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We have performed an eight-band k ·p model calculation on the current-voltage �I-V� curves associated with
interband magnetotransport in a double-barrier broken-gap heterostructure using the Burt-Foreman multiband
envelope function theory and the scattering matrix approach. In a sample with very thin barriers, the broad-
ening �0 of a virtual bound state with energy E0 can be very large. Depending on the relative values of �0 and
�E0−EF�, where EF is the Fermi energy, the behavior of the I-V curve can be either of Ohmic type or of
resonant-tunneling type, and can be tuned from one to the other by changing the applied magnetic-field
strength.
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I. INTRODUCTION

Understanding the electronic properties of broken-gap
heterostructures has been a great challenge for fundamental
research because of the overlap between the conduction band
of one material component and the valence band of the other
component. Since the proposal of Yang et al.1 to use such
heterostructures for fabricating interband cascade lasers,
there have been many works on practical engineering
designs.2–4 The energy range of the band overlap is very
small, typically of the order 150–200 meV. Therefore, very
accurate calculations of energy-level structures in the band-
overlap region is one of the most important tasks, especially
for the interpretation of experimental data and for the perfor-
mance of high-power interband cascade lasers. In this re-
spect, the relevant subsystem is the InAs/GaSb quantum
well which exhibits enormous complexity due to the spin-
orbit interaction, the bulk anisotropy, and the lattice-
mismatch induced strain, not to mention the effect of an
external magnetic field.

The outcome of a theoretical study on broken-gap hetero-
structures is thus very sensitive to the choice of model
Hamiltonian. The accumulated knowledge in the past has
made it clear that for reliable results, one needs a model
Hamiltonian with eight bands. Electronic energy-level struc-
tures in InAs/GaSb quantum wells and the multiple anti-
crossings resulting from hybridization between electrons,
light holes, and heavy holes were studied using an eight-
band Hamiltonian, first without considering the lattice-
mismatch induced strain5–8 and later with the strain
included.9,10 The degeneracy of each energy level in the
band-overlap region at the � point is lifted by an applied
magnetic field. The level splittings can be as large as about
20 meV at a magnetic-field strength of 2 T, which is signifi-
cant because the band overlap itself is only about
150–200 meV. Investigations of Landau-level structures are
further complicated by the electron-hole hybridization, by
which the conventional Landau-level index is no longer a
good quantum number. With an external magnetic field ap-
plied parallel to the growth direction, Landau-level structures
in the broken-gap quantum wells were first studied with a
six-band model11,12 and later with an eight-band model.13,14

Knowing the energy-level structures, one can analyze the
effective g factors12,13 and cyclotron masses11,13 of the
electron-hole gas. These two physical quantities are very
sensitive to the small separation of the relevant energy levels,
and consequently charge accumulation and band-bending ef-
fects must be taken into account.5,15 Very recently, the re-
quired accurate eight-band k ·p model calculations for
broken-gap systems under an external magnetic field have
emerged with a partially self-consistent scheme.13

To understand carrier transport in broken-gap heterostruc-
tures along the direction perpendicular to the interfaces,16–19

which is basically of interband-tunneling nature, we also
need to derive accurate electronic energy levels. The relevant
systems are double-barrier broken-gap structures with typical
band diagrams as the one shown in Fig. 1. Carriers move
from the InAs source at the left into the InAs drain at the
right through the hybridized energy levels in the InAs/GaSb
quantum well. The understanding of transport phenomena
has improved progressively in the past, starting from simple
model calculations. It was well known that in the absence of
an external magnetic field, at the in-plane wave vector
k� =0, the electron states and the heavy-hole states are essen-

FIG. 1. The self-consistently calculated band diagram of the
InAs/AlSb/ InAs/GaSb/AlSb/ InAs double-barrier broken-gap het-
erostructure, with a 12 nm InAs layer and a 6 nm GaSb layer in the
well. The solid curve is the conduction band and the dashed curve
the valence band. The coordinate system and magnetic-field direc-
tion are also shown.
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tially decoupled, since the very weak coupling caused by the
low C2v interface symmetry can be neglected. Consequently,
the heavy-hole states in the well do not contribute to the
interband-tunneling current. For k��0 and/or nonzero mag-
netic field, electron, light-hole, and heavy-hole states can hy-
bridize considerably,8,10–13 and so the heavy-hole-like states
can contribute to interband tunneling as much as the light-
hole-like states.20–23 An eight-band k ·p Hamiltonian, includ-
ing strain and bulk anisotropy but not an applied magnetic
field, was used to investigate transmission coefficients and
current-voltage �I-V� characteristics.22 To pinpoint the effect
of a magnetic field on interband tunneling, a simple six-band
model calculation, without strain and bulk anisotropy, dis-
covered that due to band-state mixing, tunneling processes
that do not conserve the Landau-level index give non-
negligible contributions to the current.24 Strain and bulk an-
isotropy were later included, and spin-dependent magneto-
tunneling was examined.25 While in all the above-mentioned
works the magnetic field is applied along the growth direc-
tion, the eight-band model has also been used to investigate
magnetotunneling with the magnetic field perpendicular to
the growth direction.26

After the demonstration of the importance of including
charge transfer in Landau-level-structure calculations,13 a
similar partially self-consistent calculation of interband mag-
netotunneling through these Landau levels naturally follows.
However, the partially self-consistent study performed in the
present paper is not only for achieving quantitative accuracy
alone but also for investigating novel phenomena. When
changing the magnetic field, all Landau levels in the quan-
tum well change continuously, and one by one the levels
intersect the Fermi level EF. If the barriers in the double-
barrier tunneling structure are sufficiently thin, there are vir-
tual bound states El+ i�l in the quantum well with a large
broadening �l. By tuning the magnetic field, we can move
one energy El very close to EF, such that the separation be-
tween El and EF becomes comparable to �l. In this case, the
interband tunneling occurs without a bias threshold. In other
words, the carrier transport exhibits an Ohmic behavior in-
stead of a resonant-tunneling behavior with a finite bias
threshold. Consequently, with an applied magnetic field, we
can tune the resonant-tunneling transport into Ohmic trans-
port and vice versa. It is important to point out that this
fundamental phenomenon is intrinsic to the broken-gap sys-
tems with narrow barriers and can be demonstrated with our
partially self-consistent calculations. The analytical works
which lead to this final result can be found in several pub-
lished papers cited above, and we will only outline the analy-
sis in Sec. II. The electric current and its Ohmic behavior
will be illustrated in Secs. III and IV, respectively. The im-
pact of our finding on the interpretation of relevant experi-
ments will be discussed in Sec. V.

II. OUTLINE OF ANALYSIS

Broken-gap heterostructures have been extensively inves-
tigated using the k ·p Hamiltonian, either with a six-band
model or with an eight-band model. Depending on the de-
gree of sophistication, the model Hamiltonian sometimes in-

cludes the lattice-mismatch induced strain and/or bulk aniso-
tropy. To compare with the results of different types of
experiments, terms representing the effects of electric and/or
magnetic field may be included in the model. The Hamil-
tonian is, in general, rather complicated and is often simpli-
fied with either the spherical or the axial approximation
when solving the Schrödinger equation. In the absence of an
external magnetic field, self-consistent calculations have
been performed to investigate the characteristic properties of
the electron-hole gas in broken-gap systems. In the present

work, we will use the eight-band k ·p Hamiltonian Ĥ8 in-
cluding the lattice-mismatch induced strain, the bulk aniso-
tropy, as well as the spin-orbit interaction for a system with a
magnetic field applied parallel to the growth direction. The
charge accumulation in the system is also taken into account
to provide self-consistent results for zero magnetic field and
sufficiently accurate partially self-consistent results for finite
magnetic field. The essential parts of this model Hamiltonian
and associated computation scheme are given in Refs. 13 and
22. Here, we will only outline the theoretical analysis, and
the reader is suggested to refer to Refs. 13 and 22 for details.

The eight-band k ·p Burt-Foreman Hamiltonian27 for the
� point in a zinc-blende crystal can be separated into three
parts as

Ĥ8 = Ĥk + Ĥ� + ĤZ, �1�

where Ĥk includes the k-dependent part and the spin-orbit

interaction, Ĥ� represents the effect of strain on the energy

FIG. 2. �Color online� Landau levels in the band-overlap energy
region for the sample structure in Fig. 1. The solid curves show
levels with n=−2, dashed curves n=−1, dotted curves n=0, and
dashed-dotted curves n=1. The Fermi energy level EF at 66 meV is
marked as the thick solid line.
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levels, and ĤZ is the Zeeman interaction term. The explicit
form of all elements of the matrix operators

Ĥk = �Ĥ−+ Ĥ−−

Ĥ++ Ĥ+−

� , �2�

Ĥ� = �Ĥ�,4 0

0 Ĥ�,4

� , �3�

ĤZ = �ĤZ,4 0

0 − ĤZ,4

� �4�

are given in Ref. 13, together with the justification for the
neglect of small terms. The Hamiltonian in Ref. 13 is suit-
able for calculating the static properties but not for the trans-
port processes which we will investigate here using the scat-
tering matrix method.27,28 To study carrier transport, we need

to slightly modify the partial Hamiltonian Ĥk in order to
avoid spurious solutions. First, we follow the argument of

Foreman29 and set the quantity Ac in Ĥk to zero. This quan-
tity represents the effect of remote bands on the electron
effective mass. As a consequence, the energy EP, which ap-
pears through the interband momentum matrix element P, is
changed to EP= �3m0 /mc��2/Eg+1/ �Eg+���−1, where m0 is
the free electron mass, mc the conduction-band effective
mass, Eg the band gap, and � the split-off energy. In this
way, the two conduction-band envelope functions �1 and �5
are determined from the six valence-band envelope functions
�2, �3, �4, �6, �7, and �8 as

�1 = �E − Ec − ac��−1P	
2

3
iK̂z�2 −
1

3
iK̂z�3 + K̂+�4

+
1

3
K̂−�6 +
2

3
K̂−�7� , �5�

�5 = �E − Ec − ac��−1P	
1

3
K̂+�2 +
2

3
K̂+�3

+
2

3
iK̂z�6 −
1

3
iK̂z�7 − K̂−�8� . �6�

Here, E is the carrier energy, Ec the conduction-band edge, ac
the conduction-band deformation potential, � the trace of the

strain tensor, and K̂z= k̂z. The momentum operators K̂x= k̂x

and K̂y = k̂y +xes /� in the presence of a magnetic field

B= �0,0 ,z�, with s=eB /�, are rearranged as K̂±

= � i�K̂x± iK̂y� /
2.
The eight coupled differential equations in the

Schrödinger equation Ĥ8�=E� can now be rearranged into
a set of six coupled equations

Ĥ6� = E� , �7�

with �= ��2�3�4�6�7�8�T. The 6�6 matrix operator Ĥ6

is easily constructed from Ĥ8 by deleting the conduction-
band rows and columns, replacing the modified Luttinger
parameters �1, �2, and �3 with �1�=�1−EP / �3�E−Ec−ac���
and �2,3� =�2,3−EP / �6�E−Ec−ac���, and removing the small

elements ĤZ11
and ĤZ55

.
We solve the Schrödinger equation �Eq. �7�� together with

the Poisson equation, as in Ref. 13. In the absence of an
applied magnetic field, we perform a complete self-
consistent calculation to find the self-consistent potential Vs
and the change N0 of the carrier concentration in the well.
We then turn on the magnetic field B and use Vs to derive the
eigensolutions which we use to calculate the additional
change of the quantum-well carrier concentration NB. For
magnetic-field strengths up to 10 T, we found that NB is
much smaller than N0 such that the ratio NB /N0 is less than
0.05. Consequently, under an applied magnetic field, the self-
consistent correction to the potential Vs is less than 5%. This
theoretical conclusion agrees with the experimental finding
of Barnes et al. in Ref. 30 where the carrier density in
InAs/GaSb and InAs/GaInSb superlattices under an applied
magnetic field was derived. As shown in Fig. 4 of Ref. 30,
the two-dimensional carrier density is almost the same at
zero field as at a high field of about 40 T.

In the absence of a magnetic field, for samples with a
narrow well �of the order 20 nm� and thin barriers �of the
order 2 nm�, we found that the self-consistent corrections to
the energy levels are of the order of 5 meV. Therefore, when
an external field is applied, the additional self-consistent cor-
rection to each energy level is less than 0.25 meV, and the
effect on the transport phenomena, to be investigated in the
later part of this paper, is negligibly small. At the same time,
a complete self-consistent calculation at a finite magnetic

FIG. 3. �Color online� I-V characteristics of the broken-gap
structure specified in Fig. 1. The magnetic field is 2 T. The solid
curve is the total current, and the other curves show the partial
nonvanishing contributions from states with different n; the dashed
curve is for n=−1, the dotted curve for n=0, the dashed-dotted
curve for n=1, the dashed-dotted-dotted curve for n=2, and the
dashed-dashed-dotted curve is for n=3.
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field is extremely time consuming not only because a large
number of occupied Landau levels must be considered but
also due to the current continuity condition as explained in
Ref. 31. In our numerical calculations, we will therefore use
Vs also for finite magnetic fields. We call this computation
scheme partially self-consistent.

Since our interest is to study the dynamical processes in
the band-overlap energy region, the difference between the
chemical potential in the source and in the drain should not
be larger than this overlap. The applied bias is therefore less
than 0.2 V. For samples with a thin well and thin barriers,
which are the ones we study here, the bias-induced change of
the charge redistribution in the well is also negligibly small.
Therefore, we can derive sufficiently accurate results using
the partially self-consistent scheme at finite magnetic field
and finite bias.

We divide the heterostructure into N sublayers such that
sublayer 1 is in the source just before the left barrier and
sublayer N is in the drain just behind the right barrier. The
N−2 sublayers in the active region �well and barriers� are of
equal width. In each sublayer, the self-consistently calculated
band edges are approximated with constants. The envelope
function 	


�j� of the bulk state 
 in sublayer j can be ex-
pressed as32

	

�j� = h


�j� exp�ikyy + ikzz� , �8�

with

h�j� =�
C1Fn�x��
C2Fn�x��
C3Fn�x��

C4Fn−1�x��
C5Fn+1�x��
C6Fn+1�x��
C7Fn+1�x��
C8Fn+2�x��

 , �9�

where F��x�� is the normalized harmonic oscillator function
with Landau-level quantum number � and x�=x+ky /s. Here,
the warping terms in the Hamiltonian are neglected and we
solve the Schrödinger equation for each quantum number n
=−2,−1,0 , . . ., separately. After removing the first and fifth
elements in h�j�, we substitute 	


�j� into the Schrödinger equa-
tion �Eq. �7�� to find32

� 0 1

− �H�2��−1H�0� − �H�2��−1H�1� �� e�j�

kze
�j� � = kz� e�j�

kze
�j� � ,

�10�

where e�j�= �C2C3C4C6C7C8�T. The explicit expressions for
the Hermitian matrices H�0�, H�1�, and H�2� are given in Table
I. The size of each matrix, �, depends on n. The relationship
is �=1,3 ,5 for n=−2,−1,0 and �=6 for n1.

The envelope function ��j� in the jth sublayer is con-
structed from the 2� solutions kz,


�j� of Eq. �10� and the cor-
responding vectors h+


�j� with coefficients a

�j� for the forward

bulk states, but h−

�j� with coefficients b


�j� for the backward
bulk states

��j� = exp�ikyy��

=1

�

�a

�j� exp�ikz,


�j� �z − zj−1��h+

�j�

+ b

�j� exp�− ikz,


�j� �z − zj��h−

�j� � . �11�

When matching the solutions of the adjacent sublayers, the
continuity condition is imposed only on the valence-band
components of the envelope function, because, as pointed
out in Ref. 29, the conduction-band envelope functions are
discontinuous when the quantity Ac is set to zero. The second
matching condition is the continuity of the probability cur-
rent density derived by integrating Eq. �7� across an inter-
face.

In the following sections, we will discuss carrier transport
in the broken-gap tunneling structure shown in Fig. 1. The
thin well of this sample consists of a 12 nm InAs layer and a
6 nm GaSb layer. The thickness of each AlSb barrier is only
1.5 nm. The substrate is InAs and the donor concentration in
the n-doped contacts is 2�1017 cm−3. Using the basis-
expansion computation scheme given in Ref. 13, we have
calculated the energy levels in the quantum well shown in
Fig. 1 partially self-consistently. The energy levels in the
band-overlap energy region are shown in Fig. 2 as functions
of the magnetic field. The levels are labeled according to
their primary characters at zero magnetic field: e for elec-
tronlike and hh for heavy-hole-like. We will also use lh for
light-hole-like. Solid curves are for levels with n=−2,
dashed curves for n=−1, dotted curves for n=0, and dashed-
dotted curves for n=1. For clarity, levels with higher values

FIG. 4. �Color online� Magnified part of Fig. 2 showing the
low-magnetic-field Landau levels close to the Fermi level EF.
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of n are excluded from the figure. The Fermi energy
EF=66 meV is marked as the black horizontal line.

This type of energy-level structures for different sample
structures were presented in Ref. 13, where the cyclotron
masses and effective g factors in the anticrossing region were
discussed in detail. In the present work, we will pay attention
to the energy region in the vicinity of the Fermi energy,
which is relevant to the transport properties. As can be seen
in Fig. 2, with increasing magnetic field, the Fermi energy
intersects various energy levels. Since the sample in Fig. 1
has very thin barriers, each energy level is broadened signifi-
cantly. Therefore, the carrier transport may exhibit interest-
ing behavior close to each intersecting point. This will be
investigated in the following sections.

III. ELECTRIC CURRENT

The matching conditions between the jth and the
�j+1�th sublayers provide equations that connect the coeffi-
cients a


�j� and a

�j+1� of the forward states and the coefficients

b

�j� and b


�j+1� of the backward states. Using the scattering
matrix technique28 together with appropriate initial condi-

tions, all these coefficients can be determined. To calculate
the transmission coefficient Tti�E� for interband tunneling
from the state i in the source �j=1� to the state t in the drain
�j=N�, we should set b�N�=0 and a


�1�=�i
.
The probability current densities j are calculated from the

current-density operator ĵz= i
� �Ĥ8 ,z� as

j = Re��† ĵz�� , �12�

with the appropriate envelope function � from Eq. �11�. To
calculate the incident probability current densities ji, we
should only keep the forward states in the source, and for the
transmitted probability current densities jt, only the forward
states in the drain should be retained. Knowing ji and jt, the
transmission coefficient Tti�E� is readily obtain as

Tti�E� = �� dxjt���� dxji� . �13�

In terms of the transmission coefficients and the Fermi-Dirac
distribution f�E�, the electric current density I�Vb� under an
applied positive bias Vb is calculated as

TABLE I. Explicit expressions for the elements in the upper triangles of the Hermitian matrices H�2�, H�1�,
and H�0�. The following notations are used: E�=E−Ev, S1=�av− �b � 2��2�xx+ �av+b��zz, S2=
2b��xx−�zz�,
S3=av�2�xx+�zz�, S4=�av+ �b � 2��2�xx+ �av−b��zz, �N=2�1�−4�2�−6�3�+2, and �s=�2�+�3�, where Ev is the
valence-band edge; av, b, and d the valence-band deformation potentials, �ii strain tensor components; and
�B is the Bohr magneton.

H11
�2�=H44

�2�=−�1�−2�2� H12
�2�=H45

�2�=2
2�2�

H22
�2�=H55

�2�=−�1� H33
�2�=H66

�2�=−�1�+2�2�

H13
�1�=−
2H23

�1�= i�3�
24sn H46
�1�=−
2H56

�1�=−i�3�
24s�n+2�

H15
�1�=−H24

�1�=6i�3�
s�n+1�

H11
�0�=s��2�−�1���2n+1�+s�N /6+

2m0

�2 �S11
+ −E��

H22
�0�=−s�1��2n+1�+s�N /3+

2m0

�2 �S22
+ −E��

H33
�0�=−s��1�+�2���2n−1�+s�N /2+

2m0

�2 �S33
+ −E��

H44
�0�=s��2�−�1���2n+3�−s�N /6+

2m0

�2 �S11
− −E��

H55
�0�=−s�1��2n+3�−s�N /3+

2m0

�2 �S22
− −E��

H66
�0�=−s��1�+�2���2n+5�−s�N /2+

2m0

�2 �S33
− −E��

H12
�0�=−s
2�2��2n+1�+s�N / �3
2�+

2m0

�2 S12
+

H45
�0�=−s
2�2��2n+3�−s�N / �3
2�+

2m0

�2 S12
−

H26
�0�=
2H16

�0�=s
6�n+2��n+1��s H35
�0�=
2H34

�0�=−s
6�n+1�n�s

S11
± =S1±�BB /3 S12

± =S2�2
2�BB /3

S22
± =S3−���BB /3 S33

± =S4±�BB
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I�Vb� = �
ti

Iti�Vb� = �
ti

es

�2��2�
� dETti�E��f�E� − f�E

+ eVb�� . �14�

To calculate the I-V curve for the sample specified in Fig.
1, we have taken the lattice constants, the deformation po-
tentials, and the stiffness constants from Ref. 33 and all other
material parameters from Ref. 7. Since almost all relevant
energies appearing in the problem discussed here are of the
order a few meV, for practical purposes, we set the tempera-
ture to zero in our calculations. The so-obtained I-V charac-
teristics for an applied magnetic field of 2 T is shown in Fig.
3. The solid curve is the total current density, while the other
curves represent the partial current densities contributed
from states with different n; the dashed curve is for n=−1,
the dotted curve for n=0, the dashed-dotted curve for n=1,
the dashed-dotted-dotted curve for n=2, and the dashed-
dashed-dotted curve is for n=3. Contributions from higher
values of n are vanishingly small.

When a bias Vb is applied between the source and the
drain, the entire system is in nonequilibrium and the chemi-
cal potential should be specified as a local chemical potential
in the source �s, a local chemical potential in the well �w,
and a local chemical potential in the drain �d. Since the two
barriers are identical, we can use �w as the reference energy
to express �s=�w+Vb /2 and �d=�w−Vb /2. When the bias
Vb increases to approximately 0.1 V, �s moves close to the
top of the GaSb valence band, resulting in a current plateau
in the bias region up to about 0.15 V. With further increase
of Vb, the tunneling processes occur in the energy region

above the band overlap. Here, the GaSb layer works as an
additional barrier and the current vanishes.

Although the shape of the I-V curve is typical for double-
barrier resonant-tunneling structures, we note that in the low-
bias region around Vb=0, there is no bias threshold and the
I-V characteristics is of an Ohmic type. We will analyze this
interesting phenomenon in more detail.

IV. OHMIC CONDUCTIVITY IN TUNNELING SYSTEMS

We see in Fig. 2 that the Fermi level intersects several
energy levels in the magnetic-field regions around B=1.5, 9,
and 12 T. Let E0 be one such level and �0 its level width.
Since the sample specified in Fig. 1 has very thin barriers
with 1.5 nm width, �0 can be significantly large and compa-
rable to the energy separation between E0 and EF. In this
case, the Fermi energy lies in an energy region where the
carrier density of states is finite, and hence the electric con-
ductivity should be Ohmic-like. We should mention once
again that using our partially self-consistent scheme, the ac-
curacy of each energy level is within 0.25 meV. This small
energy error of 0.25 meV can shift the position of each in-
tersection very slightly but cannot remove such the intersec-
tions. Consequently, our partially self-consistent approach is
accurate enough to predict the Ohmic-like electric conduc-
tivity.

To investigate this interesting phenomenon, we magnify
the low-field region in Fig. 2 and reproduce it in Fig. 4. We
see that at B=2 T, the dotted n=0 energy level is separated
from the Fermi energy by about 0.5 meV, and the dashed

FIG. 5. �Color online� Low-bias I-V charac-
teristics of the broken-gap structure specified in
Fig. 1 for �a� B=2.3 T and �b� B=3.5 T.

FIG. 6. �Color online� Low-bias I-V charac-
teristics of the broken-gap structure specified in
Fig. 1 for �a� B=10 T and �b� B=11.5 T.
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n=−1 level by about 1 meV. The contributions to the current
density from both these levels is of the Ohmic type as indi-
cated in Fig. 3. At the higher field B=2.3 T, the energy sepa-
rations increase to about 1 meV for the dotted level and
about 2 meV for the dashed level. The calculated current
density is plotted in Fig. 5�a�. While the contributions from
these two levels to the total current density is still of the
Ohmic type, the dashed partial current density begins to
show a deviation from the Ohmic behavior. For the case of
the even higher field B=3.5 T, the energy difference
E0−EF becomes larger than �0 for both the dotted level and
the dashed level. Hence, the current passing through each of
these levels exhibits a resonant-tunneling behavior with a
finite bias threshold, as shown in Fig. 5�b�.

Around B=9 T, we see in Fig. 2 that the Fermi level
intersects a dashed-dotted n=1 energy level. This is a hh-like
Landau level with �=3. The electron tunneling probability
through this Landau level is negligible, and, consequently,
the level does not contribute to the current.

The third interesting region in Fig. 2 is around B=12 T.
The dotted energy level is separated from EF by about
3 meV at B=10 T and about 1 meV at B=11.5 T. Therefore,
we expect a re-entry of the Ohmic conductivity when the
magnetic field increases to 12 T. In Fig. 6, our calculated I-V
curves are plotted in panel �a� for B=10 T and in panel �b�
for B=11.5 T. The re-entry of the Ohmic conductivity in-
deed emerges going from panel �a� to panel �b�.

We note that the current density in Fig. 5 is larger than
that in Fig. 6. This is a consequence of the symmetry selec-

tion rule for the tunneling matrix elements. At k=0 and zero
magnetic field, tunneling of electrons from the InAs source
through the hh states in the quantum well is forbidden by
symmetry. For a finite magnetic field, the e-like, lh-like, and
hh-like levels hybridize.13 In this case, tunneling through a
hh-like state is possible, and the transmission probability de-
pends on the degree of hybridization. In Fig. 2, the dotted
energy level next to the Fermi level contains a large e-like
component at low magnetic field but a large hh-like compo-
nent at high magnetic field. Consequently, the current density
in Fig. 5 is larger than that in Fig. 6.

V. CONCLUSIONS

In this paper, we have examined how the small energy
difference between a quasibound level and the Fermi level
effects interband magnetotransport in a double-barrier
broken-gap heterostructure. Our partially self-consistent cal-
culation is sufficiently accurate to investigate the character-
istic features of the magnetotransport through the small
band-overlap energy region. The applied magnetic field can
tune the I-V curve from a resonant-tunneling behavior to an
Ohmic behavior and vice versa. To our knowledge, there has
been neither theoretical prediction nor experimental evidence
of this phenomenon reported in the literature. Therefore, our
findings here should help to understand relevant future ex-
periments, as well as to properly design the high-power in-
terband cascade lasers.
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