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We present a general scheme for treating the integrable singular terms within exact exchange �EXX� Kohn-
Sham or Hartree-Fock �HF� methods for periodic solids. We show that the singularity corrections for treating
these divergencies depend only on the total number and the positions of k points and on the lattice vectors, in
particular, the unit cell volume, but not on the particular positions of atoms within the unit cell. The method
proposed here to treat the singularities constitutes a stable, simple to implement, and general scheme that can
be applied to systems with arbitrary lattice parameters within either the EXX Kohn-Sham or the HF formalism.
We apply the singularity correction to a typical symmetric structure, diamond, and to a more general structure,
trans-polyacetylene. We consider the effect of the singularity corrections on volume optimizations and k-point
convergence. While the singularity correction clearly depends on the total number of k points, it exhibits a
remarkably small dependence upon the choice of the specific arrangement of the k points.
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I. INTRODUCTION

In recent years, exact exchange �EXX� Kohn-Sham �KS�
methods for solids became increasingly popular1–6 as alter-
native to conventional KS procedures based on the local-
density approximation7,8 �LDA� or generalized gradient ap-
proximations �GGAs�.9 EXX-KS methods treat both the
exchange energy and the local KS exchange potential, not to
be confused with the nonlocal Hartree-Fock exchange poten-
tial, exactly. This means they constitute a systematic im-
provement over LDA and GGA methods in the sense that
only the correlation energy and potential, i.e., contributions
of higher order in the electron-electron interaction, need to
be approximated, whereas the terms of first order in the
square e2 of the electron charge, i.e., the Coulomb and ex-
change energy and potential, are treated exactly.10 Because
exchange and Coulomb potential and energy are treated ex-
actly unphysical self-interactions contained in the Coulomb
energy and potential are completely canceled by the ex-
change energy and potential. EXX methods therefore are free
of Coulomb self-interactions. As a result, EXX band struc-
tures and, in particular, band gaps are strongly improved
compared to those from LDA or GGA methods. Indeed, for
medium gap semiconductors, EXX methods yield band gaps2

which are very close to the experimental ones,11 despite the
fact that the correlation potential needs to be neglected or
approximated by conventional LDA or GGA functionals, and
despite the fact that the KS band gap does not account for the
derivative discontinuity12,13 of the band gap at integer elec-
tron numbers.

A second first-principles approach besides the family of
density-functional methods is the Hartree-Fock �HF�
method.14,15 Recently, there has been an increasing interest in
HF methods for solids as basis for higher-level approaches,
e.g., Møller-Plesset,16,17 coupled cluster,18 or multireference
configuration interaction19 methods.

Both in the EXX and in the HF formalism, the exchange
energy contains divergent terms.20 In the limit of an infinite
system, i.e., the limit of an infinite number of k points, the

divergencies are integrable. In this limit, the exchange en-
ergy is therefore well defined. Moreover, the corresponding
divergencies also occur in the matrix elements of the nonlo-
cal exchange operator which is required in the HF self-
consistency process and can be used in the construction of
the local KS exchange potential.1,2 Also, here the divergen-
cies are integrable in the limit of an infinite number of k
points. The question arises on how to treat these divergencies
in practical calculations which necessarily take into account
only a finite number of k points. Indeed, in order to keep the
computational effort as low as possible, it is preferable to
keep the number of k points as low as possible. This, how-
ever, is possible only if an adequate treatment of the singu-
larities is available. Moreover, such a treatment of the singu-
larities should be computationally efficient and ideally its
implementation should not require much programming ef-
fort. Gygi and Baldereschi20 presented such a method for the
case of zinc-blende �fcc� structures. Wenzien et al.21 further
generalized the method to simple cubic, bcc, hexagonal, and
orthorhombic structures. For other crystal structures such
simple and straightforward method, to our knowledge, is still
lacking and alternative approaches15,22,23 are more involved.
In Refs. 15 and 22, e.g., a general treatment of the singulari-
ties is presented. This method, however, is somewhat labori-
ous because it requires a quadrature over reciprocal lattice
vectors at each k points. This quadrature formally has to run
over an infinite number of reciprocal lattice vectors which in
practice needs to be approximated by a finite summation.
Thus, there is demand for a simple, efficient treatment of the
singularities, that is applicable to arbitrary crystal structures.

In this paper, we present a simple, efficient, and general
treatment of the singularities in Hartree-Fock and exact-
exchange Kohn-Sham methods for periodic systems, which
extends the approach of Gygi and Baldereschi20 to systems
with arbitrary lattice parameters. The derivation of this treat-
ment of the singularities is accompanied by an analysis of
the singularities and demonstrates the simplicity of the sug-
gested method for handling these singularities. In order to
demonstrate the applicability of the approach, we present
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results for the symmetric diamond �fcc� structure �two car-
bon atoms� as well as for trans-polyacetylene �four carbons
and four hydrogens in its crystalline unit cell�. Polyacetylene
has monoclinic symmetry P21/a, i.e., nonorthogonal
lattices,24 and constitutes a simple example of an organic
polymer.

The paper is organized as follows. In Sec. II the general
treatment of the divergent terms in EXX and HF methods is
derived and discussed. Section III unwraps the results for
diamond and trans-polyacetylene. Section IV concludes.

II. TOTAL ENERGY WITHIN THE EXX
FORMALISM

We start by considering the expressions for the total elec-
tronic energy E0 within the KS and the HF schemes. Within
the KS formalism, the total ground-state energy is decom-
posed into the noninteracting kinetic energy Ts, the Coulomb
energy U, the exchange energy Ex, the correlation energy Ec,
and the interaction energy with the external potential Vext,

7

E0 = Ts + U + Ex + Ec +� drVext�r��0�r� . �1�

The noninteracting kinetic energy Ts is evaluated exactly via
the KS orbitals. The contributions U and �drVext�r��0�r� can
also be calculated exactly for a given electron density and
thus also for the ground-state electron density �0. The corre-
lation energy Ec in almost all KS schemes is evaluated ap-
proximately within the LDA �Ref. 8� or the GGA.9 The ex-
change energy Ex can either be evaluated via the LDA or the
GGA within a conventional KS scheme, or exactly within the
EXX-KS scheme.10

The HF total energy, on the other hand, is decomposed
into

E0 = T + U + Ex +� drVext�r��HF�r� . �2�

Within HF schemes, all contributions of the energy are usu-
ally treated exactly: the kinetic energy T and the exchange
energy Ex via the HF orbitals, and U and �drVext�r��HF�r�
via the HF electron density �HF.

The exact-exchange energy Ex per unit cell for a crystal-
line solid, either for the KS or for HF formalisms, is given by

Ex = −
1

Nk
�
vk

occ.

�
wq

occ. �
�

dr�
�

dr�
�vk

† �r��wq�r��wq
† �r���vk�r��

�r − r��
,

�3�

where both summations run through all occupied single-
particle wave functions, i.e., orbitals �vk and �wk for each k
point in the Brillouin zone �BZ�. All orbitals are assumed to
be normalized with respect to the crystal volume �=NkV,
where V designates the volume of the unit cell and Nk de-
notes the number of k points. We implicitly treat the spin via
appropriate prefactors in summations and consider for sim-
plicity nonspin polarized calculations. The Coulomb interac-
tion term, 1

�r−r��
in Eq. �3�, has to be treated taking into ac-

count periodic boundary conditions. Note that, despite the

fact that the expression for the exchange energy in terms of
one-particle functions is identical in the KS and HF case, the
KS and HF exchange energies remain different because their
respective one-particle functions are constructed using two
different scheme: KS uses a local exchange operator, while
HF uses a nonlocal exchange operator.

After expressing the product of one-particle functions as

�wq
† �r��vk�r� =

1

�
�
G

Ywq,vk�G�ei�G+k−q�·r, �4�

with

Ywq,vk�G� = �
�

dre−i�G+k−q�·r�wq
† �r��vk�r� , �5�

one obtains the following expression for the exchange energy
per unit cell:

Ex = −
4�

Nk�
�
vk

�
wq

�
G

Ywq,vk
* �G�Ywq,vk�G�

�G + k − q�2
, �6�

if the following relation is taken into account

�
�

dr�
�

dr�
e−iG·reiG�·r�

�r − r��
=

4��

�G�2
�GG�, �7�

which holds due to translational symmetry.
Expression �6� contains singular terms, namely, those with

G=0, k=q, and v=w. Note that when v�w no singularities
occur for any value of G and k. This is due to the relation

Ywk,vk�0� = �wv �8�

which holds because Eq. �5� that defines Ywq,vk�0� in the case
where G=0 and k=q just turns into the orthonormality con-
dition for the one-particle functions. Thus, contributions with
G=0, k=q, and v�w vanish because the plane-wave repre-
sentations of the products �wk

† �r��vk�r� with v�w do not
contain contributions from a plane wave with G=0. �This
means that for v�w, no singularities are present in Eq. �6�.
Therefore, strictly speaking, Eq. �6� needs to be modified in
a way that for v�w singular terms are no longer present.�

Due to the presence of the singularities described above,
the exchange energy is well defined only in the limit of an
infinite number of unit cells, i.e., for Nk→�. In this case, the
summations over k and q turn into integrals over the BZ and
Eq. �6� for the exchange energy assumes the form

Ex = −
4�

Nk�

�2

�2��6�
v
�

BZ

dk�
w
�

BZ

dq

��
G

Ywq,vk
* �G�Ywq,vk�G�

�G + k − q�2
. �9�

The singularities in integral �9� are integrable. Therefore, the
exchange energy is now well defined.

Adopting an idea of Gygi and Baldereschi,20 we now ma-
nipulate the contributions on the right-hand side of Eq. �9�
with G=0 and v=w, i.e., those contributions which contain
the integrable singularities, by adding and subtracting a func-
tion f�q� which shall obey the three following conditions: �i�
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f�q� is periodic within the reciprocal lattice, �ii� f�q� di-
verges as 1/q2 for q→0 and is smooth elsewhere, and �iii�
f�q�= f�−q�. This leads to

−
4�

Nk�

�2

�2��6�
v
�

BZ

dk�
BZ

dq
Yvq,vk

* �0�Yvq,vk�0�
�k − q�2

= −
4�

Nk�

�2

�2��6�
v
�

BZ

dk�
BZ

dq	Yvq,vk
* �0�Yvq,vk�0�

�k − q�2

− f�k − q�
 −
4�

Nk�

�2

�2��6�
v
�

BZ

dk�
BZ

dqf�k − q�

� −
4�

Nk�
�
v

�
k

�
q�k

	Yvq,vk
* �0�Yvq,vk�0�

�k − q�2
− f�k − q�


−
4�

Nk�

�2

�2��6�
v
�

BZ

dk�
BZ

dqf�q�

= −
4�

Nk�
�
v

�
k

�
q�k

Yvq,vk
* �0�Yvq,vk�0�

�k − q�2

+
4�Nv

Nk�
�
k

�
q�k

f�k − q� − Nv
4�

�2��3�
BZ

dqf�q�

= −
4�

Nk�
�
v

�
k

�
q�k

Yvq,vk
* �0�Yvq,vk�0�

�k − q�2
+ Nv�F̃ − F� ,

�10�

where

F̃ =
1

Nk
�
k

F̃k =
1

Nk
�
k
	4�

�
�
q�k

f�k − q�
 �11�

and

F =
4�

�2��3�
BZ

dqf�q� . �12�

The function F̃k in Eq. �11� is given by

F̃k =
4�

�
�
q�k

f�k − q� . �13�

In Eq. �10�, Nv designates the number of valence bands,
which comes from the summation over the valence bands in
the two terms containing the function f . We also used con-
dition �ii� for the function f and Eq. �8� that require
Yvq,vk

* �0�Yvq,vk�0� / �k−q�2− f�k−q� for any given k to be a
smooth function of q that equals zero at q=k. Therefore, the
first integral over q and k after the first equality sign of Eq.
�10� can be evaluated by summations over the finite grid of k
points omitting the terms with q=k. Due to the periodicity
and inversion symmetry of f�q� �conditions �i� and �iii� for
f�, the integrals of f�k−q� over the BZ can be replaced by
BZ integrals of f�q�. Furthermore, for the case of a uniform

grid of k points the function F̃ of Eq. �11� simplifies to

F̃ =
4�

�
�
q�0

f�q� . �14�

The evaluation of the exchange energy can now be done
according to

Ex = −
4�

Nk�
�
v,k

�
w,q�k

�
G

Ywq,vk
* �G�Ywq,vk�G�

�G + k − q�2

−
4�

Nk�
�
v,k

�
w

�
G�0

Ywk,vk
* �G�Ywk,vk�G�

�G�2
+ Nv�F̃ − F� .

�15�

This implies that for the evaluation of the exchange energy,
the singular terms in the original expression �Eq. �6�� can
first simply be omitted and then be taken into account by

Nv�F̃−F�, i.e., by adding Nv�F̃−F� to the exchange energy
that is obtained if the singular terms are simply omitted. The
correction is calculated only once before the self-consistency

procedure. In fact, the correction Nv�F̃−F� depends only on
the unit cell lattice vectors, and thus in particular on the unit
cell volume V, and on the number Nk and the positions of the
k points. It does not depend on the number, type, or positions
of the atoms within the unit cell, and does not depend on the
one-particle wave functions. This has obvious advantages for
atomic relaxations at fixed unit cell volumes and fixed lat-
tices.

The whole scheme, of course, hinges on the availability of
a suitable function f�q�. For fcc systems such a function was
given by Gygi and Baldereschi.20 For sc, bcc, hexagonal, and
orthorhombic systems Wenzien21 presented such functions.
Here, we suggest the following function f for arbitrary crys-
tal structures:

f�q� =
1

1/�2��2�4�
j=1

3

�b j sin�a j · q/2�� · �b j sin�a j · q/2��

+ 2�
j=1

3

�b j sin�a j · q�� · �b j+1 sin�a j+1 · q��
−1

. �16�

The b j �with b4�b1 for a compact formulation accounting
for cyclic permutations� are the reciprocal lattice vectors, and
the a j �with a4�a1� are the corresponding lattice vectors
spanning the unit cell. The coefficient 1 / �2��2 arises from
the factor of 2� contained in the Taylor expansion of the
trigonometric functions because a j ·q implicitly contains
a j ·b j =2� if q is expressed as q=� jqjb j, with qj describing
the components of q with respect to reciprocal lattice vec-
tors. Function �16� by construction has the required period-
icity of the reciprocal unit cell. Expansion into a Taylor se-
ries with respect to the Cartesian components qx, qy, and qz,
or equivalently with respect to q1, q2, and q3, the components
of q referring to the reciprocal lattice, furthermore shows
that it diverges as 1/q2 for q→0. Therefore, f�q� satisfies
requirements �i�–�iii� for any type of �linearly independent�
lattice parameters: a1, a2, and a3.

The integration over the BZ of function �16� required for
obtaining the correction F in Eq. �12� can easily be carried
out numerically on an adaptive grid using an iterative algo-
rithm. To this end, we place the reciprocal lattice centered
symmetrically around q=0. In the first iteration we generate
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a regular �2N+1�� �2N+1�� �2N+1� grid with the number
N being a multiple of 3, typically N=60.25 The grid points
shall be labeled q�mn with −N���N, −N�m�N, and −N
�n�N, with the point q000 located at the origin of the re-
ciprocal lattice. We then divide the unit cell into an inner part
given by a cell in reciprocal space which again is centered
symmetrically around q=0, and which is defined by lattice
vectors being one-third of the original reciprocal unit cell
vectors. In the first iteration, numerical integration is carried
out only in the outer region. Then, in the inner region, where
the singularity is located, the number of points is tripled and
a second iteration proceeds as the first one, working now on
the outer part of the inner region of the first iteration. By
moving on in this fashion, the algorithm triples the mesh size
around the singularity in each iteration step. Therefore, the
integration result is more accurate than with any regular
mesh. We observe that less than ten steps, depending on the
lattice vectors considered, are sufficient to get the integral
converged. The implementation of the described numerical
integration is straightforward leading to about 200 lines of
FORTRAN instructions. The computational time for carrying
out the integration is negligible.

Having considered in detail the treatment of the singulari-
ties in the exchange energy, we now briefly present the cor-
responding treatment of singularities in the evaluation of the
matrix elements of the nonlocal exchange potential, which is
required in the HF self-consistency process, or can be used in
the construction of the local KS exchange potential1,2 during
the self-consistency process of a KS calculation.

The matrix elements of the nonlocal exchange potential,
vx

NL�k ,	 ,
�, are given by

vx
NL�k,	,
� = − �

wq
�

�

drdr�
�	k�r���wq�r���wq

† �r��
k�r�
�r − r��

,

�17�

with �	k and �
k denoting the basis functions for the repre-
sentation of the one-particle functions �wq. The basis func-
tions �	k are products of a periodic part and a Bloch factor
e−ik·r. The most common choice for the basis functions �	k
are plane waves e−i�G+k�·r. Like in the treatment of the ex-
change energy, we now express the products �wq

† �r��
k�r� as

�wq
† �r��
k�r� =

1

�
�
G

Ywq,
k�G�ei�G+k−q�·r, �18�

and obtain

vx
NL�k,	,
� = −

4�

�
�
wq

�
G

Ywq,	k
* �G�Ywq,
k�G�

�G + k − q�2
, �19�

Expression �19� contains singular terms, again those with
G=0 and k=q. In the limit of an infinite number of unit
cells, the summation over q again turns into an integral,
namely,

vx
NL�k,	,
� = −

4�

�

�

�2��3�
w
�

BZ

dq�
G

Ywq,	k
* �G�Ywq,
k�G�

�G + k − q�2
,

�20�

with an integrable singularity. We can now treat the singular
terms in the right-hand side of Eq. �20� exactly analogously
to the singular terms occurring in the exchange energy,

−
4�

�

�

�2��3�
w
�

BZ

dq
Ywq,	k

* �0�Ywq,
k�0�
�k − q�2

= −
4�

�

�

�2��3�
w
�

BZ

dq	Ywq,	k
* �0�Ywq,
k�0�

�k − q�2
− Ywk,	k

* �0�Ywk,
k�0�f�k − q�

− 	�

w

Ywk,	k
* �0�Ywk,
k�0�
4�

�

�

�2��3�
BZ

dqf�k − q�

� −
4�

�
�
w

�
q�k

	Ywq,	k
* �0�Ywq,
k�0�

�k − q�2
− Ywk,	k

* �0�Ywk,
k�0�f�k − q�

− 	�

w

Ywk,	k
* �0�Ywk,
k�0�
4�

�

�

�2��3�
BZ

dqf�q�

= −
4�

�
�
w

�
q�k

Ywq,	k
* �0�Ywq,
k�0�

�k − q�2
+ 	�

w

Ywk,	k
* �0�Ywk,
k�0�
�F̃k − F� , �21�

with F̃k and F defined in Eqs. �13� and �12�, respectively.
Thus, the matrix elements vx

Nl�k ,	 ,
� of the nonlocal ex-
change potential can be evaluated by first omitting the sin-
gular terms in Eq. �19� and by then adding the following
correction term:

	�
w

Ywk,	k
* �0�Ywk,
k�0�
�F̃k − F� . �22�

The required sums F̃k and the integral F have to be calcu-
lated only once at the beginning of the self-consistency pro-
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cedure and then are multiplied by �wYwk,	k
* �0�Ywk,
k�0� in

each HF self-consistency cycle because the
Ywk,	k

* �0�Ywk,
k�0� change during the self-consistency cycle.

In case of a uniform grid of k points, the F̃k reduce to F̃
given in Eq. �14�.

The most widely used basis sets for the one-particle func-
tions of periodic systems are plane waves. If basis sets of
plane waves are employed, then the one-particle functions
�wq�r� are given by

�wq�r� = �
G

Cwq�G�
1

��
e−i�G+q�·r. �23�

The elements �Eq. �19�� of the nonlocal exchange potential
turn into

vx
NL�k,G,G�� = −

4�

�
�
wq

�
G�

Cwq�G − G� + G��Cwq
* �G��

�G� − G� + k − q�2
,

�24�

and the correction term �Eq. �22�� turns into

	�
w

Cwk�G�Cwk
* �G��
�F̃k − F� . �25�

Again the matrix elements vx
NL�k ,G ,G�� can be calculated

by first omitting the singular terms in Eq. �24� and by then
adding the correction term �Eq. �25��.

So far we have considered only systems with bands that
are either fully occupied or fully unoccupied, i.e., we have
considered isolating systems at zero temperature. In the Ap-
pendix, we sketch how the formulas of this section change
for systems with partially filled bands and how the singulari-
ties can be treated in this case.

III. RESULTS FOR DIAMOND
AND TRANS-POLYACETYLENE

The applicability of the presented approach for treating
the divergencies is now demonstrated by applying it to two
cases, diamond and trans-polyacetylene, using different ap-
proximations for the exchange-correlation functionals: the
Slater-Dirac �exchange-only LDA� referred to as Dirac ex-
change in the following, the complete exchange-correlation
LDA in the parametrization of Vosko-Wilk-Nusair �VWN�,8
the combination of Dirac exchange plus Perdew86 �Ref. 9�
�P86� correlation �P86 being VWN correlation plus a gradi-
ent correction�, the EXX �exact-exchange only�, and finally
the combination of EXX with P86 correlation.

The pseudopotentials were generated using the pseudopo-
tential generation code of Engel,26 which is based on the
Troullier-Martins norm-conserving scheme.27 In all cases,
the pseudopotentials were generated using consistently the
same functionals for exchange and correlation as for the
plane-wave calculations. Relativistic effect are not included.
The pseudopotentials of C are all constructed using a cutoff
radius of 1.3 a.u. for both s and p levels. We constructed for
the calculations of trans-polyacetylene chains hydrogen
pseudopotentials with a cutoff radius of 0.9 a.u.. For dia-

mond, the energy cutoff of the plane-wave basis is 60 Ry for
the one-particle functions, and 20 Ry for the exchange po-
tential and the response function.2 For trans-polyacetylene,28

we reduced the energy cutoffs to 32 Ry for the one-particle
functions and 12 Ry for the exchange potential and the re-
sponse function because we are interested to determine the
effect of the singularity function in terms of several possible
k points meshes, and study meshes with a large number of k
points.

The lattice constants for diamond were varied from
3.1 to 4.1 Å. For comparison, the experimental lattice con-
stant of diamond is 3.5668 Å.11 Figure 1 shows the variation
of the singularity correction of the EXX exchange energy as
a function of the k point mesh for diamond. Figure 2 shows
the singularity correction for diamond for a fixed number of
k points but for different volumes. Choosing 5�5�5 k
points ensures convergence of the total energy within 0.2 eV,
while 8�8�8 k points ensure total-energy convergence
within 0.05 eV. From Fig. 1, we notice that the singularity

correction Nv�F̃−F� and the exchange energy without the
singularity correction vary oppositely with increasing num-
ber of k points. The complete exchange energy including the
singularity correction turns out to be quite stable with the
number of k points. Figure 1 also shows that for small and
medium numbers of k points, a more symmetric mesh divi-
sion reduces the deviation of the complete exchange energy
from its converged value at high numbers of k points �com-
pare dashed with continuous EXX line�. Figure 2 also shows
an aspect important for volume optimizations: the singularity
correction changes dramatically with the volume and thus
strongly modifies the position of the energy minimum as
well as the bulk modulus. The energy minimum is reduced

FIG. 1. �Color online� Singularity correction of the exchange
energy as a function of the number of k points. Circles represent
data for the EXX energy without taking into account the singular
terms. Triangles are the singularity correction. Squares constitute
the full EXX energies, including the singularity correction. The
exchange energy excluding singular terms and the singularity cor-
rection vary oppositely with the number of k points and their sum
leads to a relatively constant and quite fast converging EXX energy.
The lines guide the eyes for nonsymmetric �dash� and symmetric
�solid� k point meshes. The number of k points along axes of the
reciprocal lattice are indicated by the numbers in parentheses.

GENERAL TREATMENT OF THE SINGULARITIES IN… PHYSICAL REVIEW B 75, 205126 �2007�

205126-5



because the correction function is monotonically increasing
with the volume. The bulk modulus is also modified because
the variation of the correction is obviously not linear. The
bulk modulus of diamond without the singularity correction
is much smaller �25% smaller� than with it. Therefore, accu-
rate integration of the singularity in the exchange energy is
essential for evaluating bulk properties within EXX or HF
methods.

Figure 3 shows volume optimization results for diamond
using the various combinations of exchange and correlation
functionals. We observe that a removal of Coulomb self-

interactions �see EXX versus Dirac exchange� induces a sig-
nificant reduction of the total energy ��2 eV�. It also leads
to a reduction of the lattice constant minimum �compare ver-
tical lines in Fig. 3�. The values of both exchange-only en-
ergy curves, i.e., of the EXX and Dirac-Slater curves, are
much higher than the curves that contain a correlation poten-
tial, i.e., the LDA, Dirac+P86, and EXX+P86 curves, which
reflects that correlation affects the total energy. The reduction
of the total energy from EXX to EXX−P86 is of the same
order as the reduction from Dirac-exchange only to the Dirac
exchange plus P86 correlation. However, the lattice constant
minimum of the EXX−P86 is shifted to a much lower value
than any other of the combinations of functionals. The reason
for this maybe the reintroduction of self-interations, through
the P86 correlation function. In any case, the poor perfor-
mance of the combination EXX−P86 is not surprising be-
cause the P86 correlation is not meant to be used with the
EXX, but rather with the LDA or GGA exchange in order to
exploit error cancellations between exchange and correlation.
Therefore, development of correlation functionals that do not
depend on such error cancellations and thus are well suited
for combination with the EXX is highly desirable.

The EXX energy optimized lattice equals 3.555 Å �see
Fig. 3�. It becomes natural now to evaluate the band structure
at the EXX energy minimum. Figure 4 shows the band struc-
ture at this EXX energy minimum. The indirect EXX band
gap is 4.838 Å, a value comparable to previous published
data,2 and much closer to the experimental band gap of
5.50 eV �Ref. 11� than the LDA value of 3.90 eV.29 The
experimental lattice constant of diamond11 �3.5668 Å� is
slightly larger �+0.011 Å� than the EXX energy optimized
lattice. Going from the EXX lattice minimum to the experi-
mental value, i.e., addition of 0.011 Å to the EXX lattice
constant, leads to minute reduction of the band gap. How-
ever, we want to emphasize that the singularity correction to
the exchange energy is obviously essential for determining
the right correspondence between the EXX energy lattice

FIG. 2. Singularity correction of the exchange energy of dia-
mond for fixed k point mesh �5�5�5� as a function of the volume
�see text for details�.

FIG. 3. �Color online� Volume optimization for diamond. We
used the equation of states of Teter et al. �Ref. 31�. The total energy
as a function of volume is depicted, using different exchange-
correlation functionals: the Dirac exchange �exchange only LDA�,
LDA, Dirac exchange plus P86 correlation, EXX with or without
P86 correlation, and EXX without singularity correction. The sin-
gularity correction, as depicted in Fig. 2, leads to a significant shift
of the energy-volume minimum for EXX, corresponding to a reduc-
tion of the lattice constant of −0.175 Å. �Compare curves with stars
and open diamonds�. For a discussion of correlation effects with
EXX+P86 and Dirac+P86, see text. The experimental lattice con-
stant of diamond is 3.5668 Å �volume=11.3443 Å3�.

FIG. 4. Band structure of diamond evaluated at the EXX opti-
mized lattice constant of 3.555 Å �see Fig. 3�. The band gap of
diamond is indirect toward the �-X direction of the BZ. The EXX
direct transition at � equals 6.253 eV. The EXX band gap equals
4.738 eV and is located at 72% of the X point away from �. The
experimental lattice constant and band gap of diamond are, respec-
tively, 3.5668 Å and 5.50 eV �Ref. 11�.
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minimum �Fig. 3� and the band structure or its band gap �Fig.
4�. For instance, without the singularity correction, the EXX
lattice energy minimum would be incorrectly overestimated
�3.730 Å instead of 3.555 Å, as illustrated in Fig. 3� and the
EXX band gap correspondingly would be largely underesti-
mated �because the band gap variation is roughly inversely
proportional to the lattice constant�. In summary, we find that
for diamond the EXX band gap is somewhat smaller than in
the experiments �0.66 eV lower than experiment�, but EXX
improves significantly the LDA value ��1.6 eV lower than
experiment�. As mentioned in the Introduction, the EXX cal-
culation does not account for the derivative discontinuity12,13

of the band gap at integer electron numbers and, of course,
also not for the correlation potential.

We now consider a more general crystal structure: trans-
polyacetylene. The unit cell contains four carbon and four
hydrogen atoms. More data on the band structure of trans-
polyacetylene can be found elsewhere.28 Trans-polyacetylene
constitutes a monoclinic lattice structure �group P21/a� with
the following lattice parameters expressed in Cartesian coor-
dinates �and in Å�,

a1 = �4.24,0.00,0.00� ,

a2 = �− 0.064 264 4,2.454 158,0.00� ,

a3 = �0.00,0.00,7.32� . �26�

The angle between a1 and a2 is 91.46°. The angle between
any two dimerized chains is 55°. The coordinates of the
structurally optimized hydrogen atoms come from Hartree-
Fock calculations and the lattice parameters and C-C bond
distances and angles come from experimental values.30 This
structure constitutes a general and realistic case to test our

singularity correction for several k points meshes. A graph
equivalent to Fig. 1 is displayed in Fig. 5 for this molecular
crystal.

Figure 5 shows for trans-polyacetylene a similar trend as
shown in Fig. 1 for diamond. That is, the singularity correc-
tion and the exchange energy excluding the singularity vary
in opposite matter for any chosen k points division. The
complete exchange energy is a rather monotonic function of
the total number of k points in the unit cell.

The results, both for diamond and trans-polyacetylene,
show that the approach presented here to treat the integrable
singularities in the KS and HF methods constitutes a stable
and general scheme.

IV. CONCLUDING REMARKS

We have presented a general scheme for treating the inte-
grable singularities of the exchange energy within the EXX
or the HF formalisms. We have shown that the divergent
terms in the exchange energy depend only on the number and
positions of k points and on the unit cell vectors and thus on
the unit cell volume, but not on the single particle wave
functions or on the particular atomic positions within the unit
cell. A similar correction procedure is proposed for matrix
elements of the nonlocal exchange operator which occurs in
the Hartree-Fock methods and can be used to construct the
exact local Kohn-Sham exchange potential. We applied the
singularity correction to a typical symmetric structure, dia-
mond, and to a more general structure, trans-polyacetylene,
and discussed the effect of the singularity function on vol-
ume optimization and k points convergence. The singularity
function depends strongly on the total number of k points
and more weakly on the choice of the specific division of the
k points mesh. The complete exchange energy, i.e., singular-
ity corrected exchange energy, converges well with the num-
ber of k points. The method proposed here constitutes a
stable, simple to implement, and general scheme that can be
applied to systems with any lattice parameters within either
the EXX Kohn-Sham or the Hartree-Fock formalism.
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APPENDIX

In this appendix, we briefly consider the treatment of sin-
gularities for systems with partially filled bands. In this case,
expression �3� for the exchange energy turns into

FIG. 5. �Color online� Singularity correction of EXX exchange
energy of trans-polyacetylene as a function of the number of k
points �see caption of Fig. 1 for symbols description�. The number
of k points along the axes of the reciprocal lattice is indicated by
the numbers in parentheses. The second entry refers to the number
of k points along the trans-polyacetylene chain.
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, �A1�

with the occupation factor 
vk. The occupation factor shall
not include the spin multiplicity, i.e., 0�
vk�1. Analo-

gously to Eq. �6�, the exchange energy can be expressed by

Ex = −
4�

Nk�
�
vk

�
wq


vk
wq�
G

Ywq,vk
* �G�Ywq,vk�G�

�G + k − q�2
,

�A2�

The singular terms in expression �A2�, namely, those with
G=0, k=q, and v=w, can be treated in analogy to Eq. �10�
according to
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with F̃k= 4�
� �q�kf�q−k� and F=− 4�

�2��3 �BZdqf�q�. In Eq.

�A3�, we have used that the integral �BZdk
vk
2 does not con-

tain any singularities and therefore can be evaluated via sum-
mation over the k points. The energy again can be evaluated
by first omitting the singular terms in Eq. �A2� and by then
adding the correction term

1

Nk
�
k

�
v


vk
2 F̃k − � 1

Nk
�
v

�
k


vk
2 �F . �A4�

For the particular case of a uniform grid of k points, the

functions F̃k all equal the function F̃ of Eq. �14� and the
correction term turns into

� 1

Nk
�
v

�
k


vk
2 ��F̃ − F� . �A5�

In a similar way as the treatment of the singularities in the
exchange energy was generalized for the case of partially
occupied bands also the treatment of the singularities in the
exchange potential can be generalized to the case of partially

occupied bands. The matrix elements of the nonlocal ex-
change potential, vx

NL�k ,	 ,
�, then are given by

vx
NL�k,	,
� = −

4�

�
�
wq


wq�
G

Ywq,	k
* �G�Ywq,
k�G�

�G + k − q�2
,

�A6�

Expression �A6� contains singular terms, i.e., those with G
=0 and k=q. In the limit of an infinite number of unit cells,
the summation over q again turns into an integral, namely,

vx
NL�k,	,
� = −

4�

�

�

�2��3�
w
�

BZ

dq
wq

��
G

Ywq,	k
* �G�Ywq,
k�G�

�G + k − q�2
, �A7�

with an integrable singularity. We can now treat the singular
terms in the right-hand side of Eq. �A7� exactly analogously
to the singular terms occurring in the exchange energy,
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Thus, the matrix elements vx
Nl�k ,	 ,
� of the nonlocal ex-

change potential can be evaluated by first omitting the sin-
gular terms in Eq. �A6� and by then adding the following
correction term:

	�
w


wkYwk,	k
* �0�Ywk,
k�0�
�F̃k − F� . �A9�

The required sums F̃k and the integral F have to be calcu-
lated only once at the beginning of the self-consistency pro-
cedure and then multiplied by �w
wkYwk,	k

* �0�Ywk,
k�0� in
each HF self-consistency cycle, because the
Ywk,	k

* �0�Ywk,
k�0� and the occupation numbers 
wk change
during the self-consistency cycle. In case of a uniform grid

of k points the F̃k reduce to F̃ given in Eq. �14�, as for fully

occupied bands �since the singularity function f�q� does not
depend on the occupation numbers 
wk�.

If basis sets of plane waves are employed, then the ele-
ments �Eq. �A6�� of the nonlocal exchange potential turn into

vx
NL�k,G,G�� = −

4�

�
�
wq


wq�
G�

Cwq�G − G� + G��Cwq
* �G��

�G� − G� + k − q�2
,

�A10�

and the correction term �Eq. �A9�� turns into

	�
w


wkCwk�G�Cwk
* �G��
�F̃k − F� . �A11�

Again, the matrix elements vx
NL�k ,G ,G�� can be calculated

by first omitting the singular terms in Eq. �A10� and by then
adding the correction term �Eq. �A11��.
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