochemical po-
tential ��x� relates the steady-state current density j with the
charge-carrier density. For a one-dimensional geometry, the
current remains constant across the whole space and j is
given by the conductivity 
 and the derivative of ��x�,12

j = −



e

d��x�
dx

�6�

�note the direction of the energy axis�. The conductivity of a
conductor 
c=e�cp� can be expressed in terms of the hole
mobility �c and the hole density p� in the valence band at an
infinite distance from the conductor/insulator interface.

Since charge carriers are transferred from the electrode to
the insulator, a space-charge region emerges near the inter-
face which modifies the electric field Fc�x� in the conductor
according to Gauss law,

Fc��x� =
e

�c�0
�p�x� , �7�

where �c is the relative permittivity of the electrode. In Eq.
�7�, �p�x�= pc�x�− p� is the excess hole density. However,
charge-carrier densities in degenerate conductors are rather
high and consequently, the value for the excess hole density
is small in comparison with the background hole density,
	�p�x�	
 p�. Hence, the well-known linearized Thomas-
Fermi approximation6 can be applied, leading with Eqs.
�5�–�7� to a differential equation for Fc,

lTF
2 Fc��x� − Fc�x� = −

j


c
, �8�

with

lTF =�2

3

�0�c��

e2p�

, �9�

being the Thomas-Fermi screening length, defining the typi-
cal length scale of the system. Here, �� is the electrochemi-
cal potential at an infinite distance from the conductor/
insulator interface.

Since space-charge zones in conductors are of finite thick-
ness, gradients of Fc�x� have to vanish at an infinite distance
from the contact. Therefore, the solution for the electric field
reads

Fc�x� = 
Fc�0� −
j


c
�ex/lTF +

j


c
, �10�

where the electric field in the conductor at the conductor/
insulator interface, Fc�0�, is the only unknown quantity.

The validity of the used approximations has to be re-
viewed critically. An exact quantum-mechanical theory of
the inhomogeneous electron gas accounting for the ionic lat-
tice of the material and electron correlations gives a compa-
rable scale for the electric-field penetration in conductors and
demonstrates the usability of the uniform positive back-
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ground model for simple metals.13,14 While in typical metals
the Thomas-Fermi screening length is about 1 Å making the
application of the quasiclassical Thomas-Fermi approxima-
tion �Eq. �5�� inappropriate, substantially larger Thomas-
Fermi screening lengths can be found in degenerate semicon-
ductors such as transparent conducting oxides used in
optoelectronic devices.15–17

B. Insulator

Similarly, the insulator is characterized by a DOS func-
tion, gs�E�, describing extended states in which charge trans-
port takes place. In contrast to the conductor, the electro-
chemical potential �s is situated well above the top of the
band of extended hole states. In other words, the insulator is
supposed to be nondegenerate. Introducing a band edge
means that the DOS function gs�E�=0 when E�0. Hence,
the density of holes in extended states can be calculated us-
ing Boltzmann statistics,

ps�x� = �
−�

�

gs�E − � − ���exp
�s�x� − e	�x� − E

kT
�dE ,

�11�

where the energy scale has been adjusted to the top of the
valence band in the conductor. The injection barrier � is
defined as the energetic difference of the top of the extended
state distribution, gs�E�, to the electrochemical potential in
the conductor at an infinite distance from the interface, ��.
The electrochemical potential of the insulator is then given
by

�s�x� = kT ln
 ps�x�
N � + � + �� + e	�x� , �12�

where the quantity

N = �
−�

�

gs�E�exp�− E/kT�dE �13�

can be understood as the effective total density of states
available in the insulator at a given temperature. We note that
the temperature dependence of N becomes weak in the case
of a narrow-band insulator.

Since band-gap energies are much larger than kT, thermal
excitation of a charge carrier from the valence band to the
conduction band of a typical insulator is virtually impossible.
Charge carriers contributing to the electrical current are
therefore excess charge carriers injected from the conductor
and their total density has to appear in Gauss law,

Fs��x� =
e

�s�0
ps�x� , �14�

with �s the relative dielectric permittivity of the insulator.
Equations �6�, �12�, and �14� with 
s�x�=e�sps�x� lead to a
nonlinear differential equation for the electric field Fs�x�,

kT

e
Fs��x� − Fs�x�Fs��x� = −

j

�s�s�0
, �15�

where �s is the hole mobility in the insulator. The same
result is obtained by employing the drift-diffusion model
�Eq. �3�� and the Einstein relation, relating �s and D.6 Intro-
ducing the following dimensionless quantities:

X =
1

lTF
x , �16�

Fs =
elTF

kT
Fs, �17�

� =
e2lTF

3

�s�s�0�kT�2 j , �18�

Eq. �15� converts into a dimensionless form,

Fs��X� − Fs��X�Fs�X� + � = 0. �19�

The solution of Eq. �19� must be separately formulated for
the two cases of thermal equilibrium and an applied steady-
state current. In equilibrium, the dimensionless current den-
sity � vanishes and Eq. �19� can be integrated in elementary
functions. The first integration results in

Fs��X� −
1

2
Fs

2�X� = � , �20�

with an arbitrary constant �. At an infinite distance from the
contact, the field and its derivative �i.e., the charge carrier
density� vanish; thus, �=0 and a solution for the electric
field read

Fs�X� =
Fs�0�

1 − Fs�0�X/2
. �21�

In Eq. �21�, the field at the contact in the insulator, Fs�0�, is
the only unknown quantity.

Considering a net current density, a general solution of
Eq. �19� is known in terms of Airy functions Ai and Bi,18,19

Fs�X� = − 22/3�1/3

�
Ai����/2�1/3�X + C1�� + C2 Bi����/2�1/3�X + C1��
Ai���/2�1/3�X + C1�� + C2 Bi���/2�1/3�X + C1��

,

�22�

where primes denote derivatives of Airy functions with re-
spect to their arguments, and C1 and C2 are unknown con-
stants. When X→�, the gradient of the charge carrier den-
sity has to vanish so that

Fs�X�Fs��X� = � . �23�

Equation �23� demonstrates that, in presence of a constant
current, the magnitude of the electric field Fs�X� rises asymp-
totically since the charge carrier density �Fs��X� vanishes.
Considering the asymptotic behavior of the solution of Eq.
�19�, it is convenient to account explicitly for the sign of the
current density �. Since we assume injection of holes from
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the left semispace to the right one, � together with j must be
positive. This imposes asymptotes of the field and the hole
density

Fs�X� � �X, ps � 1/�X , �24�

respectively, resembling the characteristic behavior for
SCLC.1 Taking into account asymptotic properties of Airy
functions,19 it is easy to establish that to satisfy the
asymptotic conditions for the field �Eqs. �23� and �24��, the
constant C2 must equal zero. Then, the general solution �Eq.
�22�� transforms to

Fs�X� = − 2��/2�1/3Ai����/2�1/3�X + C1��
Ai���/2�1/3�X + C1��

. �25�

The constant C1 must be determined from the boundary con-
ditions derived in the next section.

C. Self-consistency and boundary conditions at the contact

The equations of the electric-field distributions in the con-
ductor and in the insulator have to be solved self-
consistently. Assuming steady state, self-consistency is
achieved by adjusting the integration constants �i.e., Fs�0�,
Fc�0� and C1� with respect to the Maxwell equations and
continuity of the electrochemical potential,

�F�x� = continuous, �26�

��x� = continuous. �27�

Equation �26� requires that the electric displacement in the
insulator at the interface, �sFs�0�, is equal to �cFc�0�. This
holds as long as no interface charges or dipole layer exist at
the contact, being problematic in many systems considered
here.20–22 Yet, for simplicity and without loss of generality,
Eq. �26� is assumed, leading with Eqs. �27� and �10� to a
nontrivial boundary condition relating the electric field and
its first derivative in the respective media at the contact. In
the insulator, the following boundary condition holds:

�s

�c
Fs�0� −

�

kT
− ln��Fs��0�� = ��

�s

�c

N
p�

, �28�

where the dimensionless constant � is defined as

� =
�s�0kT

�ce
2lTF

2 N
=

3

2

�s

�c

kT

��

p�

N
. �29�

This boundary condition contains parameters of both media,
being specified in the bulk of the respective material.

III. PHYSICAL AND NUMERICAL ANALYSIS

In this section, the solution of the injection problem using
the presented model is discussed. We distinguish between the
equilibrium condition, where space-charge zones are formed
as a consequence of diffusive charge-carrier transfer, and the
case of a steady-state current, where charge carriers are
driven through the system by a time invariant external elec-
tric field.

As an example for an insulator, an organic semiconductor
can be considered. Organic semiconductors show many typi-
cal characteristics of insulators such as relatively large band
gaps up to 3 eV and hence, the absence of intrinsic charge
carriers. However, it is well established that disordered or-
ganic semiconductors possess a Gaussian DOS �Ref. 23�
compromising the applicability of Eq. �11�—organic semi-
conductors are degenerate systems; the tail states acting as
charge carrier traps. As a consequence, one has to distinguish
between trap states and transport states and Fermi statistics
has to be considered. Yet, for weak disorder, the Gaussian
width is small and in the limiting case of a vanishing disor-
der, charge-carrier trapping in tail states is negligible, and
Boltzmann statistics is valid.

In organic light-emitting diodes �OLEDs� or field-effect
transistors �OFETs�, organic semiconductors are contacted
with metals such as Au, Ca, and Al or transparent conducting
oxides such as indium tin oxide �ITO� to allow for charge
carrier injection in the otherwise charge-carrier free organic
semiconductor. While in metals the Thomas-Fermi approxi-
mation is disputable due to the prevailed low screening
length of 1 Å, the characteristic scale lTF varies in ITO, de-
pending on doping,15–17 from 2.4 Å to a few nanometers.
Therefore, we choose in our self-consistent consideration an
ITO electrode and assume that it can be described in terms of
the Thomas-Fermi approximation. ITO is typically employed
as anode in OLEDs,8 since it provides a decent conductivity
and a sufficient high work function �5 eV� to allow for effi-
cient hole injection while being transparent in the visible
range of the optical spectrum to enable light outcoupling.

Due to the importance of charge carrier injection for the
device performance of OLEDs and OFETs, the description of
the involved charge-carrier injection process has been ad-
vanced in recent years considering surface recombination of
charge carriers at the interface7,8,24,25 or stochastic hopping in
a surface-barrier potential.26–28 Even more suitable for or-
ganic semiconductors microscopic models account for the
mobility of electrons within and transfer between molecular
strands and for the interaction of electrons with molecular
vibrational modes.29 However, all these models work within
the single electron picture, so far it concerns the injection
process, which means that interaction between injected elec-
trons is not incorporated and, thus, space-charge effects on
the injection are not properly taken into account.

From now on, it is assumed that the material specific
quantities of the organic semiconductor and ITO adopt the
typical values given in Table I. Thereby, the injection barrier
� is given by the energetic difference between �� and the
band edge in the organic semiconductor and, thus, is deter-
mined by both media. Changing the value of the barrier
height while leaving the electrode unchanged can therefore
be understood as considering a different organic semiconduc-
tor.

Specifying the material parameters for the insulator and
the conductor leads to substantial consequences for the
boundary condition given in Eq. �28�. � is multiplied by a
small factor ���s /�c��N / p���10−7 and hence, the bound-
ary condition does not depend directly on � in most practical
cases. Neglecting ����s /�c��N / p��, Eq. �28� can be refor-
mulated to
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ps�0� = N exp���s/�c�Fs�0� − �/kT� , �30�

ps�0� being the density of injected holes at the contact. As a
consequence, the dependence of Fs�0� on the current is only
due to Eq. �19�. Apparently, there exists a barrier variation
�Fs�0� leading to the definition of an effective injection bar-
rier �ef f of

�ef f = � − kT��s/�c�Fs�0� �31�

=� − eFc�0�lTF. �32�

The modification of the injection barrier corresponds to the
amount of energy a charge carrier gains �or loses� in the
electric field at the electrode side of the interface. This
change, as is seen from Eq. �32�, may be positive or nega-
tive, since the space-charge region at the interface represents
a potential barrier itself.

A. Equilibrium

Using the analytical solution �Eq. �21�� valid for thermal
equilibrium, the boundary condition �Eq. �28�� can be sim-
plified to a transcendental relation for Fs�0�,

�s

�c
Fs�0� −

�

kT
− ln
�

2
Fs

2�0�� = 0. �33�

Fs�0� together with Eq. �21� yields the solution of the
electric-field distribution in thermal equilibrium. While the
charge carrier mobilities of the respective material determine
the time needed to reach equilibrium they apparently do not
influence the final equilibrium electric-field distribution.
Equations �21� and �33� are generally valid for nondegener-
ate systems.

The solution for the dimensionless electric field is shown
in Fig. 1, where the barrier-free injection ��=0� from an ITO
electrode in an organic semiconductor is considered. The so-
lution can be interpreted as follows. Holes diffuse from the
electrode into the organic semiconductor. This results in a
negative electric field causing a drift current opposite but
equal in absolute value to the diffusion current, so that the
net current is zero. As a consequence, a space-charge zone is
established in the electrode and in the organic semiconduc-
tor, which in total is neutral. This space-charge region is very
thin in the electrode but extends far into the organic semi-
conductor. The weak decay of the electric field �	Fs�X�	
�1/X� in the organic semiconductor is due to a missing
charge-carrier background in the insulator.

The distribution of the electric field changes when a non-
vanishing injection barrier is introduced. Due to an impeded
charge-carrier injection, the electric field is solely reduced
close to the interface, leaving the field far in the organic
material invariant.

Depending on the material parameters chosen, the param-
eter � �Eq. �29�� may be very large or very small �here, �
=5.6�10−3�. In these limits, the nonlinear equation �Eq.
�33�� can be solved approximately. If �
1, two characteris-
tic regions arise depending on the relation between � and
�0=kT ln�2/�� �here, �0
0.15 eV�. If the barrier height is
so small that �
�0, Fs�0� is given by

Fs�0� = − �A�c/�s��1 − �1 + A/2�−1 ln�A�c/�s�� , �34�

with A=ln�2/��−� /kT�1. If the barrier is so large that �
��0, then

Fs�0� = −�2

�
exp�−

�

2kT
� . �35�

The latter relation is also valid for ��1 and arbitrary �’s.
Equation �35� demonstrates the exponential suppression of
the electric field within the space-charge region by the injec-
tion barrier since less charge carriers are transferred across
the contact.

The integration of the electric field leads to a voltage Vequi
to maintain equilibrium. The equilibrium voltage Vequi is of-
ten referred to as the contact potential.5 Since the equilibrium

TABLE I. Typical material parameters for an organic semiconductor and ITO �Refs. 15–17�. The param-
eters are deduced assuming T=300 K. me is the electron mass and �=5.6�10−3 is determined by parameters
of both materials.

Organic ITO

N
�cm−3� �s

�s

�cm2/V s�
p�

�cm−3�
mef f

�me�
��

�eV� �c

�c

�cm2/V s�
lTF

�Å�

1021 3 10−4 1020 0.35 0.225 9.3 30 8.6

FIG. 1. Distribution of the electric field F in units of F0

=kT /elTF in equilibrium �j=0� and barrier-free case ��=0� as a
function of the coordinate X in units of lTF. The inset shows the
discontinuity of the electric field at the interface.
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field decreases with 1/X, the integration over the entire infi-
nite semispace diverges so that a cutoff length L has to be
introduced. This results from the fact that a perfect insulator
excluding any intrinsic charge carriers is considered. The
analytical expression for Vequi reads

Vequi =
kT

e

 �s

�c
Fs�0� − 2 ln�1 −

Fs�0�L
2lTF

�� , �36�

where Fs�0� results from the boundary condition in equilib-
rium �Eq. �33��. The existence of such an equilibrium voltage
has practical consequences for organic electronic devices. In
organic photovoltaic cells, the contact potential is known to
reduce the open-circuit voltage considerably once the barrier
height is small. In bulk-heterojunction solar cells based on
�6,6�-phenyl C61-butyric acid methyl ester as electron accep-
tor and poly�2-methoxy-5-�3� ,7�-dimethyloctyloxy�-p-
phenylene vinylene� as electron donator sandwiched between
poly- �ethylene dioxythiophene� doped with polystyrene sul-
phonic acid and LiF/Al electrodes a reduction of the open-
circuit voltage of 0.4 eV is observed.30

B. Steady state

Now, the steady-state situation, where a constant current j
flows across the ITO/organic semiconductor system, will be
considered. The solution is given by Eq. �25� and the un-
known constant C1 has to be found numerically from Eq.
�28�.

In Fig. 2, the solution for the dimensionless electric field
F is depicted for current densities of j=10 and 100 mA/cm2

and barrier-free injection ��=0�.
Comparison with the equilibrium solution shows that the

distribution of the electric field is, near the electrode, virtu-
ally independent of the net current density, but is substan-
tially effected by the current deep in the dielectric bulk. For
�=0, many holes diffuse into the organic semiconductor
�Fs��0� large� and a strong negative field in the vicinity of the
interface emerges. This negative field compensates for the

diffusion into the organic semiconductor to such an extent
that the net current reaches j. However, far away from the
contact where diffusion is negligible, the electric field has to
be positive �together with the current�. Thus, there is a posi-
tion X=X0 where the electric field changes sign, as can be
seen in Fig. 2. Since a vanishing electric-field strength is
assigned to the Ohmic contact itself, the position X0 is often
referred to as the virtual electrode.31

For a detailed discussion of the field distribution in the
insulator, the dependence of the position of the virtual elec-
trode, the electric field at the contact Fs�0�, and the charge-
carrier density �represented by Fs��0�� are shown in Fig. 3 as
functions of � and for two typical current densities. Addi-
tionally, the distribution of the electric field is depicted in
Fig. 4 for different injection barriers and a current density of
j=100 mA/cm2.

For small �’s, the electric field at the interface is negative,
the charge-carrier density is large, and the virtual electrode is
far inside the insulator. A charge-carrier reservoir is formed
in the near contact region and the current across the residual
insulator X�X0 is supplied by this reservoir. From Figs. 2
and 4, it becomes evident that the electric field follows F
��X−X0 for X�X0 and hence, resembles the field distribu-
tion of SCLC assuming Ohmic boundary conditions.1

Increasing the injection barrier, the position of the virtual
electrode is hardly effected until the injection barrier exceeds
0.1 eV. For a further increased barrier, it approaches the

FIG. 2. Distribution of the electric field F in units of F0

=kT /elTF for barrier-free charge-carrier injection and a constant
current of j=10 mA/cm2 �solid line� and j=100 mA/cm2 �dashed
line� as function of the coordinate x in units of lTF.

FIG. 3. �a� Position of the virtual electrode X0 in units of lTF for
current densities of j=10 mA/cm2 �solid line� and j
=100 mA/cm2 �dashed line� as a function of barrier height �. �b�
Electric-field strength at X=0 inside the semiconductor for current
densities of j=10 mA/cm2 �solid line� and j=100 mA/cm2 �dashed
line� as a function of barrier height �. The axis on the right-hand
side indicates the corresponding values for the derivative of the
electric field for current densities of j=10 mA/cm2 �dashed-dotted
line� and j=100 mA/cm2 �dotted line�.

NEUMANN et al. PHYSICAL REVIEW B 75, 205322 �2007�

205322-6



physical electrode rapidly. Simultaneously, Fs�0� approaches
zero and is pinned there for quite a wide � range. However,
this does not mean that the Ohmic boundary conditions
�Fs�0�=0 and ps�0�→�� assigned to an ideal contact1 is a
good approximation in this case. In fact, the density of the
charge carriers at X=0 is relatively low, though Fs�0�=0
holds. Fs�X� reflects neither �X−X0 nor a constant form.

By further increasing �, the amount of injected charge
carriers remains small, X0 is located at the physical electrode,
and Fs�0� becomes positive, while the field in the insulator is
weakly dependent on X. The charge-carrier reservoir in the
insulator is depleted and due to the few charge carriers at the
contact, a strong positive field is required to drive the current
across the near contact region.

Note that for Fs�0��0 �or X0�0�, the position of the
virtual electrode depends strongly on the induced current
density while Fs�0� and Fs��0� do not, reflecting the fact that
close to the contact the equilibrium field distribution is
hardly affected by the current but further in the insulator it is.
For barrier-free injection, the virtual electrode is shifted from
approximately X0=25 nm to 10 nm once the current in-
creases from j=10 mA/cm2 to j=100 mA/cm2. This is il-
lustrated in Figs. 2 and 3. Vice versa, the influence of the
current density on the field at the contact becomes recogniz-
able for larger barriers, once the charge carrier reservoir is
depleted and the virtual electrode coincides with the physical
one. This is due to the fact that a strongly increased positive
field is required to support an additional current density,
since the charge-carrier density is small.

From Fig. 3, it can be seen that the minimal injection
barrier required to result in a match of virtual and physical
electrode �Fs�0�=0� is shifted to smaller barriers for higher
current densities. By means of solution �25�, this may be
formulated as an exact relation between the quantities in-
volved. The requirement Fs�0�=0 results in the particular
value of the constant C1=z0�2/ 	�	�1/3, where z0�−1.02 is the
first zero of the Airy function Ai��z�. Using Eq. �28�, the

current magnitude �0, which suppresses the electric field at
the interface, is determined to be

�0 =
exp�− 3�/2kT�

21/2��	z0	�3/2 . �37�

From the above equation, it becomes evident that for in-
creased injection barriers, the minimal current density re-
quired to obtain a match of virtual and physical electrode is
exponentially reduced.

Knowledge about the distribution of the electric field
gives access to the voltage drop V across the system for a
given current density j and hence, to its IV characteristics. As
the model consists of infinite semispaces, integration over
the electric field diverges when being carried out over the
entire space, i.e., from X=−� to X= +�. This holds in equi-
librium as well as in steady state. However, since the focus
of this work is to analyze the contact phenomena arising
from the conductor/insulator junction, two simplifications are
introduced. Firstly, according to the definition of the contact
potential, the voltage drop is calculated by introducing a cut-
off length L corresponding to the typical thickness of the
organic layer. Hence, the bulk conduction in an organic layer
with finite thickness is taken into account. Secondly, since
the voltage drop across a conductor bulk of finite thickness is
small due to its high conductivity, the constant part equal to
the asymptotic constant field value times the macroscopic
conductor thickness is subtracted from the integral over the
conductor. Then, the voltage drop over the entire system
reads

V =
kT

e
� �s

�c
Fs�0� − ��

�s

�c

N
p�

− 2 ln�Ai���/2�1/3�L/lTF + C1��
Ai���/2�1/3C1�

�� − Vequi. �38�

Here, the first two terms in braces represent the voltage drop
in the electrode. The third term in braces results from the
voltage drop within a distance L from the contact inside the
organic semispace and the last term corrects the voltage by
its equilibrium value �Eq. �36��. The two �not independent�
constants Fs�0� and C1 result from the steady-state boundary
condition �Eq. �28��.

In Fig. 5, the resulting IV characteristics for different bar-
rier heights are presented assuming L=100 nm. In the dis-
played voltage region, the barrier-free contact ��=0� is able
to supply more charge carriers than the bulk of the organic
semiconductor can transport. Hence, the entire system ap-
pears to be space-charge limited with a current approxi-
mately j�V2 for all voltages. Deviations from the Mott-
Gurney law are due to the formation of the space-charge
region emerging by charge-carrier diffusion at X�X0. As the
current increases, the position of the virtual electrode ap-
proaches the real electrode and the width of this space charge
region decreases. Thus, the calculated curve reproduces the
Mott-Gurney law1 more exactly for higher voltages.

In the presence of nonvanishing barriers, the current is
substantially reduced. In the low-voltage regime, this reduc-
tion is about 1 order of magnitude once the height of the

FIG. 4. Distribution of the electric field F in units of F0

=kT /elTF for a constant current of 100 mA/cm2 and barrier height
of �=0.1 eV �solid line�, �=0.2 eV �dashed line�, �=0.3 eV �dot-
ted line�, and �=0.35 eV �dash-dotted line� as a function of the
coordinate X in units of lTF.
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barrier increases from �=0 to �=0.4 eV. For high �s, one
observes a transition from a j�V2 to a j�V dependence,
followed by an exponential current increase with the applied
voltage. Since the SCLC represents an upper limit for the
current flow through the system, all IV curves approach the
SCLC regime for even higher voltages.

The calculated IV characteristics for high injection barri-
ers can be understood by considering some simple approxi-
mations. Once the electric field at the interface becomes
positive, the charge-carrier reservoir established in the or-
ganic semiconductor is exhausted and no virtual electrode is
present. Hence, diffusion is negligible all over the space and
an electrical current is virtually due to charge carrier drift
only,

Fs��X�Fs�X� = � . �39�

The solution depends on Fs�0� and reads,32

Fs�X� = �Fs
2�0� + 2�X . �40�

Analyzing the drift equation �Eq. �39�� at X=0 by using the
boundary condition, Eq. �28� leads to an exponential depen-
dence of the dimensionless current � on the local value of the
electric field,

� =
Fs�0�

�
exp
 �s

�c
Fs�0� −

�

kT
� , �41�

where the right-hand side of the boundary condition �Eq.
�28�� has been neglected. Solving Eq. �41� numerically with
respect to Fs�0� for a given current density � determines the
electric-field distribution, Equation �40� and integrating the
field over the entire system leads to the IV characteristic.
This approximation offers a simple way to calculate IV
characteristics33 displayed exemplary for a barrier height of
�=0.4 eV in Fig. 6.

The agreement with the IV characteristic calculated using
the exact solution �Eq. �25�� is perfect for all voltages where
diffusive transport of charge carriers is negligible. This in-
cludes the SCLC regime at high bias. Only at low voltages,
where the charge carrier reservoir in the organic semiconduc-

tor is not exhausted, deviations are recognizable. According
to the exact relation �Eq. �37��, one can see that below a
characteristic current ��4�10−3, the virtual electrode at
X0�0 appears and the diffusion becomes important.

For a purely injection-limited regime, space-charge ef-
fects are of no importance, resulting in a constant electric
field all over the semiconductor semispace. This field coin-
cides with the electric-field strength at the interface. In such
a case Fs�0�
VelTF /kTL and Eq. �41� governs the injection-
limited IV characteristics alone,

jinj = e�s
V

L
N exp
−

�

kT
+

e�slTFV

�ckTL
� . �42�

Equation �42� resembles the result of the drift-diffusion
equation.5,33,34 Yet, the self-consistent treatment of the injec-
tion problem yields directly a barrier lowering arising from
the potential energy a charge-carrier gains on the conductor
side of the interface. In contrast to the ln�j���V dependence
of the Schottky-lowering predicted from the image-charge
potential in the single-electron picture, the current density
depends exponentially on the external voltage V. The
injection-limited current jinj�V� is depicted in Fig. 6.

Once space-charge effects become predominant, Fs�0�
can be neglected in Eq. �40� and the temperature-
independent Mott-Gurney law is reproduced. This occurs as
soon as the field-induced barrier lowering has proceeded to
such extent that the contact can again establish space charge
in the organic semiconductor. Hence, a transition from
injection-limited current to space-charge-limited current is
observed. As may be seen from Fig. 6, the crossover from
injection-limited current to SCLC occurs at rather high volt-
ages in the presence of a medium injection barrier of 0.4 eV.
This has its origin in the weak barrier lowering for increasing

FIG. 5. IV characteristics for barrier height of �=0, 0.2, 0.3,
0.35, and 0.4 eV. The curves for �=0 and �=0.2 eV nearly merge
in the above representation.

FIG. 6. IV characteristic for barrier height of �=0.4 eV. The
solid line has been obtained using the exact solution �Eq. �25�� of
the complete drift-diffusion equation �Eq. �19��. The circles show
the IV characteristic calculated with the help of the semianalytical
approach derived for high injection barriers �Eqs. �40� and �41�� and
the triangles display the injection current jinj calculated with the
help of Eq. �42�. The dashed line shows a characteristic current of
the virtual electrode appearance.
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external voltage. Due to the low screening length in the con-
ductor, a high-voltage drop across the entire system is re-
quired to result in an energy gain in the conductor being
comparable to the injection-barrier energy. Note that in con-
trast to a space-charge formation resulting from diffusion, the
electric field at the contact is positive once the space-charge
formation is solely due to a drift-controlled injection. Such a
SCLC regime occurs also for barrier-free injection as soon as
the diffusive filling of the space-charge region is weaker than
its depletion due to the external applied field. This, however,
requires a very high bias. As a result, the SCLC is directly
supplied by an efficient charge-carrier drift out of the con-
ductor.

From Eq. �42� and Mott-Gurney law, one can estimate the
upper limit of the barrier required to retain SCLC over the
whole voltage range,

�crit = kT + kT ln�16

27

L

lTF

N
p�

��

kT
� . �43�

Assuming the parameters introduced before, we can predict a
critical barrier height of 0.25 eV. This is in slight contradic-
tion to device models in which a Schottky-type barrier low-
ering is assumed.24,25,35 Here, one would expect the cross-
over between SCLC and injection-limited current to occur at
an injection barrier of �crit�0.35 eV. However, up to now,
the experimental data available predict the crossover to be at
a barrier height between 0.2 and 0.35 eV, being consistent
with both approaches.

IV. CONCLUSIONS

In the calculation of the charge-carrier transport through
insulators, a fundamental question about the boundary con-
ditions generally arises when a charge-carrier injecting inter-
face has to be involved. Typically, boundary conditions at the
interface are chosen, fixing there the charge carrier density

and/or the electric field. However, at the conductor/insulator
contact the system is ill-defined, meaning that especially at
the interface the charge carrier density and the electric field
strongly depend on the condition of the system.

In this paper, a one-dimensional analytical model describ-
ing the charge-carrier transport across a conductor/insulator
junction was presented, where boundary conditions are de-
fined far into the conductor and the insulator, respectively.
Here, the influence of the two materials on each other is
negligible so that they can be regarded as independent. Con-
sidering the Poisson equation and assuming the electric dis-
placement as well as the electrochemical potential being con-
tinuous over the entire system, the electric-field distribution
and the current-voltage characteristic were derived. The
model predicts SCLC, injection-limited conduction, as well
as the crossover between the two limits. In most current re-
gimes, the influence of the self-consistent treatment is notice-
able. For pure injection-limited conduction, an injection cur-
rent similar to the prediction of the drift-diffusion theory was
derived. However, due to the consistent treatment of the in-
jection problem in one dimension, a barrier lowering differ-
ent to the one predicted from the three-dimensional image-
charge potential in the single-electron picture emerges. This
injection-barrier lowering results from the potential energy
gain �or loss� of the charge carriers in the electrode. Also for
SCLC, a deviation of the Mott-Gurney law is observable as
long as the virtual electrode does not match the physical one.
Only at high bias, the self-consistent treatment has no influ-
ence on the IV characteristic and the well known Mott-
Gurney law is fully reproduced.
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