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A nanomechanical resonator coupled to a tunnel junction is studied. The oscillator modulates the transmis-
sion of the junction, changing the current and the noise spectrum. The influence of the oscillator on the noise
spectrum of the junction is investigated, and the noise spectrum is obtained for arbitrary frequencies, tempera-
tures, and bias voltages. We find that the noise spectrum consists of a noise floor and a peaked structure with
peaks at zero frequency, the oscillator frequency, and twice the oscillator frequency. The influence of the
oscillator vanishes if the bias voltage of the junction is lower than the oscillator frequency. We demonstrate that
the peak at the oscillator frequency can be used to determine the oscillator occupation number, showing that the
current noise in the junction functions as a thermometer for the oscillator.
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I. INTRODUCTION

The recent years have seen the shrinking of mechanical
components to micrometer and further to nanometer size,
spawning the new field of nanomechanics.1,2 Manufacturing
techniques borrowed from semiconductor chip manufactur-
ing �see, e.g., Ref. 3� as well as bottom up approaches uti-
lizing nanotubes4 make it possible to produce nanomechani-
cal resonators with resonance frequencies presently
demonstrated up to 1 GHz. Nanomechanical resonators are
of interest for several reasons. In proposed tests of the limits
of quantum mechanics one would like to investigate the de-
coherence behavior of superpositions of macroscopically dis-
tinct states, of, e.g., a nanomechanical resonator.5,6 Typical
nanomechanical resonators contain a macroscopic number of
atoms, �107, making the amplitude of the basic mode a mac-
roscopic observable. The signature of such superpositions is
strongest for low oscillator occupation numbers. Presently
obtainable resonator frequencies are high enough to make
cooling to the ground state feasible. Experimental efforts are
under way to reach the first goal necessary for these mea-
surements, cooling a nanomechanical resonator to the ground
state.7–11

Other applications include the use of nanomechanical
resonators as ultrasensitive force detectors. Mass detection
with zeptogram resolution utilizing nanomechanical resona-
tors has been realized only recently.12 Nanosized cantilevers
can also be used to detect magnetic forces. Detection of a
single electron spin using a nanomechanical cantilever has
already been demonstrated.13 Nanomechanical resonators
can also find an application in the context of quantum com-
puting. Coherent mechanical oscillators are suggested as
coupling elements between phase qubits in a solid state
quantum computer.14 All the mentioned applications not only
require the fabrication of a suitable oscillator but also a way
to detect the motion of a nanomechanical resonator. Different
schemes for detection have been proposed �see, e.g., Ref. 1�.
The most promising candidates for sensitive readout are
electrical devices, such as tunnel junctions or single electron

transistors, incorporated on the same chip as the nanome-
chanical resonator.1

In the light of the possible applications, it is necessary to
obtain a theoretical understanding of nanomechanical reso-
nators interacting with electrical devices on a chip. Theoret-
ical descriptions of charge dynamics influenced by an oscil-
lator have, up to now, mainly used a master equation
technique. Mozyrsky and Martin investigated the model,
where the transmission coefficient of a tunnel junction de-
pends on the position of a nearby harmonic oscillator, in the
zero temperature limit. They found that the oscillator ac-
quires an effective temperature proportional to the junction
bias voltage and also find the influence of the oscillator on
the junction current at zero temperature.15 Clerk and Girvin
calculated the noise induced by a harmonic oscillator in a
tunnel junction for dc and ac bias at zero temperature using a
Markovian master equation.16 The authors, together with
Khomitsky found the current in a tunnel junction influenced
by an oscillator for arbitrary system parameters.17 The cur-
rent and the noise power spectrum for an asymmetric junc-
tion in the high voltage limit were also calculated. Smirnov
et al.18 analyzed the position fluctuations in the stationary
state of a nanomechanical oscillator coupled to a tunnel junc-
tion for an exponential dependence of the tunneling ampli-
tude on the oscillator position as well as the current through
the tunnel junction. The theory of a nanomechanical oscilla-
tor interacting with a single electron transistor was consid-
ered by several researchers. Studies concentrated on the ef-
fects the single electron transistor �SET�, acting as a
nonequilibrium environment, has on the oscillator. Rodrigues
and Armour19 derived a master equation for an oscillator-
single electron transistor system and investigated stationary
state properties and dynamics. Blencowe et al.20 as well as
Clerk and Bennett21 considered the interaction of a supercon-
ducting single electron transistor with a nanomechanical
resonator and discovered that for a particular source-drain
voltage the single electron transistor can cool the oscillator,
and investigated a regime where the damping constant be-
comes negative.
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In this paper we consider a tunnel junction coupled to a
harmonic oscillator as a model for a nanomechanical resona-
tor interacting with a detector. We assume the coupling to the
junction to be linear in the oscillator coordinate, since the
limit of small oscillator displacement is of main interest.
Naturally, this approximation breaks down for large displace-
ment, i.e., at high temperatures or voltages. We will concen-
trate on the features of the noise power spectrum that the
oscillator induces in the tunnel junction. We are interested in
this model system for several reasons: The induced noise
provides a means to determine the temperature of the oscil-
lator. A shot noise thermometer, utilizing a tunnel junction,
was demonstrated by L. Spietz et al.22 and was shown to
work over a temperature range from 50 mK to 25 K. The
noise induced by a nanomechanical oscillator in a SET has
been successfully used to detect the temperature of a nano-
mechanical oscillator in two recent experiments,7,8 in the re-
gion where the occupation number of the oscillator was
large.

We also want to investigate if there exists a signature of
the oscillator in the noise power spectrum even if the oscil-
lator is in its ground state and the voltage is insufficient to
excite the oscillator. A recent treatment of a similar system,
considering a spin instead of an oscillator, claims a nonvan-
ishing contribution to the noise power under these
conditions.23 A similar prediction could be made by blithely
extending the result obtained by a Markovian master equa-
tion �e.g., from Ref. 17� into the region where the bias volt-
age is smaller than the oscillator frequency. Revisiting the
problem utilizing a different technique will give us opportu-
nity to investigate the question of the seemingly nonvanish-
ing noise.

Also, there has been a recent theoretical discussion about
which current-current correlator is detected in a noise experi-
ment. Lesovik and Loosen,24 Aguado and Kouwenhoven,25

as well as Gavish et al.26 argue, that a passive detector, e.g.,
a LC oscillator at zero temperature or a two-level system,
can only detect the positive frequency part of the Fourier
transform of the unsymmetrized current-current correlator.
The oscillator coupled to a tunnel junction gives us the op-
portunity to revisit this question in the context of a more
complicated system than a mere tunnel junction.

In this paper, we will apply a Green’s function technique
to calculate the noise power spectrum of a tunnel junction
coupled to an oscillator in the approximation of weak cou-
pling, but for otherwise arbitrary parameters. The paper is
structured as follows. In Sec. II we introduce the model
Hamiltonian, and in Sec. III we consider the stationary state
of the oscillator using Green’s function technique. In Sec. IV
we calculate the average current through the junction as well
as the unsymmetrized noise power spectrum. We consider
application of the results in Sec. V, discussing noise ther-
mometry. We present the conclusions in Sec. VI. Details of
the calculations are presented in the appendices.

II. OSCILLATOR INTERACTING WITH A TUNNEL
JUNCTION

Let us consider the situation of a nanomechanical resona-
tor, modeled as harmonic oscillator, interacting with a mea-

suring device, modeled as a tunnel junction. The oscillator
modulates the transmission amplitude of the junction, thus
changing the current and noise characteristics of the junction.
The biased junction in turn acts as a nonequilibrium environ-
ment for the oscillator, driving the oscillator from its initial
state into a stationary thermal equilibrium state, albeit with a
temperature different from the environment temperature of
the tunnel junction. The Hamiltonian of the model system is

Ĥ = Ĥ0 + Hl + Hr + ĤT, �2.1�

where Ĥ0 is the Hamiltonian for the isolated harmonic oscil-
lator with bare frequency �B and mass m. A hat marks op-
erators acting on the oscillator degree of freedom. The
Hamiltonians Hl,r specify the isolated left and right elec-
trodes of the junction

Hl = �
l

�lcl
†cl, Hr = �

r
�rcr

†cr, �2.2�

where l ,r label the quantum numbers of the single particle
energy eigenstates in the left and right electrodes, respec-
tively, with corresponding energies �l,r and annihilation and

creation operators. The operator ĤT describes the tunneling,

ĤT = T̂ + T̂†, T̂ = �
l,r

T̂lrcl
†cr �2.3�

with the tunneling amplitudes, T̂lr= T̂rl
† , depending on the os-

cillator degree of freedom. Due to the interaction of the tun-
nel junction and the oscillator, the tunneling amplitudes and
thereby the conductance of the tunnel junction depend on the
state of the oscillator. In the following, we assume linear
coupling between the oscillator position and the tunnel junc-
tion

T̂lr = vlr + wlrx̂ , �2.4�

where vlr=vrl
* is the unperturbed tunneling amplitude and

wlr=wrl
* is its derivative with respect to the position of the

oscillator.
To discuss the current and noise in the tunnel junction, the

current operator is needed,

Î = i�T̂ − T̂†� . �2.5�

The tunneling Hamiltonian consists of a part independent
of the state of the oscillator and a part that depends on the
state of the oscillator, so that the tunneling Hamiltonian, Eq.
�2.3�, can be presented in the form

ĤT = hv + x̂hw. �2.6�

For notational convenience, we have introduced the sym-
bolic notation

hu = Tu + Tu
†, Tu = �

lr
ulrcl

†cr, u = v,w , �2.7�

where the symbol ulr can take the values vlr or wlr. Similarly,
we can write the current operator �Eq. �2.5�� as
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Î = jv + x̂ jw, �2.8�

with

ju = i�Tu − Tu
†�, u = v,w . �2.9�

When calculating current and noise in the tunnel junction,
the following combinations of the model parameters vlr and
wlr appear

�Gvv

Gww

Gvw
� = 2��

lr � vlr
2

wlr
2

vlrwlr
�	−

�f��l�
��l


���l − �r� ,

�2.10�

where f is the Fermi function. Here and in the following, the
transmission matrix elements are assumed real.

III. STATIONARY STATE PROPERTIES OF THE
OSCILLATOR

In this section we consider the properties of the stationary
state a harmonic oscillator reaches due to interaction with a
tunnel junction. In the Keldysh technique �for a review see,
e.g., Ref. 27�, we introduce the contour ordered oscillator
matrix Green’s function,

D��,��� = − i�Tc�x̂H���x̂H������ . �3.1�

The subscript H refers to an operator in the Heisenberg pic-
ture. Each of the times � and �� belong to one of the two
branches of the Keldysh contour from −� to +�, Tc denotes
the contour ordering operator that orders operators along the
Keldysh contour. We will use the symbol � to denote times
on the contour, whereas t denotes real times. The branch
index makes D a 2	2 matrix. The Keldysh matrix defined
by Eq. �3.1� can be linearly transformed to the “triangular”
form,

D = DR DK

0 DA � , �3.2�

where DR, DA, and DK are the retarded, advanced, and
Keldysh Green’s functions, respectively.

For a stationary state, the elements of the Keldysh matrix
are functions of only the difference of real times t− t�, and
the Fourier transformed oscillator Green’s function satisfies
the matrix Dyson equation

�D0
−1�
� − ��
��D�
� = 1̂, �3.3�

where D0
−1�
�= �m�
2−�B

2��, �B being the bare oscillator
frequency, and the self-energy �polarization operator� is a
matrix of the form

� = �R �K

0 �A � . �3.4�

Assuming weak interaction of the oscillator with the tunnel
junction, the self-energy can be taken to lowest order. Cal-
culations, details of which can be found in Appendix A, give
the following expression for the polarization operator,

��
� = − iGww
 2SV�
�
0 − 


� + Rww
+ �
�1̂ , �3.5�

where the conductance Gww is defined in Eq. �2.10� and the
second term, the real part of the self-energy, is given by Eq.
�A11�; for 
 of the order of the oscillator frequency, Rww

+ �
�
can be replaced by a constant Rww

+ �
��Rww
+ �0�.32 The func-

tion

SV�
� =
V + 


2
coth

V + 


2T
+

V − 


2
coth

V − 


2T
, �3.6�

where T is the temperature of the junction and V=eU, U
being the applied dc voltage, is proportional to the well-
known value of the power spectrum of current noise of the
isolated junction, see, e.g., Ref. 28. Solving the Dyson equa-
tion �Eq. �3.3��, the retarded and advanced oscillator Green’s
functions become

DR�
� = m−1 1

�
 + i�e�2 − �2 , DA�
� = �DR�
��*,

�3.7�

where �e=−I�R�
� /2m
, the damping coefficient due to
the coupling to the junction is

�e =
Gww

2m
, �3.8�

and the renormalized oscillator frequency is

�2 = �B
2 − �e

2 +
1

m
Rww

+ �0� . �3.9�

For the Keldysh component, we obtain

DK�
� = �DR�
� − DA�
��
SV�
�



. �3.10�

Additionally to the environment provided by the coupling
to the tunnel junction, a nanomechanical oscillator is also
subject to an intrinsic environment, e.g., phonons, acting as a
heat bath and leading to damping. This additional heat bath,
which we take to have the same temperature T as the junc-
tion, can be added phenomenologically, or explicitly by add-
ing the interaction with a bath of harmonic oscillators �as
introduced in Refs. 16 and 17�. The total damping coefficient
for the harmonic oscillator will then be the sum of the damp-
ing coefficients stemming from the tunnel junction �e and the
heat bath �0, giving a total damping coefficient �=�e+�0. As
a consequence of the additional heat bath, the relation be-
tween the oscillator Green’s functions �Eq. �3.10�� is modi-
fied according to

DK�
� = �DR�
� − DA�
��	�e

�

SV�
�



+
�0

�
coth




2T

 ,

�3.11�

with the damping coefficient �e given in Eq. �3.8�. The rela-
tion for the Keldysh Green’s function �Eq. �3.11�� is charac-
teristic of the oscillator interacting with the environment
which is in a nonequilibrium but steady state, and only in the
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absence of a bias voltage does it reduce to the fluctuation-
dissipation relation for an oscillator in thermal equilibrium at
temperature T. However, since the coupling of the oscillator
to the junction is weak, �max�V ,� ,T�, the oscillator spec-
tral function is peaked at its frequency �, and Eq. �3.11� can
be written in the standard form

DK�
� = �DR�
� − DA�
��coth



2T* , �3.12�

where the temperature T* characterizing the stationary state
of the oscillator is given by

coth
�

2T* = 	�e

�

SV���
�

+
�0

�
coth

�

2T

 . �3.13�

The temperature of the oscillator T* depends not only on the
environment temperature T but also on the bias voltage of
the junction V, as well as the relative coupling strengths �e /�
and �0 /�. For zero bias voltage the effective temperature
reduces to the environment temperature. A frequency-
dependent effective temperature in the context of nanome-
chanical systems was also discussed by Clerk,29 as well as by
Clerk and Bennett,21 for coupling to a general environment.
Clerk derived a Langevin equation for a harmonic oscillator
coupled to a fluctuating force and obtained a relation similar
to Eq. �3.13�, defining a frequency dependent effective tem-
perature.

IV. NOISE PROPERTIES OF THE JUNCTION

In this section we shall study how a harmonic oscillator
interacting with a tunnel junction influences the current noise
in the tunnel junction in the steady state. The noise properties
of the junction current can be obtained in perturbation theory.
The noise spectrum is specified by the current-current corre-
lation function

��ÎH�t��ÎH�t��� = �ÎH�t�ÎH�t��� − I2, �4.1�

where the current operator is given by Eq. �2.8� and the
subscript H refers to an operator in the Heisenberg picture.
For calculational convenience, we introduce the current-
current correlator with the time arguments lying on the
Keldysh contour

S��,��� = �Tc��ÎH����ÎH������ . �4.2�

It can be written in the interaction picture as

S��,��� = �Tc�e−i�cd�ĤT���Î���Î������ − I2, �4.3�

where c denotes the Keldysh contour. To obtain the noise
spectrum from the current-current correlator Eq. �4.3�, we
introduce Keldysh indices i, j=1,2, that label the contour,
e.g., i=1 for the forward contour or i=2 for the backward
contour, and revert to using the real times t and t� so that

S��,��� → Sij�t − t�� . �4.4�

Finally, taking the Fourier transform of Eq. �4.4�, we obtain

Sij�
� = �
−�

�

dtei
tSij�t� . �4.5�

For calculational purposes it is sufficient to consider the real-
time unsymmetrized current-current correlator

S��t − t�� = S12�t − t�� = �I�t�I�t��� , �4.6�

since all other correlators can be derived from it, e.g.,
S��t− t��= �I�t��I�t��=S��t�− t�.

A. I-V characteristic

First, we calculate the average current I to second order in
the tunneling amplitude

I�t� = − i�
c

d��Tc�ĤT���Î�t��� . �4.7�

Inserting the tunneling Hamiltonian �Eq. �2.6�� and the cur-
rent operator �Eq. �2.8��, we get two contributions to the
current

I = Ivv + Iww, �4.8�

where one part is given by the standard result for the tunnel
junction

Ivv = GvvV , �4.9�

with the conductance given by Eq. �2.10�.
The contribution induced by the coupling to the oscillator

Iww can be written as

Iww =
1

2i
Gww�

−�

�

d
J�
� , �4.10�

where the conductance is given by Eq. �2.10� and

J�
� = VDK�
� − �DR�
� − DA�
���V�
� , �4.11�

with the oscillator Green’s functions found in Sec. III, and

�V�
� =
V + 


2
coth

V + 


2T
−

V − 


2
coth

V − 


2T
.

�4.12�

Since the oscillator Green’s functions are peaked at the os-
cillator frequency the integral in Eq. �4.10� can be evaluated,
and using the expression for the Keldysh Green’s functions,
Eq. �3.12�, we get

Iww =
1

2
G̃ww�V+N* + V−�N* + 1�� , �4.13�

where

G̃ww =
�

m�
Gww, �4.14�

and we introduce the short notation

V± = V ± �V��� �4.15�

and the occupation number of the oscillator is given by the
Bose function
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N* =
1

e�/T*
− 1

, �4.16�

where the temperature of the oscillator T* is specified in Eq.
�3.13�. From Eq. �4.13�, it can be seen that two oscillator-
assisted tunneling processes contribute to the current: tunnel-
ing electrons gaining energy from the oscillator and loosing
energy to the oscillator, respectively.

B. Current-current correlator

Next, we turn to calculate the current-current correlator.
For an isolated junction, the noise is given by the second
order expression in the tunneling amplitude since the fourth
order correction only introduces a small featureless correc-
tion. However, when the junction is coupled to a quantum
system exhibiting resonant behavior, as in the case of the
oscillator, the interaction of the system with the tunnel junc-
tion can markedly increase the fourth order noise correction
at the resonance and combinational frequencies. We will be
interested in the resonant contributions and will therefore
consider the current-current correlator to fourth order.

Expanding the expression for the current-current cor-
relator �Eq. �4.3�� to fourth order in the tunneling amplitude,
we obtain

S��,��� = S�2���,��� + S�4���,��� , �4.17�

with the correlator to second order in the tunneling amplitude

S�2���,��� = �Tc�Î���Î������ �4.18�

and the correlator to fourth order in the tunneling amplitude

S�4���,��� = −
1

2
�

c

d�1�
c

d�2�Tc�ĤT��1�ĤT��2�Î���Î������L,

�4.19�

where the subscript L denotes that only linked diagrams con-
tribute to the expression, since the disconnected diagrams are
canceled by the current squared term. We first investigate the
second order in tunneling contribution to the current-current
correlator, resulting in the noise floor.

1. Noise floor

In this section we are going to discuss the noise floor. The
main contribution to the floor comes from the second-order
contribution to the noise spectrum.

To second order in the tunneling amplitudes, the current-
current correlator,

S�2���,��� = Svv��,��� + Sww��,��� , �4.20�

consists of the correlator for the isolated junction

Svv��,��� = �Tc�jv���jv������ = − i�vv
+ ��,��� , �4.21�

and a contribution induced by the coupling to the oscillator

Sww��,��� = �Tc�jw���jw�������Tc�x̂���x̂������ , �4.22�

and therefore

Sww��,��� = − �ww
+ ��,���D��,��� , �4.23�

where �vv
+ and �ww

+ are given by Eq. �A1�. The correlator for
the isolated junction can be presented as

Svv
� �
� = Gvv�SV�
� − 
� . �4.24�

This result has been previously obtained by Aguado and
Kouwenhoven for the quantum point contact.25

The symmetrized noise spectrum of an isolated junction,

Svv
K �
� = Svv

� �
� + Svv
� �
� , �4.25�

becomes the well-known result,30

Svv
K �
� = 2GvvSV�
� , �4.26�

where we used the property, S��
�=S��−
�. In the limit of
zero voltage, the noise floor reduces to Johnson-Nyquist
noise. The Markovian master equation approach employed in
Refs. 16 and 17 is not able to reproduce the correct fre-
quency dependence, but only captures the zero frequency
noise, and gives a constant noise floor with the magnitude of
SK�0�.

At low temperatures TV, the noise spectrum Svv
� is con-

trolled by the voltage V: at positive frequencies 
� �V� the
noise is exponentially small, Svv

� �
��0, and Svv
� increases

linearly with the distance from the threshold 
= �V�,

Svv
� �
� = Gvv��V − 
���V − 
� + �− V − 
���− V − 
�� .

�4.27�

Equation �4.27� shows that at T=0, the noise power Svv
� �
� is

proportional to the phase space volume available for tunnel-
ing events, i.e., the total number of electron-hole states, with
an electron on one side of the junction and a hole on the
other side, with the excitation energy 
. Obviously, this re-
sult holds only in the frequency range where the electron
density of states can be considered as a constant.

According to Eq. �3.5� the contribution to the noise in-
duced by the oscillator �Eq. �4.23�� becomes

Sww
� �
� = 2Gww�

−�

�

d
1�SV�
1� − 
1�D��
 − 
1� ,

�4.28�

where D��
�= �DK�
�−DR�
�+DA�
�� /2. Recalling that
the oscillator Green’s functions are peaked at the oscillator
frequency, the resulting contribution to the noise can be pre-
sented as

Sww
� �
� =

1

2
G̃ww�N*�SV�
−� − 
−� + �N* + 1��SV�
+� − 
+��

�4.29�

where 
±=
±� and the conductance G̃ww is given by Eq.
�4.14�.

The second-order contribution of the oscillator to the
noise is similar to that of an isolated junction: with a differ-

ent coupling, G̃ww in the place of Gvv, the noise is given by
the same expressions apart from the frequency shift ±�. The
two terms in Eq. �4.29� give the noise contribution due to the
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processes of electron tunneling accompanied by absorption
or emission of oscillator quanta, respectively. When the os-
cillator approaches the ground state, N*→0, and at low junc-
tion temperatures, T� ,V, the noise Sww

� �
� is seen to van-
ish for frequencies larger than V−�.

As expected, there will be no contribution to the noise
�Eq. �4.29�� for positive frequencies at zero temperature and
voltage �V���, since the voltage is insufficient to excite the
oscillator.

To summarize, the second-order contribution to the noise
spectrum consists of the well-known noise spectrum of an
isolated junction, and a part that depends on the state of the
oscillator. The second-order contribution to the noise spec-
trum is frequency dependent and changes on the scale of
max�V ,� ,T�.

2. Resonant contribution to the current-current correlator

In this section we consider the resonant contribution to
the noise spectrum, that is, sharp peaks in the noise power
with a width given by the oscillator damping �. Technically,
the resonant contribution originates from the fourth order
terms �Eq. �4.19��. Among various Feynman diagrams gen-
erated by the expression in Eq. �4.19�, we are therefore in-
terested only in those that produce resonant features. The
diagrams of interest are shown in Figs. 1 and 2, where the
wiggly lines represent oscillator Green’s functions, while the
bubbles labeled with ��� are antisymmetric combinations of
bubbles of electron Green’s functions as specified in Fig. 3.

The diagrams with a single oscillator line in Fig. 1 gen-
erate sharp features in the noise spectrum at 
= ±�, while
the two-line diagrams in Fig. 2 are responsible for noise
peaks in the vicinity of 
=0 and 
= ±2�.

An example of a fourth-order diagram whose contribution
is a featureless function of frequency 
 is shown in Fig. 4. In
this diagram, the frequency of the oscillator line is integrated
over, and therefore the resonant contribution is absent. Being
small compared with the second-order contribution to noise,
this diagram and other diagrams of this type can be dis-
carded.

We will denote the resonant contribution of the fourth-
order diagram to the current correlator by Sres

� . It is given by
the sum

Sres
� �
� = Sv2w2

� �
� + Sw4
� �
� , �4.30�

where Sv2w2
� �
� and Sw4

� �
� are the contributions of the dia-
grams in Figs. 1 and 2, respectively.

Evaluating the expression represented in Fig. 1 by per-
forming the summation over the contour indices k and l, and

FIG. 1. The four diagrams proportional to v2w2 that contribute
to the peak at the oscillator frequency. The wiggly lines represent
the oscillator propagator and the bubbles are defined according to
Fig. 3. The short arrows labeled by 
 indicate the external fre-
quency, and i, j, k, and l, are Keldysh indices.

FIG. 2. The two diagrams proportional to w4 that contribute to
the peaks at 
=0 and 
=2�. The wiggly lines represent the oscil-
lator propagator and the bubbles are defined according to Fig. 3.
The short arrows labeled by 
 represent the external frequency, and
the indices i, j, k, and l are Keldysh indices. Integration over the
internal frequency 
1 is implicit.

FIG. 3. The diagrammatic representation of the junction Green’s
functions �Eq. �A1��. Each bubble represents a linear combination
of two electron bubble diagrams, with the Keldysh indices i and j.
Integration over the internal frequency 
1 is implicit.

FIG. 4. A diagram representing a nonbubble contribution to the
noise spectrum. The solid lines represent left and right side electron
Green’s function, and the wiggly line represents the oscillator
Green’s functions. Integration over 
1 and 
2 is implied.
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inserting the bubbles and Green’s functions, we get �see Ap-
pendix B for details�

Sv2w2
� �
� = − 2iGvw

2 VJ�
� , �4.31�

where the function J�
� is specified in Eq. �4.11� and the
conductance given in Eq. �2.10�. This contribution to the
noise spectrum is peaked at 
= ±� due to the resonant be-
havior of the harmonic oscillator spectral function. The de-
pendence of the peak height on the system parameters will
be discussed in Sec. IV C.

The contribution containing two oscillator Green’s func-
tions in Fig. 2 is calculated in Appendix B to give

Sw4
� �
� =

Gww
2

2
�

−�

�

d
1J�
1�J�
 − 
1�

+
Gww

2

2
�

−�

�

d
1A�
1�A�
 − 
1�

	�V − �V�
1���V − �V�
 − 
1�� , �4.32�

where we introduced the oscillator spectral function A�
�
= i�DR�
�−DA�
��. The dependence of the contribution to
the noise spectrum �Eq. �4.32�� on system parameters will be
discussed in Sec. IV C.

C. Resonant contributions to the noise spectrum

The resonant contribution to the noise consists of peaks at
zero frequency, 
=0, the oscillator frequency, 
= ±�, and
twice the oscillator frequency, 
= ±2�. Their heights de-
pend inversely on the damping coefficient of the oscillator,
�, and their width is proportional to the damping coefficient.
In this section we will discuss the properties of the peaked
structure and its dependence on environment parameters like
bias voltage and temperature. The peaked contribution to the
noise can be written as

Sres
� �
� = S−2

� �
� + S−1
� �
� + S0

��
� + S1
��
� + S2

��
� ,

�4.33�

where S0
��
� describes the peaked contribution to the noise

spectrum at zero frequency, S±1
� �
� the contributions at the

oscillator frequency, and S±2
� �
� the contributions at twice

the oscillator frequency.
The peaks at the frequencies 
= ±� originate from the

bubble contribution, Sv2w2
� �
�, given in Eq. �4.31�. Inserting

the explicit form of the oscillator Green’s functions �Eqs.
�3.7� and �3.12�� in Eq. �4.31�, and using the fact that the
oscillator Green’s functions are peaked at the oscillator fre-
quency, we obtain for the resonant contribution to the noise
spectrum at the oscillator frequency,

S±1
� �
� =

�2

�
 � ��2 + �2 P�. �4.34�

The peak height at the resonance frequency is

P� =
2

�
G̃vw

2 V�N*V+ + �N* + 1�V−� , �4.35�

where V± is given by Eq. �4.15� and N* is the occupation
number of the oscillator. The peak height scales inversely
with the damping coefficient �. For large voltages V�� the
peak height is linear in the occupation number N* and qua-
dratic in the voltage. The result, Eq. �4.35�, extends the result
from the Markovian master equation calculation in Refs. 16
and 17 to voltages smaller than the oscillator frequency.

The peaks at frequencies 
=0 and 
= ±2� come from
the fourth-order contribution quadratic in the oscillator
Green’s functions �Eq. �4.32��. The remaining integration in
Eq. �4.32� can be done and the dominating contribution for
weak damping comes from the poles of the oscillator Green’s
functions. Collecting the contributions to the peak at zero
frequency, we get

S0
��
� =

4�2


2 + 4�2 P0, �4.36�

where the peak height P0 is

P0 =
1

2�
G̃ww

2 V�N*2V+ + �N* + 1�2V−� . �4.37�

The peak height at zero frequency also scales inversely with
the damping coefficient � and depends quadratically on the

conductance G̃ww. The result for the peak at zero frequency
�Eq. �4.36�� coincides with the result obtained by using a
Markovian master equation approach as in Ref. 17, which
therefore correctly captures the low frequency noise.

The contributions at double the oscillator frequency differ
for positive and negative frequencies. In the vicinity of 

=2�,

S2
��
� =

4�2

�
 − 2��2 + 4�2 P2�, �4.38�

with the peak height given by

P2� = G̃ww
2 1

4�
VN*�V+N* + V−�N* + 2�� , �4.39�

and for 
�−2�,

S−2
� �
� =

4�2

�
 + 2��2 + 4�2 P−2�, �4.40�

with the peak height

P−2� = G̃ww
2 1

4�
V�N* + 1��V+�N* − 1� + V−�N* + 1�� .

�4.41�

The peaks at double the oscillator frequency also show reso-
nant behavior, i.e., the peak height increases with decreasing
damping. For large voltages and occupation number, N*�1,
it depends quadratically on the oscillator occupation number
and the voltage.

The peak heights depend on the bias V, the environment
temperature T, and the relative coupling strengths �e /� and
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�0 /�. In the following, we discuss the peak heights in some
limiting cases.

1. Dominant coupling to the tunnel junction

If the coupling between the oscillator and the tunnel junc-
tion is much stronger than the coupling to the thermal envi-
ronment, �e��0, the occupation number of the oscillator is,
according to Eq. �3.13�, given by

N* =
1

2
	SV���

�
− 1
 . �4.42�

.

�a� For high temperatures T�V ,�, the occupation
number of the oscillator becomes N*�T /�. The functions
V±=V in this limit, which can be seen from the definition,
Eq. �4.15�, and the fact that �V���=0 for high temperatures,
T�V ,�. The peak heights of the resonant contributions to
the noise spectrum are then at the oscillator frequency

P� = G̃vw
2 4

�
V2 T

�
, �4.43�

and is linear in the environment temperature. The peak
height at zero frequency is

P0 = G̃ww
2 1

�
V2 T

�
�2

, �4.44�

and depends quadratically on the environment temperature,
whereas the peak heights at twice the oscillator frequency
become

P±2� = G̃ww
2 1

2�
V2 T

�
�2

, �4.45�

which also scales quadratically in the environment tempera-
ture. For dominant coupling to the junction ��Gww and
therefore all the peak heights become linear functions of the
conductance. The peak heights for high voltages V�T ,�
can be obtained from the peak heights at high temperatures
by replacing T→V /2 in Eqs. �4.43�–�4.45�.

�b� At low temperatures, T�, and low voltages V
��, the occupation number approaches zero, N*�0. The
peaks at the oscillator frequency as well as the peak at zero
frequency and the peak at 
=2� disappear,

P0 = P� = P2� = 0. �4.46�

At 
=−2� we obtain a dip in the noise spectrum with depth

P−2� = − G̃ww
2 1

2�
V2.

Since in nanomechanical systems the coupling strength be-
tween the junction and the oscillator can be tuned, we will
also discuss the case where the thermal environment domi-
nates over the junction.

2. Dominant coupling to the thermal environment

Another limiting case to consider is the situation when the
coupling to the thermal environment dominates over the cou-

pling to the tunnel junction, �0��e. In the high temperature
limit, T�V ,�, we obtain the same results for the peak
heights as in the case of dominant coupling to the junction,
since for both cases the junction and the thermal environ-
ment act as thermal equilibrium environments with tempera-
ture T. For high voltages and temperatures much larger than
the oscillator frequency, V�T��, we get

N* =
�e

�

�V�
2�

+
�0

�

T

�
� 1. �4.47�

The peak height at the oscillator frequency is

P� = G̃vw
2 4

�
V2�e

�

�V�
2�

+
�0

�

T

�
� . �4.48�

The peak height at zero frequency is

P0 = G̃ww
2 1

�
V2�e

�

�V�
2�

+
�0

�

T

�
�2

. �4.49�

The peak height at twice the oscillator frequency

P±2� = G̃ww
2 1

2�
V2�e

�

�V�
2�

+
�0

�

T

�
�2

�4.50�

is also quadratic in the occupation number. All peak heights
depend inversely on the damping coefficient �, since in the
parentheses � appears only in the relative coupling strengths
�e /� and �0 /�.

For low temperatures TV ,� we distinguish two re-
gimes. For low voltages, V��, we obtain the same results
as in the case for strong coupling to the junction since N*

�0. For voltages V��,

N* =
�e

�

�V�
2�

. �4.51�

The functions V±�V±� and we obtain for the peak height
at the oscillator frequency

P� = G̃vw
2 2

�
V2	2�e

�

�V�
2�

� + 1
 , �4.52�

for the peak height at zero frequency,

P0 = G̃ww
2 1

2�
V2	2�e

�

V

2�
�2

+ 2�e

�

�V�
2�

� + 1
 ,

�4.53�

and the peak heights at twice the oscillator frequency,

P2� = G̃ww
2 1

2�
V2�e

�

�V�
2�

�	�e

�

�V�
2�

� + 1
 �4.54�

and

P−2� = G̃ww
2 1

2�
V	�e

�

�V�
2�

� + 1
	V�e

�

�V�
2�

� − �
 .

�4.55�

We have obtained the peak heights of the resonant peaks in
the noise spectrum of a tunnel junction coupled to a har-
monic oscillator for arbitrary parameters V ,T and �e ,�0. We
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find that if the oscillator approaches the ground state, N*

→0, the peaks at positive frequencies as well as the peak at
zero vanish. In the next section we are going to discuss an
application of the properties of the peaks in the noise spec-
trum of the junction: noise thermometry.

V. NOISE THERMOMETRY

In experiments, trying to cool a nanomechanical oscillator
to the ground state a diagnostic tool is needed to check the
state of the oscillator and to confirm, eventually, that the
oscillator really is in the ground state. Coupling the oscillator
to an electrical device, e.g., a tunnel junction, gives a means
to experimentally determine the state of the oscillator, since
the oscillator influences the current and noise in the junction.
In a noise thermometry setup the noise that the oscillator
induces in the tunnel junction is used to determine the tem-
perature or occupation number of the oscillator.

As demonstrated, the noise spectrum of a tunnel junction
consists of three peaks, one at zero frequency, one at the
oscillator frequency, and one at twice the oscillator fre-
quency, and the peak heights depend on the oscillator occu-
pation number. If the oscillator couples weakly to the junc-
tion the highest peak is at the oscillator frequency �. The
relation for the peak height �Eq. �4.35�� can be used to de-
termine the oscillator occupation number in an experiment.
The usual experimental procedure �see Refs. 7 and 8� is to
measure the peak height as a function of temperature. Figure
5 shows the expected outcome of such a measurement, the
dependence of the peak height at the oscillator frequency,
obtained from Eq. �4.35�, as a function of the environment
temperature T for different bias voltages V and dominant
coupling to the junction �e /�=10. The solid line shows the
peak height for V=0.1�. It decreases monotonically for de-
creasing temperature and becomes exponentially small at
low temperatures. The dashed and the dotted lines show the

peak height for voltages larger than the oscillator frequency
�V=2� and V=5�, respectively�.

The height of the peak P� can be conveniently scaled to a
dimensionless quantity Nc,

Nc = �
P�

4G̃vw
2 V2

, �5.1�

where the combination � / G̃vw
2 is a property of the device.

For high occupation numbers �i.e., high temperatures or high
voltage, max�V ,T����, the dimensionless peak height Nc

gives the oscillator occupation number: N*�Nc. The normal-

ization constant, 4G̃vw
2 V2 /� in Eq. �5.1�, can be read off as

the high-temperature slope in a plot of P� vs T /�. In the
region of low occupation numbers, we obtain the relation for
the occupation number

N* = Nc −
1

2

V−

V
, �5.2�

where V− �Eq. �4.15�� is a known function of the bias and
temperature.

We note that for low temperatures and voltages the oscil-
lator occupation number is not simply proportional to the
peak height at the oscillator frequency. The relative occupa-
tion number N* /Nc is shown in Fig. 6 for dominant coupling
to the junction and different bias voltages. At high tempera-
tures the relative occupation number approaches unity, for
low temperatures and low voltages it departs from unity.

Another possibility to get information on the oscillator
occupation number is from the peak heights at 
=0 and 

=2� using Eqs. �4.37� and �4.39�. The combination of junc-

FIG. 5. The peak height of the noise at the oscillator frequency
P� as a function of the environment temperature T for different bias
voltages and dominant coupling to the junction, �e /�0=10, and

G̃vw=0.1. The full line shows the temperature dependence of the
peak height for V=0.1�, the dashed line for V=2�, and the dotted
line for V=5�. As the environment temperature approaches zero,
the peak height vanishes for voltages V��, but stays finite for
voltages V��. The square dots mark different occupation numbers
of the oscillator as indicated.

FIG. 6. The relative occupation number of the oscillator N* /Nc

as a function of the environment temperature T for different bias
voltages V and dominant coupling to the junction, �e /�0=10, with

G̃vw=0.1. The full line shows the relative occupation number for
low voltage, V=0.1�, the dashed line and the dotted line show the
relative occupation number for high voltages, V=2� and V=5�,
respectively. For high temperatures T��, the relative occupation
number approaches unity. For low temperatures the relative occu-
pation number can depart considerably from unity to approach
1/ �1+�� /�eV�.
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tion parameters V2G̃ww
2 /� in Eqs. �4.37� and �4.39� can be

obtained, e.g., from the high temperature slope in a plot of P0
vs T2 /�2.

Since the peak at the oscillator frequency is not isolated,
but sits on a noise floor, the question of observability of the
peak arises. As a measure of observability, we define a signal
to noise ratio, the peak height relative to the floor,

r =
P�

Svv��� + Sww���
, �5.3�

and demand r�0.1 for the peak to be observable. The peak
height P� as well as the magnitude of the noise floor,
Svv���+Sww���, depend on N*, the junction bias, and the

junction temperature as well as the conductances Gvv, G̃vw,

and G̃ww. To investigate the observability of the peak, we use
Eq. �5.3� to find the occupation number N* for a given bias
voltage, junction temperature and a set of conductances, so
that r=0.2. The solid lines in Fig. 7 show the occupation
number necessary to fulfill r=0.1 as a function of voltage
and junction temperature. To detect an oscillator close to its
ground state, high bias voltages and/or low junction tempera-
tures are necessary, as seen in Fig. 7. On the other hand, high
voltages heat the oscillator, so that a compromise between
heating and readout has to be found. To illustrate the heating
effect, the dash-dotted lines show the occupation number for
dominant coupling to the junction, �e /�0=100. If one would
like to read out the oscillator occupation number when N*

�0.1, without introducing heating, voltage and temperature
are confined to the shaded region on the left of Fig. 7. This
example shows that a good signal-to-noise ratio for the read-

out and a minimal heating of the oscillator are complimen-
tary requirements.

VI. CONCLUSION

We have considered a nanomechanical resonator interact-
ing with a dc-biased tunnel junction. We model the resonator
as a harmonic oscillator and the interaction is introduced via
the modulation of the tunneling amplitude by coupling to the
harmonic oscillator position. Employing a Green’s function
technique, we calculated the properties of the stationary state
of the oscillator, obtaining that the coupling to the junction
introduces damping and heats the oscillator. The expression
�Eq. �3.13�� for the temperature of a harmonic oscillator
coupled to a tunnel junction was also obtained in Ref. 17
using a Markovian master equation approach. The reason for
the coinciding results derived by two different techniques is
due to the same weak coupling approximation made in both
derivations. Both the perturbative Green’s function calcula-
tion presented here and the Markovian master equation can
only be applied for weak coupling between the environment
and the oscillator. In the master equation approach the weak
coupling leads to a separation of time scales of the environ-
ment evolution and the evolution of the density matrix, re-
sulting in a Markovian master equation. Here, the same ar-
gument is used in the frequency domain: The width of the
oscillator spectral function is small on the scale of the fre-
quency dependence of the environment correlation functions.

The current-voltage characteristic of the junction has been
obtained. The stationary state current is seen to consist of
two contributions. One contribution is the current through an
isolated junction, whereas the other contribution, dependent
on the state of the oscillator, stems from oscillator-assisted
tunneling. The expression obtained for the dc case is in ac-
cordance with the result previously derived using a master
equation technique.17,31 The additional current arising from
the influence of the oscillator on the junction transmission
�Eq. �4.13�� vanishes if the oscillator is in the ground state
and the voltage across the junction is smaller than the oscil-
lator frequency. We observe therefore that the zero point
fluctuations of the oscillator position do not affect the elec-
tric current.

The main part of the paper presents the calculation of the
electric noise due to oscillator-assisted tunneling. The un-
symmetrized current-current correlator has been evaluated
for arbitrary frequencies, bias voltages, and environment
temperatures. The noise spectrum consists of a smooth noise
floor and a peaked resonant structure.

As a function of frequency 
, the noise floor varies on the
scale max�T ,V ,��. The contribution of the oscillator is
shown to vanish at positive frequencies when the oscillator is
in the ground state and the bias voltage is smaller than the
oscillator frequency. The expressions �Eqs. �4.24� and �4.29��
for the second-order noise generalize the result obtained by a
Markovian master equation derived in Ref. 17. In the Mar-
kovian master equation calculation, a constant noise floor
was obtained, whereas the Green’s function calculation pre-
sented here captures the frequency-dependent noise floor. As
expected, in the low-frequency limit, we recover the result

FIG. 7. The solid lines show a contour plot of the minimum
occupation number necessary to observe the peak at the oscillator
frequency with a S/N ratio r�0.2 as a function of voltage and

temperature with relative conductances Gvv / G̃vw=10 and

Gww / G̃vw=0.1. The dashed lines are a contour plot of the occupa-
tion number of the oscillator for dominant coupling to the junction,
�e /�0=100. The shaded region to the left marks the parameter re-
gime that allows a readout of the oscillator occupation number
without heating the oscillator.
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obtained by the Markovian master equation approach.
The resonant structure in the noise spectrum, S��
�, con-

sists of peaks at zero frequency, 
=0, the oscillator fre-
quency, 
= ±�, and twice the oscillator frequency, 

= ±2�. Being present only for a finite voltage across the
junction, the resonances are of nonequilibrium origin, and
their intensities at positive and negative frequencies are not
related by the detailed balance relation.26 The peaks at the
oscillator frequency have the same height for positive and
negative frequencies, whereas the peaks at double the oscil-
lator frequency are asymmetric. The peaks at 
= ±� stem
from processes involving a single vibrational quantum, and
their height is therefore linear in the oscillator occupation
number N*, whereas the processes leading to the peaks at

=0 and 
= ±2� involve two quanta and the peak heights
are quadratic in N*. If the oscillator is in the ground state, the
peaks at positive frequencies vanish in the limit where the
bias voltage is smaller than the oscillator frequency but a dip
in the noise spectrum remains for negative frequencies.

For bias voltages smaller than the oscillator frequency and
the oscillator in the ground state, we find no oscillator-
dependent noise at positive frequencies: Both the oscillator
dependent contribution to the noise floor as well as the peaks
at positive frequencies disappear from the unsymmetrized
noise spectrum, S��
�. The oscillator contribution to the
current-current correlator at negative frequencies remains fi-
nite even for voltages smaller than the oscillator frequency.

To understand this result, we consider a setup for measur-
ing current fluctuations. Lesovik and Loosen24 as well as
Gavish et al.26 introduced a damped harmonic oscillator with
resonance frequency �0 as a meter of current fluctuations.
For linear coupling of the oscillator to the current in the
junction, they obtained the deviation of the meter position
fluctuations �X2� from the equilibrium value in terms of the
current-current correlators of the junction, S� and S� �see
Eq. �4.6��, and the meter occupation number N�0

,

��X̂2� = A��N�0
+ 1�S���0� + N�0

S���0�� , �6.1�

where A is the coupling strength and N�0
is the Bose func-

tion with temperature T. Note that the argument of the noise
spectrum S�,�, the oscillator frequency �0 is positive. Let us
consider the meter fluctuations in different temperature
ranges. For large detector temperatures T��0, and conse-
quently N�0

�1, the meter fluctuations are proportional to
the symmetrized current-current correlator of the junction,
S�+S�. A passive detector—a detector at low temperature
T�0, when N�0

1—measures the unsymmetrized
current-current correlator S� at positive frequency. In accor-
dance with these arguments,24,26 only the part of S� at posi-
tive frequencies describes physical noise, understood as ran-
dom flow of energy from the system to environment.

We can now understand our results for the current-current
correlator S��
� with the help of Eq. �6.1�. A passive detec-
tor detects only the positive frequency part of the current-
current correlator. Our calculations show vanishing S��
� at
positive frequencies 
 in the case when the oscillator is in
the ground state, and thus the ground state does not contrib-

ute to the physical noise in the tunnel junction in compliance
with general expectations.

In experiments with nanomechanical resonators utilizing
electrical devices as detectors, noise properties can function
as a diagnostic tool in determining the state of the resonator.
We have shown how peaks in the noise power spectrum can
act as a measure for the oscillator occupation number and
discussed the criteria for observing these peaks.

In this paper, we presented a calculation of the noise in-
duced by an oscillator in a tunnel junction. The obtained
results are valid at arbitrary parameters and thus also in the
important region where the oscillator approaches the ground
state.

APPENDIX A: JUNCTION GREEN’S FUNCTIONS

In this section we are going to calculate the junction
Green’s functions that appeared in the calculation of the
properties of the oscillator stationary state, the average cur-
rent, and the noise. The junction Green’s functions encoun-
tered are

�uu�
+ ��1,�2� = − i�Tc�hu��1�hu���2��� ,

�A1�
�uu�

− ��1,�2� = − �Tc�hu��1�ju���2��� ,

where the notation was introduced in Sec. II, and the contour
times discussed in Sec. III. In terms of the tunneling opera-
tors T and T† �Eq. �2.3�� taken in the interaction picture, we
have

�uu�
± ��1,�2� = − i��Tc�Tu��1�Tu�

† ��2��� ± �Tc�Tu
†��1�Tu���2���� .

�A2�

Inserting the tunneling operator from Eq. �2.7�, we get the
symmetric and antisymmetric combinations of left and right
electrode electron Green’s functions

�uu�
± ��1,�2� = − i�

lr
ulrurl� �Gl��2 − �1�Gr��1 − �2�

± Gr��2 − �1�Gl��1 − �2�� , �A3�

where we introduced the electron Green’s function for the
right and left electrodes, for example,

Gl��1,�2� = − i�Tc�cl��1�cl
†��2��� . �A4�

The Green’s functions of interest can be obtained by standard
techniques. For example,

�uu�±
� �t1,t2� = − i��Tu�

† �t2�Tu�t1�� ± �Tu��t2�Tu
†�t1���

is given in terms of its Fourier transform

�uu�±
� �
� = − 2�i�

lr
ulrurl� �f��l� − f��r��

	��1 + n��r − �l�����r − �l + V − 
�

± n��r − �l����r − �l + V + 
�� , �A5�

where n�
� is the Bose function. For voltages VEF, we
obtain the approximate relation
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�
lr

ulrurl� �f��l� − f��r�����r − �l + V�

= V�
lr

ulrurl� 	−
�f��l�

��l

���r − �l� , �A6�

as tunneling amplitudes depend only weakly on their argu-
ments, so that

�uu�±
� �
� = iGuu���V − 
��1 + n�V − 
�� ± �V + 
�n�V + 
�� ,

where we introduced the conductance

Guu� = 2��
lr

ulrurl� 	−
�f��l�

��l

���r − �l� . �A7�

The retarded, advanced, and Keldysh bubbles,

�uu�±
R �t1 − t2� = − i��t1 − t2�

	���Tu�t1�,Tu�
† �t2��� ± ��Tu

†�t1�,Tu��t2���� ,

�uu�±
A �t1 − t2� = − i��t2 − t1�

	���Tu�t1�,Tu�
† �t2��� ± ��Tu

†�t1�,Tu��t2���� ,

�A8�

�uu�±
K �t1 − t2� = − i���Tu�t1�,Tu�

† �t2��� ± ��Tu
†�t1�,Tu��t2���� ,

can be calculated in a similar way to give

�uu�
− �
� = − i�−

R�
� �−
K�
�

0 �−
A�
�

�
uu�

, �A9�

with

�uu�−
R �
� = − iGuu�V + Ruu�

− �
� ,

�A10�
�uu�−

K �
� = − 2iGuu��V�
� ,

and the advanced part given by �−
A�
�= ��−

A�
��*, with the
functions SV�
� and �V�
� defined in Eqs. �3.6� and �4.12�,
respectively, and similarly �uu�

+ �
� is given by Eq. �3.5�.
The real parts of the retarded �uu�

± �
� are given by

Ruu�
± �
� = 2��

lr
ulrurl� �f��l� − f��r���P− ± P+� , �A11�

with P±=1/ ��l−�r±V+
�. To estimate the real parts, we ig-
nore the weak energy dependence of the transmission ampli-
tudes and the electron density of states are constants up to a
cutoff frequency of the order of the Fermi energy EF. For
frequencies and voltages much smaller than the cutoff fre-
quency 
, VEF, we can approximate the reactive parts of
the response functions Eq. �A11� to give

Ruu�
− �
� � Guu�V




EF
,

�A12�

Ruu�
+ �
� � Guu�EF.

This concludes our calculation of the junction Green’s func-
tions.

APPENDIX B: FOURTH-ORDER DIAGRAMS

In this appendix, we give the algebraic expressions for the
fourth-order diagrams contributing to the current-current cor-
relator. Let us consider, for example, the contribution con-
taining bubbles that is linear in the oscillator Green’s func-
tion, i.e., the diagrams depicted in Fig. 1,

Sv2w2
� �
� = − i�

kl

skl��−
l1�
��−

k2�
�Dkl�
�

+ �−
l1�0��−

k2�0�D12�
� + �−
l1�
��−

k2�0�Dk2�
�

+ �−
l1�0��−

k2�
�Dk1�
�� , �B1�

where the full oscillator Green’s function appears, account-
ing for the influence of the interaction with the tunnel junc-
tion and the matrix

skl =  1 − 1

− 1 1
� �B2�

introduces the correct signs for forward and backward con-
tour �to simplify notation, we suppress subscripts v and w on
the right hand side�. Performing the summation over the con-
tour indices k and l and inserting the bubbles and Green’s
functions, we obtain Eq. �4.31�.

Similarly, the contribution from diagrams containing two
oscillator Green’s functions �see Fig. 2� becomes

Sw4
� �
� = �

kl

skl� d
1�kl�
,
1� ,

�B3�
�kl�
,
1� = �−

l1�
1��−
k2�
1�Dkl�
1�D21�
 − 
1�

+ �−
l1�
 − 
1��−

k2�
1�D2l�
 − 
1�Dk1�
1� .

Doing the summation and inserting the bubbles and oscilla-
tor Green’s functions, we obtain Eq. �4.32�, where we ne-
glected a nonresonant contribution that is small compared to
the second order contributions to the noise floor, Eqs. �4.29�
and �4.24�.

All diagrams not containing bubbles are of the nonreso-
nant kind; i.e., oscillator Green’s functions always appear
under frequency integration. A typical nonbubble contribu-
tion to the noise spectrum is shown in Fig. 4 and given by

s̄v2w2
� �
� =� d
1d
2�

kl

skl�
l1r1

�
l2r2

v2w2Gl1
1k�
1 − 
2�Gl2

2l�
1

− 
�Gr1

k2�
1�Gr2

l1�
1 − 
�Dk1�
2� . �B4�

Since there are no resonant peaks present, contributions of
this type have to be compared to the second order contribu-
tion to the noise floor �Eqs. �4.24� and �4.29��, and since they
are always of higher order in tunneling, they can be ne-
glected.
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