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The evolution of quantum dots �QDs�, resulting from the Asaro-Tiller-Grinfeld instability of an epitaxially
strained thin solid film deposited on a solid elastic substrate, is considered. For a film that wets the substrate,
a nonlocal integro-differential equation is derived that describes the evolution of QDs in the long-wave limit.
The contribution of a wetting stress, that accounts for the change in wetting energy due to variation of the film
thickness caused by the film deformation, is included. It is found that wetting interactions can damp the
long-wave perturbations and lead to Turing-type instability. By means of a weakly nonlinear analysis, general
conditions for the wetting potential are found for which the formation of spatially periodic arrays of QDs is
possible. It is shown that in either the case of a two-layer or a glued-layer wetting potential, the spatially
regular arrays of QDs are unstable. The numerical simulations show that the QD’s evolution exhibits a
power-law coarsening, with different characteristics giving different exponents.
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I. INTRODUCTION

The formation of quantum dots �QDs� on surfaces of epi-
taxially strained thin solid films has attracted much attention
in recent years due to the unique electronic properties of QDs
and their important applications in optoelectronic devices1–4

and bionanotechnology.5 An important feature of QDs is that
they can self-assemble; that is, they can form spontaneously
as a result of an instability, thus providing an efficient and
inexpensive method for their fabrication.

The principal mechanism leading to the formation of QDs
in epitaxial films is associated with epitaxial stress that oc-
curs in the film due to lattice mismatch between the film and
the substrate. The elastic energy that accumulates in the film
can be lowered by reconstruction of the film surface through
surface undulations. This results in Asaro-Tiller-Grinfeld
�ATG� instability,6 leading to the formation of nanoscale sur-
face structures �islands�, QDs.7–10

The characteristic feature of the ATG instability is that all
perturbations whose wavelengths are larger than a certain
critical cutoff value are unstable �long-wave instability�. The
nonlinear evolution of this type of instability results in a
coarsening of the surface structures, with larger islands
growing at the expense of smaller ones, as observed in
experiments.11,12 However, in some experiments, the forma-
tion of stable arrays of equal-sized QDs has been observed13

and the self-organization of spatially ordered QD arrays in
multilayer structures has been demonstrated.14 Since self-
assembly of spatially regular arrays of QDs is desirable in
several optoelectronic applications,4 investigation of the con-
ditions under which the coarsening can cease and regular QD
arrays can form is important.

The theoretical investigation of self-assembly and evolu-
tion of QDs in thin epitaxial films has received a great deal
of attention. In Ref. 15, the formation and coarsening of QDs
caused by the ATG instability mechanism were investigated
by numerically solving a nonlinear evolution equation for the
film surface shape and the resulting coarsening kinetics was
in accord with experimental observations.12 A theoretical

analysis of the stability of a hexagonal array of cones on the
surface of an elastically strained solid was performed in Ref.
16. It was shown that elastic interactions between the cones
can lead to array metastability. Elastic interactions can also
stabilize spatially regular QD arrays in multilayer
structures17; however, other stabilization mechanisms are
also possible.18 Numerical simulations of the self-assembly
of regular QD arrays in multilayer structures were performed
in Ref. 19.

Another physical mechanism that can cause the spatial
ordering of QDs in thin epitaxial films is associated with
wetting interactions between the film and the substrate. As
was shown in Refs. 20–22, wetting interactions can stabilize
long-wave perturbation modes and change the spectrum of
the ATG instability from long-wave type to Turing �short-
wave� type, with the instability threshold corresponding to a
particular finite wavelength. Turing instability is known to
result in the formation of spatially regular patterns.23

An analysis of the pattern formation in a thin epitaxial
film caused by the interplay between elastic and wetting in-
teractions was performed in Ref. 21 for the case of a rigid
substrate in the long-wave limit; the possibility of the forma-
tion of stable, spatially regular arrays of QDs was demon-
strated analytically and numerically. In Ref. 24 it was also
shown that, in the presence of a strong surface-energy aniso-
tropy, self-organization of regular QD arrays is possible even
without epitaxial stress, solely as a result of the coupling
between wetting interactions and a thermodynamic faceting
instability. A combined effect of elastic stress, surface-energy
anisotropy, and wetting interactions on the formation of QDs
in a thin epitaxial film was investigated in Refs. 25 and 26.
Numerical simulations performed for 1+1 �Ref. 26� and
2+1 �Ref. 25� interfaces showed self-assembly of spatially
periodic arrays of faceted pyramids.

Another important factor that affects the formation of
QDs in epitaxial films is the elastic properties of the sub-
strate. The substrate elasticity results in a nonanalytic spec-
trum of the ATG instability8,10 and can substantially affect
the nonlinear dynamics of QD formation. The effect of the
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substrate elasticity on the self-assembly of QDs in the pres-
ence of wetting interactions was studied in Ref. 27. A non-
local, integro-differential equation describing the evolution
of the film surface was derived in the long-wave limit, and
the formation of a single localized island was investigated
�see also Ref. 28�. This analysis has recently been general-
ized in Ref. 29 to include certain nonlinear elastic effects. It
was claimed that the combined effect of nonlinear stress and
wetting can terminate the coarsening process and lead to the
formation of irregular arrays of equal-sized islands. Phase-
field numerical simulations of island formation in the pres-
ence of wetting effects and elastic interaction between the
film and the substrate were performed in Refs. 30 and 31.

Despite the large number of theoretical investigations of
self-assembly of QDs in thin solid films, the question as to
the conditions under which the QD coarsening ceases and a
spatially regular array of QDs can form still remains open.
Specifically, the fact that ordered QD arrays have not been
observed in experiments on the instability of thin epitaxial
films needs to be understood. This problem can be ap-
proached by means of a weakly nonlinear stability analysis
near the ATG instability threshold that would allow one to
understand the nature of the bifurcation of a regular pattern
from a homogeneous state. Also, it can be shown that wet-
ting interactions between the film and the substrate yield an
additional normal stress at the film free surface that can be
called a wetting stress. This stress originates from the depen-
dence of the wetting potential on the film thickness.

In this paper, we investigate the formation of quantum
dots driven by ATG instability and wetting interactions be-
tween the film and the substrate, accounting for the substrate
elasticity and wetting stress. We perform linear and weakly
nonlinear analyses in order to determine the possibility of the
formation of spatially regular QD arrays. We show that, in
the case of two-layer and glued-layer wetting potentials, such
arrays result from a subcritical bifurcation and are therefore
unstable. We also perform numerical simulations of a nonlo-
cal integro-differential equation describing the surface evo-
lution in the long-wave approximation and determine the
coarsening kinetics.

II. PROBLEM STATEMENT

Consider an epitaxially strained thin solid film that wets a
solid, semi-infinite elastic substrate. The film surface z
=h�x , t� evolves due to surface diffusion, described by10

�h

�t
= D�1 + ��h�2�1/2�S

2�E�h� − 2�K + W�h�� , �1�

where z is the coordinate normal to the substrate, x= �x ,y�
are the coordinates in the plane parallel to the planar
substrate-film interface, �S

2 is the surface Laplacian, E�h� is
part of the surface chemical potential related to the elastic
energy in the film which is determined by the solution of the
corresponding elastic problem �see below�, W�h� is part of
the surface chemical potential due to wetting interactions
with the substrate �wetting potential�, � is the surface
free energy, assumed to be isotropic—i.e., independent

of the surface orientation—and 2K= ��1+hx
2�hyy + �1+hy

2�hxx

−2hxhyhxy� / �1+ ��h�2�3/2 is the mean surface curvature; D
=DSS0�V0 /kB�, where DS is the surface mobility of atoms,
S0 is the number of atoms per unit area of the surface, kB is
the Boltzmann constant, � is the absolute temperature, � is
the atomic volume, and V0 is the atomic volume of lattice
sites on the film surface.

We consider two models for the wetting interactions �see
also Ref. 24�: the two-layer and glued-layer models. In a
two-layer wetting model, the surface energy depends on the
film thickness according to33–35

��h� = � f + ��s − � f�e−h/�w, �2�

where �s is the surface energy of the substrate in the absence
of the film, � f is the energy of the film free surface far from
the substrate, and �w is the characteristic wetting length. In
this case, the wetting potential is34

W = �d�/dh�/�1 + ��h�2. �3�

In a glued-layer wetting model, the wetting potential has a
singularity for h→0 and exponentially decays for h→�; we
set

W = − w�h/�w�−�wexp�− h/�w� . �4�

Here w�0 characterizes the strength of the wetting interac-
tions and �w�0 characterizes the singularity. This singular-
ity is a simple phenomenological continuum model of a very
large potential barrier for the removal of an ultrathin �possi-
bly monolayer� wetting layer that persists between surface
mounds during the Stranski-Krastanov growth process �see
also Refs. 36–38�.

We choose a coordinate system such that z�0 corre-
sponds to the semi-infinite substrate, and 0�z�h�x , t� cor-
responds to the film. We assume that mechanical equilibrium
exists in the system at all times; therefore, � j	ij

f ,s=0, where
	ij is the stress tensor expressed in terms of the strain tensor
Eij, � j denotes partial differentiation with respect to the co-
ordinate j=1,2 ,3 corresponding to the coordinates x ,y ,z,
respectively, and the superscripts f and s refer to the film and
the substrate, respectively. The stress and strain tensors are
related by Hooke’s law,32

	ij = 2
�� �

1 + �
	�ijEkk + Eij
, Eij =

1

2
�� jui + �iuj� ,

�5�

where ui is the ith Cartesian coordinate of the displacement
vector, i=1,2 ,3, 
 is the elastic shear modulus, � is the
Poisson’s ratio, �ij is Kronecker’s delta, and the usual sum-
mation over repeated indices is assumed. Thus, the condition
of mechanical equilibrium is described by the Navier equa-
tions in the film and in the substrate,32

�1 − 2� f ,s��k
2ui

f ,s + �i�kuk
f ,s = 0. �6�

The elastic energy in Eq. �1� is E�h�= 1
2	ijEij�z=h.

In the presence of wetting interactions, the boundary con-
ditions that describe the stress balance at the film free surface
and at the film-substrate interface require special consider-
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ation. In both wetting models, we assume that the wetting
potential depends on the film thickness which can change by
two mechanisms: �i� accumulation �or redistribution� of ma-
terial at the free surface and �ii� deformation of the film. If,
as a result of the film deformation, the local displacements of
the film free surface and the film-substrate interface in the z
direction are �hf and �hs, respectively, then the film thick-
ness changes by �h=�hf −�hs, causing the film surface en-
ergy to change by �d� /dh��h. This means that additional
stresses in the z direction, �d� /dh, act on the film free sur-
face and the film-substrate interface, respectively. The work
of these stresses causes this energy change. Similarly, if wet-
ting interactions between the film and the substrate are de-
scribed by the glued-layer wetting potential given by Eq. �4�,
then the additional stresses acting on the film free surface
and the film-substrate interface are �hdW /dh, respectively.
Thus, in the presence of wetting interactions, characterized
by an additional wetting energy that depends on the local
film thickness, one should include a wetting stress acting on
the film free surface and on the film-substrate interface. This
wetting stress accounts for the change of the film energy due
to the variation of the film thickness caused by the film de-
formation, while the term W�h� in the surface diffusion
equation �1� accounts for the change of the film energy when
the film thickness changes due to the material redistribution.
Note that this consideration is valid only in the long-wave
approximation, when wetting interactions can be described
by a function that depends on the local film thickness only.

In the following analysis, unless specified otherwise, we
consider the two-layer wetting model. Thus, the stress bal-
ance boundary conditions at the film free surface and at the
film-substrate interface read

	ij
f nj +

��

�h
�i3 = 0 on z = h�x,y,t� , �7�

	ij
f nj − 	ij

s nj +
��

�h
�i3 = 0 on z = 0, �8�

where nj is the unit normal to the film surface and �� /�h is
the wetting stress.

At the film-substrate interface, continuity of displacement
taking into account the lattice mismatch between the film and
the substrate holds,

ui
f = ui

s + 
�x

y

0
� . �9�

Here, 
 is the misfit strain in the film, defined by


 =
as − af

af
, �10�

where af and as are the lattice spacings of the film and the
substrate, respectively; 
�0 corresponds to tensile strain and

�0 to the compressive strain. Finally, we require the strains
in the substrate far away from the film to decay to zero,

Eij
s → 0 as z → − � . �11�

III. STEADY-STATE SOLUTION

The governing equations in Sec. II describe the stress
state and surface evolution of an epitaxially strained film.
They have a basic-state solution corresponding to a com-
pletely relaxed, stress-free substrate,

ūi
s = 0, 	̄ij

s = 0 for i, j = 1,2,3, �12�

and a planar film with spatially uniform stress and strain,

ū1
f = 
x, ū2

f = 
y, ū3
f = −

1

1 − � f
�2
� f +

1 − 2� f

2
 f

��

�h

z ,

�13�

	̄11
f = 	̄22

f =
1

1 − � f
�2

 f�1 + � f� − � f

��

�h

, 	̄33

f = −
��

�h
.

�14�

Note that even in the absence of epitaxial strain, the wet-
ting interactions with the substrate produce wetting strain
and wetting stress in the film:

Ē33
w = −

1 − 2� f

2
 f�1 − � f�
��

�h
, 	̄11

w = 	̄22
w = −

� f

1 − � f

��

�h
,

	̄33
w = −

��

�h
. �15�

In the presence of epitaxial strain, wetting interactions
modify the strain in the film as well as all components of the
stress. It is interesting to note that the presence of wetting
stress breaks the symmetry between compressive and tensile
epitaxial strains. Indeed, as follows from Eq. �13�, when the
epitaxial strain is compressive �
�0�, the corresponding ver-
tical strain has the same sign as the wetting strain and the
two strains add to increase the total vertical strain. Alterna-
tively, when the epitaxial strain is tensile �
�0�, the signs of
the epitaxial and wetting strains in the vertical direction are
opposite which decreases the total vertical strain. The total
elastic energy stored in the film due to epitaxial and wetting
stresses, however, is independent of the sign of 
 and �� /�h:

E0 =
1

2
	̄ij

f Ēij
f = 2
2
 f

1 + � f

1 − � f
+

1

2
 f

1 − 2� f

1 − � f
� ��

�h
	2

. �16�

In the next section we perform a linear stability analysis of
this basic state of an epitaxial film in the presence of epitax-
ial and wetting stresses.
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IV. LINEAR STABILITY ANALYSIS

In this section, we study the stability of a planar film in
the basic state described by Eqs. �12�–�14�. The film dynam-
ics is governed by Eqs. �1� and �6�–�11�. We consider infini-

tesimal perturbations of the planar film, h= h̄+ ĥe�t+ik·x, and
the displacement vectors

u f ,s = u0
f ,s + f̂ f ,s�z�e�t+ik·x, �17�

and linearize the problem �1�–�11�. The solvability condition
for the linear problem gives the dispersion relation between
the perturbation growth rate � and the wave vector k. In the

long-wave approximation—i.e., for 2� /k� h̄—this disper-
sion relation reads

D−1� = − Ak2 + Bk3 − Ck4, �18�

where k= �k� and

A = �1 +
� f


 f� f
���h̄�
���h̄� , �19�

B = 4
�s

� f
2
0�1 + � f�
2
2�1 + � f�
s − 
� f����h̄� + h̄���h̄��� ,

�20�

C = � +
2h̄

� f
3 �1 + � f�

�4� f���h̄�C1 + h̄���h̄�C2�

− 8
2
s�1 + � f��C1 − � f�� , �21�

where

� f ,s = 2�1 − � f ,s�, � f ,s = 1 − 2� f ,s, 
0 = 
 f/
s,

C1 = � f + � f�s
0 − �s
2
0

2, C2 = 4� f + 3� f�s
0 − 4�s
2
0

2.

�22�

In the absence of wetting, ���h̄�=���h̄�=0 and A=0 Eq.
�18� reduces to the long-wave limit of the dispersion relation

obtained in Ref. 10. �Note that for ���h̄�=���h̄�=0 the long-

wave expansion �18� is valid for h̄
 f

2��. For typical val-

ues of h̄=1 nm, 
s=1012 erg/cm3, �=2�103 erg/cm2, and


=0.03 one obtains h̄
 f

2 /�=0.05�1.�

When wetting interactions between the film and the sub-

strate are present, ���h̄��0, ���h̄��0, and the dispersion
relation contains an additional term −Ak2, which becomes
dominant for small wave numbers. Had the wetting stress not

been accounted for, one would have obtained A=���h̄��0
which would mean that the wetting interactions always damp
long-wave modes. However, this is not always so if the wet-
ting stress is taken into account. In this case, the long-wave
modes are damped �A�0� only if ����h̄� � �
 f� f /� f �2
 f;
otherwise, the long-wave modes are destabilized by wetting
stress. This destabilization is even stronger than that pro-
duced by the epitaxial stress; indeed, in this case the growth
rate is proportional to k2, rather than to k3, in the absence of
wetting.

This change-of-sign effect, however, is probably not rel-
evant to common semiconductor materials, such as Ge or Si.
Indeed, taking 
 f =1012 erg/cm3, �s−� f ���=2
�102 erg/cm2, �w=1 nm, and h̄=1 nm, one obtains ���h̄�
�109 erg/cm3 �which is in accordance with ab initio calcu-
lations performed in Ref. 35� and ���h̄��
 f. Thus, in this
case A�0 and the long-wave modes are always damped by
the wetting interactions.

Typical dispersion curves for the case when wetting inter-
actions damp the long-wave modes are schematically shown
in Fig. 1�a�. The film becomes unstable for B2−4AC�0.
One can see that this damping changes the instability spec-
trum from long-wave �spinodal decomposition� type to short-
wave �Turing� type, thus leading to the possibility of chang-
ing the system evolution from Ostwald ripening to the
formation of stable spatially periodic patterns. Figure 1�b�
shows the wave number kc=B /2C, corresponding to the
most rapidly growing mode, as a function of the lattice mis-
match 
 for typical values of the parameters: 
0=0.8, � f
=2�103 �erg/cm2�, ��=2�102 �erg/cm2�, � f =0.198, and
�s=0.217. One can see that the long-wave approximation is
appropriate here.

Another interesting effect of wetting stress is associated
with the sign of the coefficient B in the dispersion relation
�18�. In the absence of wetting interactions, B�
 f


2�0
which describes the destabilization effect of the epitaxial
stress. The presence of wetting stress can change the sign of

this coefficient. Indeed, ���h̄�+ h̄���h̄�= ��� /�w�e−h̄/�w�h̄ /�w

−1�� �̄��h̄��0 for h̄��w and �̄��h̄��0 for h̄��w. In the
case of a compressive epitaxial strain 
�0, the coefficient B

is positive for �̄��h̄��2

s�1+� f
−1�, and in the case of a

tensile epitaxial strain 
�0, the coefficient B is positive for

�̄��h̄��2

s�1+� f
−1�. This also shows that the presence of

the wetting stress breaks the symmetry between compressive
and tensile epitaxial strains. This effect is more pronounced
for smaller epitaxial strain.

The stability analysis described above is illustrated in
Figs. 2–6. Figure 2 shows the neutral stability boundaries in

FIG. 1. �a� Sketch of dispersion curves de-
fined by Eq. �18� for �1� B2 / �4AC��1, �2�
B2 / �4AC�=1, �3� B2 / �4AC��1, and �4� A=0.
�b� Critical wave number kc as a function of the
epitaxial strain for the two-layer wetting potential
with parameters typical of a Ge on Si system �cgs
units�: 
 f =1012, 
0=0.8, � f =2�103, ��=2
�102, � f =0.198, and �s=0.217.
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the �
 ,�� parameter plane where �= h̄ /�w. One can see that if
the epitaxial strain is sufficiently large, then the film is al-
ways unstable. However, if the epitaxial strain is small
enough, then the film becomes unstable only if its thickness

exceeds a critical value, h̄�hc�
�. Figure 3 shows that for
some intervals of the epitaxial strain and some parameter
values there can be two critical values of the film thickness,
hc

+ and hc
−, that bound the interval of the film stability. This

corresponds to the boxed region in Fig. 3�a�, enlarged in Fig.

3�b�. Here, the film is unstable for h̄�hc
+ and h̄�hc

−. The
film instability for smaller thickness can be explained by the
destabilizing effect of the wetting stress which is more pro-
nounced for smaller thicknesses due to exponential decay of
wetting interactions.

Figure 4 shows how the neutral-stability boundaries
change as the film stiffness �shear modulus� varies relative to
that of the substrate, which is characterized by the parameter

0. One can see that the stability region narrows as the film’s
stiffness increases. Note that the interval of epitaxial strains

where the film is stable for hc
−� h̄�hc

+ exists only for suffi-
ciently large 
0.

Figure 5 shows how the neutral-stability boundaries
change as the wetting strength varies, which is characterized
by ��=�s−� f in Eq. �2�. One can see that as the wetting
interactions become stronger, the film stability increases.

One can also see from Figs. 2–5 that for a film with a
given thickness there exist two critical values of epitaxial

strain �positive and negative for tensile and compressive
strains, 
c

±, respectively� above which the film becomes un-
stable. Figure 6 shows these critical values of the epitaxial
strain as functions of �� and 
0. In the left figure, one can
see 
c

±���� for 
0=10.0 and different film thickness. In the
right figure, one can see 
c

±�
0� for ��=2�102 erg/cm2 and
different thickness of the film. Note that 
c

± tend to constant
values with an increase of 
0. Note also that the stability
region for �=1.0 is larger than those for �=0.0 and �=2.0.
This corresponds to the case shown in Fig. 3�b�.

V. SURFACE EVOLUTION EQUATION IN LONG-WAVE
APPROXIMATION

In this section, we derive an evolution equation for the
shape of the film surface in the long-wave approximation
using the general surface-diffusion equation �1�. Here we
follow closely the derivation presented in Ref. 27.

We introduce a small parameter �= h̄ / l�1; rescale the
variables h→�lH, �x ,y�→ l�x� ,y��, z→�lz�, t→�t�, and
u1,2,3

f �x ,y ,z�→ lU1,2,3
f �x� ,y� ,z��; and consider the expansions

	ij =	ij
�0�+�	ij

�1�+�2	ij
�2�+¯, Eij =Eij

�0�+�Eij
�1�+�2Eij

�2�+¯,
and E=E0+�E1+�2E2+¯, where E0=2
2
 f�1+� f� / �1−� f�.
We also use the following scaling for the wetting stress:

�� /�h=�
 fW˜�H�. We choose the time scale �= l4 / �D� f�,

FIG. 2. Stability regions for a planar epitaxial film with two-
layer wetting potential for parameters as in Fig. 1.

FIG. 3. �a� Stability regions for a planar epi-
taxial film with a two-layer wetting potential for

0=10. See Fig. 1 for other parameter values. �b�
Close-up of the boxed region in �a�.

FIG. 4. Stability regions for a planar epitaxial film with a two-
layer wetting potential for �a� 
0=0.01, �b� 
0=0.50, and �c� 
0

=10. See Fig. 1 for other parameter values.
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and the length scale l=� f /E0, and obtain from Eq. �1�, in the
order O���, the following evolution equation in the long-
wave approximation:

�H

�t
= �2�Ẽ1 − �2H + W˜� , �23�

where Ẽ1=E1 /E0 and W˜= �
 f /E0�W˜, and we omit primes in
the rescaled coordinates.

We determine Ẽ1 by solving the elasticity problem. First,
we find the solution of the elastic problem in the film and the
substrate that satisfy the boundary conditions �7� and �8�,
respectively. We then use the boundary conditions �9� in or-
der to solve for unknown coefficients of the elasticity prob-
lem solution in the film �see Ref. 27 for details�. Finally, we
obtain

Ẽ1 =
1

4�2 � kẼ1ke−ik·xd2k ,

Ẽ1k = E0�− Hk +
1

2


� f

1 + � f
�HW˜�k	 , �24�

where Hk and �HW˜�k are the respective Fourier transforms of

H and HW˜ and

E0 =
2
 f�1 + � f��1 − �s�


s�1 − � f�
. �25�

Equations �23� and �24� are a generalization of the long-
wave equation obtained in Ref. 27 for the presence of wet-
ting stress. However, as shown above, the effect of the wet-
ting stress is negligible for typical semiconductor systems;

thus, we omit the term �HW˜�k in Eqs. �24� in the analysis that
follows. After further rescaling, t→ t /E0

2, x→x /E0, Eq. �23�
has the following form:

�H

�t
= �2�E1�H� − �2H + W�H�� , �26�

where W=W˜ /E0
2 and

E1�H� =
1

4�2 � kHke−ik·xd2k . �27�

VI. FORMATION OF SURFACE STRUCTURES: WEAKLY
NONLINEAR ANALYSIS

In this section, we investigate the nonlinear evolution of
surface structures near the short-wave instability threshold in
order to determine if the formation of a spatially periodic

array of dots is possible. We consider H=H0+H˜ , �H˜ � �H0
and expand

W�H� = w0 + w1H˜ + w2H˜2 + w3H˜3 + ¯ . �28�

Linearizing Eq. �26� for H˜�e�t+ik·x, one obtains

� = − w1k2 + k3 − k4. �29�

The onset of instability corresponds to w1=w1c=1/4 and
k=kc=1/2.

FIG. 5. Stability regions for a planar epitaxial film with a two-
layer wetting potential �cgs units�: �a� ��=102 and �b� ��=1. See
Fig. 1 for other parameter values.

FIG. 6. Critical values 
c
± as functions of ��

for 
0=10.0 �left� and 
0 for ��=2�102 �right�
for different initial film thickness �for a two-layer
wetting potential�. Other parameter values corre-
spond to those in Fig. 1 �cgs units�.

LEVINE et al. PHYSICAL REVIEW B 75, 205312 �2007�

205312-6



Now we consider the weakly nonlinear case correspond-
ing to w1=1/4−�2	, ��1. First consider quasi-one-
dimensional structures �wires�. We introduce the long scale
coordinate X=�x and the slow time T=�2t, and consider the
expansions

H˜ = ��H1 + �H2 + ¯ � , �30�

E1 = E10 + �E11 + �2E12 + ¯ . �31�

Here,

H1 = ��A�X,T�eikcx + c.c.� ,

H2 = �2�B�X,T� + A2�X,T�e2ikcx + c.c.� , �32�

where A�X ,T� is the complex amplitude of the spatially pe-
riodic, unstable mode, and B�X ,T� is the real amplitude of
the zero mode. The linear operator E1 acts on a Fourier mode
A�X ,T�eikx as

E1�A�X,T�eikx� = �E10�k� + �E11�k,�X� + �2E12�k,�X�

+ ¯ �A�X,T�eikx, �33�

where

E10�k� = − �k�, E11�k,�X� = i sgn�k��X,

E12�k,�X� = − sgn�k��XX. �34�

Using these expansions, we obtain successive problems in
orders of �. At O��2�, we find A2=−4w2A2. Finally, the solv-
ability conditions at O��3� and O��4� yield the system of
coupled amplitude equations:

AT =
1

4
	A +

1

2
AXX − ��A�2A + sAB ,

BT =
1

4
BXX − 4s��A�2�XX, �35�

where

� =
3

4
w3 − 2w2

2, s = −
1

2
w2. �36�

The system of amplitude equations �35� has a stable, sta-
tionary solution A= � 	

4�
�1/2, B=0, corresponding to spatially

periodic patterns if ��16s2,40,21—i.e., if

w3 � 8w2
2. �37�

Condition �37� defines a region in the parameter space in
which one could observe the formation of stable, periodic

array of wires. First consider a glued-layer wetting potential
defined by Eq. �4�. Translating �37� into physical parameters
gives

e���3 + �3 + 3�2�1 + �� + ��2 + 3� + 3�2���1+�

12�� + �2 + 2�� + �2�2 �
w� f

�E0
2 .

�38�

and with the instability-onset condition w1=1/4,

w� f

�E0
2 =

��e−�

4
�1 +

�

�
	−1

, �39�

yields

e���3 + �3 + 3�2�1 + �� + ��2 + 3� + 3�2���1+�

12�� + �2 + 2�� + �2�2

−
��e−�

4
�1 +

�

�
	−1

� 0. �40�

Inequality �40� is satisfied only for ��1—i.e., for a film
thickness which is much smaller than the characteristic wet-
ting length �w, which is unrealistic. Thus, one concludes that
periodic arrays of wires are unstable in any practical case.

Now consider a two-layer wetting potential defined by
Eq. �2�. We expand Eq. �2� around the initial film thickness
and obtain

w2 = −
w1

2
, w3 =

w1

6
. �41�

Thus, for w1=w1c=1/4, we have ��0. In this case, system
�35� fails to describe periodic patterns with a constant ampli-
tude A=const, B=0, since there is no nonlinear saturation;
the latter appears in higher orders of �. Thus, we introduce a
new slow time scale T=�4t and repeat the multiple-scale
analysis described above. At O��5�, we obtain �neglecting
spatial modulations of A that decay on the faster time scale,
�2t�

AT =
1

4
	A − ��A�4A , �42�

where

� =
w1

4�3 + 4w1�
=

1

64
�43�

at w1=w1c. Therefore, for the two-layer wetting model, the
amplitude of one-dimensional �1D�, stable periodic struc-
tures is of O��1/4�.

We now consider the general case of two-dimensional
structures. Due to quadratic nonlinearity, a hexagonal pattern
�hexagonal array of dots� will be preferable.23,39 We take
X=�x, �=�t and T=�2t, �� �1, use expansions �30� and
�28�, and consider

H1 = �
n=1

3

An�X,T�eikn·x, �44�
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H2 = B�X,T� + �
n=1

3

Cn�X,T�e2ikn·x + D1�X,T�ei�k1−k2�·x

+ D2�X,T�ei�k1−k3�·x + D3�X,T�ei�k2−k3�·x + c.c. + ¯ ,

�45�

where k1+k2+k3=0, �k1,2,3 � =kc. The linear operator E1 act-
ing on a Fourier harmonic A�X ,T�eik·x is expanded similar to
Eq. �33� as

E10�k� = − �k�, E11�k,�� =
i

�k�
k · � ,

E12�k,�� =
1

2�k���2 −
1

�k�2
�k · ��2	 , �46�

and � acts on the long-scale coordinates X. We substitute
these expansions into Eq. �23� and obtain the following set of
amplitude equations at third and fourth orders of �:

�A1

�T
=

1

4
	A1 + �k1 · ��2A1 −

1

2
w2A2

*A3
* + 4iw2k1 · ��A2

*A3
*�

− �1�A1�2A1 − �2��A2�2 + �A3�2�A1 + sA1B , �47�

�B

�T
=

1

4
�2B − 4s�2��A1�2 + �A2�2 + �A3�2� , �48�

where

s = −
1

2
w2, �1 =

3

4
w3 − 2w2

2, �2 =
3

2
w3 −

2w2
2

2 − �3
,

�49�

and equations for A2 and A3 are obtained by cyclic permuta-
tion of the indices in Eq. �47�.

The solution of the system �47� corresponding to a spa-
tially periodic, hexagonal array of dots is

A =
− w2/2 − sgn�w2��w2

2/4 + 	��1 + 2�2�
2��1 + 2�2�

, B = 0. �50�

Note that for w2�0 it describes the array of dots whereas for
w2�0 it describes the array of pits. For both the two-layer
and glued-layer wetting models w2�0. The solution �50� is
stable for �40�

�1 + 2�2 � 0, w2
2 �

1

8
��1 + �2� . �51�

The first inequality in �51� ensures that the hexagonal pattern
results from the transcritical bifurcation, and the second con-
dition follows from the interaction with the zero mode that
effectively renormalizes the Landau constants. It is easy to
see that for the computed values of the Landau coefficients
�1,2, the system �51� reduces to the first condition �1+2�2
�0, or

w3 �
8

9�5 +
1

2 − �3
	w2

2 � 7.76w2
2. �52�

Thus, one can see that the necessary condition for the exis-
tence of stable hexagonal arrays of dots is w3�0—i.e.,
�3W /�h3�0. For the two-layer wetting potential defined by
Eq. �2�, w1=1/4, w2=−1/8, and w3=1/24 and the condition
�52� is not satisfied: the hexagonal array of dots results from
a subcritical bifurcation and is therefore unstable. For a
glued-layer wetting model defined by Eq. �4� one can check
that the condition �52� can be satisfied only for ��1, which
is unrealistic. Thus, neither for a two-layer wetting model
nor for a glued-layer can one expect the formation of stable,
spatially periodic hexagonal array of dots. This can explain
the fact that the formation of such arrays has never been
observed in experiments. However, for some other types of
wetting potentials the condition �52� might be fulfilled and in
this case the self-assembly of stable, hexagonally ordered
arrays of QDs would be possible. It is instructive, therefore,
to rewrite �52� in terms of original physical parameters; it
reads

FIG. 7. Localized QDs: numerical solution of
Eq. �26� with a glued-layer wetting potential at a
particular moment of time for a film with initial
thickness h0=5 nm, �w=2 nm, �=2, and

=0.025. Other parameters are �cgs units�

0=0.8, w=108, � f =0.198, and �s=0.217.
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4
 f
2

� f
�
 f


s
	2�1 + � f

1 − � f
	4

�1 − �s�2
�3W/�h3

��2W/�h2�2

�
1

12�5 +
1

2 − �3
	 � 0.73. �53�

Also recall that for �2W /�h2�0 one expects the formation
of an array of dots whereas for �2W /�h2�0 a hexagonal
array of pits will form instead.

VII. NUMERICAL SIMULATIONS

We have performed numerical simulations of Eq. �26� for
the glued-layer wetting potential, W�H�= w̄H−�we−H, by
means of a pseudospectral method with the time integration
in Fourier space using the Crank-Nicolson scheme for the
linear operator and the Adams-Bashforth scheme for the non-
linear operator. The simulations support the main conclusion
of the weakly nonlinear analysis, that near the instability
threshold, the stationary, spatially periodic structures are un-
stable as a result of a subcritical bifurcation for H0�1. Fig-
ure 7 shows the solution of Eq. �26� at a particular moment
in time in a relatively small domain, for small supercritical-
ity. One can see the formation of spatially localized islands.
We have found that this system of islands coarsens in time,
with larger islands growing at the expense of the smaller
ones.

The formation and evolution of surface structures in a
large domain is shown in Fig. 8 along with the corresponding
Fourier spectra. In Fig. 8�a�, one can see the formation of the
surface structure characterized by the preferred wavelength
determined by the linear stability analysis: the Fourier spec-
trum is a well-defined ring corresponding to the most rapidly
growing mode in the narrow interval of unstable modes near
kc. Note that there is no hexagonal ordering in this structure.
At later stages �Figs. 8�b�–8�d�� the structure exhibits coars-
ening in that some dots grow in height at the expense of
smaller dots and the average distance between the dots in-
creases. Thus, the system of spatially localized dots forms,
with the average distance between the dots much larger than
the localization region �dot width�. This is also seen in the
corresponding Fourier spectra in Figs. 8�c� and 8�d�. It is

interesting to note that the width of the islands remains al-
most constant as the structure coarsens. This can be seen in
Fig. 9. The mass from the shrinking islands is redistributed
into the heights of the growing islands without contributing
to their widths.

The coarsening kinetics of QDs can be characterized by
different parameters. Figure 10�a� shows the time depen-
dence of the “root-mean-square” surface roughness �r� sug-
gested in Ref. 29 defined as �r�=N−1��m,n=1,N�hm,n−h0�2�1/2,
where hm,n is the value of h at a discrete point �m ,n�, N
=5122 is the total number of points, h0 is the initial film
thickness �equal to the mean value �h� due to conservation of
mass�, and the result is averaged over ten realizations corre-
sponding to ten different random initial data. One can see
that �r�� t�1 where �1�2.88. Figure 10�b� presents the time
dependence of the maximum height of the surface structures,
�hmax�, averaged over the realizations. Here, one can see that
at the late stages of coarsening �hmax��t� exhibits the power-
law increase, �hmax�� t�2,where �2�4.23. Figure 10�c�
shows the average distance between the dots, �d�, as a func-
tion of time. Here, �d� is computed as �d�= �N /N+�1/2, where
N+ is the number of points for which h−h0�0. One can see
that �d�� t�3, where �3�1.45. Thus, �1�2�3 and �2

�3�3. The origin of the coarsening exponents �1, �2, and �3
and relation between them is yet to be understood.

FIG. 8. Solutions of Eq. �26� in real and Fourier space for di-
mensionless times �a� t=200, �b� t=250, �c� t=350, and �d� t
=450. The parameters are the same as in Fig. 7.

FIG. 9. Coarsening of QDs: x cross section of
a numerical solution of Eq. �26� at different mo-
ments of time. Parameters are the same as in Fig.
7.
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VIII. CONCLUSIONS

We have studied the evolution of the Asaro-Tiller-
Grinfeld instability of an epitaxially strained thin solid film

on a solid substrate in the case when the film wets the sub-
strate. We have shown that generally, in the presence of wet-
ting interactions, the stress-balance-boundary conditions of
the corresponding elasticity problem must include an addi-
tional term that describes the wetting stress resulting from
the dependence of the wetting potential on the film thickness
change caused by elastic deformation. We have shown that
the wetting stress breaks the symmetry between the tensile
and compressive epitaxial strains in that the elastically
stressed state of the planar film and its stability boundaries
depend on the different models of epitaxial strain. Wetting
strain is a minor effect for typical semiconductor systems,
such as Ge on Si; however, it may be important for hard solid
films on relatively soft substrates.

We have derived a nonlocal, integro-differential equation
describing the evolution of the film shape in the long-wave
approximation in the general case with the wetting stress.
When the latter can be neglected �for a typical semiconduc-
tor system� we have performed a weakly nonlinear analysis
near the instability threshold and have found general condi-
tions on the wetting potential for which self-assembly of
spatially regular arrays of QDs can be observed. We have
shown that these conditions are not met in the case of a
two-layer and glued-layer wetting potentials and, therefore,
spatially regular QD arrays are unstable in these cases. This
can explain the fact that the spontaneous formation of spa-
tially regular QD arrays has not been observed in experi-
ments in semiconductors.

We have performed numerical simulations of the derived
evolution equation and investigated the formation and evo-
lution of QDs in large domains. We have found that after the
structure with the wavelength corresponding to the most rap-
idly growing mode is formed, the system exhibits coarsen-
ing, with large islands growing at the expense of the smaller
ones. We have also observed that during the coarsening the
width of the localized dots remains almost unchanged while
the height grows. We have found that the coarsening rate
obeys power laws, with different characteristics, such as
root-mean-square roughness, maximum dot height, and aver-
age distance between the dots having different coarsening
exponents: �1=2.88, �2=4.23, and �3=1.45, respectively.
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