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The crystal structures of Zn and Cd deviate from an ideal hexagonal close packing by a significantly
increased c/a ratio. In order to investigate the electronic reason for this deviation, especially with regard to the
nearly ideal hcp element Mg, Hartree-Fock and density functional theory calculations were performed, em-
ploying various functionals within the local density or the generalized gradient approximations as well as
hybrid functionals. The cohesive energy, lattice constants optimized with respect to the energy and elastic
constants were computed. The role of electronic correlation in consideration of the filled d-shell is emphasized,
postulating different intra- and inter-layer interactions, both in Zn and Cd. On the potential energy surface in
the space of varying lattice constants, a path is explored that corresponds to a uniaxial compression along the
¢ axis. In contrast to Mg, the potential energy surface of Zn and Cd is very flat along this path, and an

electronic topological transition occurs, leading to a Mg-like band structure.
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I. INTRODUCTION

Among the metallic elements crystallizing in the hexago-
nal close packed structure, zinc and cadmium stick out con-
spicuously. The ratios of the lattice constants (Zn: 1.86; Cd:
1.89) deviate considerably from the ideal value (1.63). This
fact raises questions about the underlying bonding principles.
Triggered by the experiments of Lynch and Drickamer,' who
measured anomalies in the pressure dependence of the lattice
constants as well as of the resistivity of Zn, extensive and
partially controversial discussions arose, lasting for the last
decade. The anomaly in the pressure dependence of c/a
could not be seen in the x-ray diffraction (XRD) results by
Schulte et al.,>* however, it was confirmed by Takemura,
who detected a slope change in the correponding curves at
c/a=\3 for both Zn (Refs. 4 and 5) and Cd.> These publi-
cations had a strong impact on the interpretation of subse-
quent experimental and theoretical results. However, in more
recent experiments on Zn, using He as the pressure medium,
no anomaly was observed within the limits of experimental
error, neither at room temperature6 nor at low temperatures
(40 K).” The discrepancy with results of the earlier work
has been related to nonhydrostatic high pressure conditions.
The latest energy-dispersive x-ray diffraction study of Pratesi
et al.'? on Cd, using silicon oil as a pressure medium, again
shows a slight anomaly in the c¢/a versus V/V, curve. In
addition, they observed a shift of the peak position of some
Bragg reflections related to the length of the ¢ axis. They
discussed these shifts in terms of oriented lattice strain and
nonhydrostatic effects.
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Other properties of Zn showing an anomalous pressure
dependence were found in Mossbauer experiments.'’!> The
Lamb-Mossbauer factor (LMF) suddenly drops at 6.6 GPa.
The authors attribute this drop to a destruction of a Kohn
anomaly due to a change of the topology of the Fermi sur-
face, i.e., an electronic topological transition (ETT). As they
point out, this ETT should be accompanied by a softening of
low frequency acoustic phonons. Inelastic neutron scattering
experiments either support!® or contradict'# the interpretation
of the Mossbauer data, initiating another debate.'> In the
course of this debate, an alternative cause for the observed
drop of the LMF was proposed, a first order transition to a
commensurate spin density wave.'® Raman spectra of the
traverse-optical zone-center phonon mode!'”!® showed no
anomaly in the pressure range where the LMF drops. How-
ever, a change of the sign of slope of the linewidth at
~10 GPa is observed and is attributed to an electronic tran-
sition. Computed phonon dispersions'® are in reasonable
agreement with the experiments, but triggered a discussion
on the nature of the underlying ETTs.2%2!

As controversially as the experimental results were dis-
cussed, so were the theoretical ones. The main topics of the
discussions were the appearance of anomalies in the c¢/a ver-
sus V/V, curves and their relations to ETTs, which occur if a
conduction band drops below the Fermi level and additional
elements appear on the Fermi surface in certain regions of
the Brillouin zone. In Zn and Cd, the regions at the K- and
the L-point are of special interest. For Cd an ETT at the
K-point, leading to “needles” in the Fermi surface, was con-
firmed by the de Haas-van Alphen experiments.?> The ETT at

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.75.205123

WEDIG et al.

the L-point [density functional theory (DFT), local density
approximation (LDA)] was considered responsible for the
destruction of the Kohn anomaly and thus for the observed
drop of the LMF.'?> However, these results are heavily depen-
dent on the choice of the computational parameters.?*>3 No-
vikov et al.”} have noticed that the equilibrium volume is
underestimated by =10% when applying the local density
approximation (LDA). They proposed several enhancements
of the LDA, self-interaction correction, downshift of
d-states, to improve the results. The best results were ob-
tained at the level of the generalized gradient approximation
(GGA) with the PBE functional.>* Their calculations did not
result in an ETT at the L-point. In a later work?® they men-
tioned another aspect. Slightly beside the minimum of the
E(c/a) curve at a given volume, i.e., with a slight deviation
from hydrostatic conditions, the lowest conduction band at L
may fall below the Fermi level. According to Godwal et
al.,*' the conduction band at L is always lower in the LDA
than in the GGA, but always above Ep. This is stated to be
true also for finite temperature. Another computational pa-
rameter is the number of k-points in the Brillouin zone. The
influence on the results was also discussed
controversially.”3? A dense k-mesh seems to be necessary
especially to find the location of a certain ETT.3* One should,
however, keep in mind that besides the choice of the func-
tional and the number of k-points, other computational pa-
rameters such as the basis set size, the muffin tin radii, and
the linearization energies, also may influence the results and
their interpretation.

As pointed out, most of the theoretical work on Zn and Cd
was done up to now in order to understand anomalies in the
pressure dependence of the lattice constants in terms of elec-
tronic topological transitions. Another way to investigate the
unusual c¢/a ratio of Zn and Cd is the application of the
bonding principle of optimum hybridization between s and p
valence electrons.?

Irrespective of the spread of the results and interpretations
reviewed here, all the previous calculations have one com-
mon basis: They are performed in the framework of density
functional theory. The difficulty in describing the bonding
properties of Zn and Cd in a consistent manner may not only
be due to inadequate computational parameters, but also due
to the limitations of DFT.

To extend the base of knowledge in this regard, in the first
part of this work we compared Hartree-Fock (HF) and hybrid
functional results with those of DFT calculations, in order to
investigate the influence of nonlocal exchange and various
approximations of electronic correlation on the results. The
comparison with experimental data such as cohesive ener-
gies, lattice constants, and elastic constants allowed us to
deduce valuable details of the bonding properties of Zn and
Cd. We regard this as a first step towards a more rigorous
treatment of electronic correlation, which proved to be essen-
tial for the description of solid mercury.’*3” In the second
part we investigate the potential energy surface with respect
to the lattice constants, PES(a,c), which was probed up to
now in areas associated with hydrostatic pressure, now in
directions of uniaxial pressure. The unusual behavior of Zn
and Cd along this path is discussed in relation to changes of
the band structure. In both parts, the results are compared to
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those of Mg which has formally the same valence electron
configuration, but in contrast to Zn and Cd, a nearly ideal
c/a ratio.

II. COMPUTATIONAL DETAILS

The calculations were performed with the program pack-
age CRYSTAL03.*’ For magnesium we used a crystal opti-
mized all-electron basis set of valence-double-zeta quality
including polarization functions. The basis functions of the
inner shells were taken from Ref. 41 (s) and from Ref. 42
(p), which were optimized for the ionic MgO. The diffuse
functions especially necessary for the metals also in the p
channel were optimized for the element. Only in the Hartree-
Fock calculations for Mg the exponent of the most diffuse sp
shell was changed from 0.09 to 0.11 to allow for a larger
range of the lattice constants. For Zn and Cd we used scalar-
relativistic energy-optimized pseudopotentials with 20 va-
lence electrons, labeled as ecplOmwb (Zn; Ref. 38) and
ecp28mwb (Cd; Ref. 39). Thus the semicore s- and p-orbitals
were explicitly treated in the SCF procedure. The corre-
sponding basis sets’®¥ were modified and reoptimized in
order to meet the requirements for the use with the CRYSTAL
program. The same basis set was applied in connection with
a two valence electron pseudopotential [Zn: ecp28sdf (Ref.
43)] which was used to investigate the effect of a frozen
d-shell in Zn. All the basis sets are summarized in Table 1.

The integral tolerances are set to (9 11 9 11 17) for the
cutoff parameters ITOL1-5 in CRYSTAL. The shrinking fac-
tors defining the k-mesh were set to (12 0 24), which corre-
sponds to 133 k points in the irreducible Brillouin zone of the
hep lattice. The number of k points in the Gilat net is 793.
From the energetic point of view, it would be desirable to
make the k mesh even denser for metals. Increasing the
shrinking factors stepwise to (17 0 34) leads to differences in
the total energy of about 0.08 eV. However, for calculating
the elastic constants it is not possible to use higher shrinking
factors, because then, for the calculations of elastic constants
which reduce the symmetry, the internal limits of the CRYS-
TALO3 program are reached. The convergence threshold for
the density was set to 1077, for the pseudopotential to 107,
for the eigenvalues to 107%, and for the total energy to 107",
With these parameters we guarantee that while varying the
lattice constants the potential surface is smooth, although in
comparison with the experiment the total energy does not
have this accuracy.

Some of the calculations on Zn presented here were re-
peated with the new CRYSTALO06 version,** which allows the
addition of f-basis functions. In these cases the basis set was
augmented by a single optimized f-function with exponent
0.3.

To compare various representations of exchange and cor-
relation, we performed, besides the pure Hartree-Fock calcu-
lations, DFT investigations with various functionals, one
LDA (S-VWN: Dirac-Slater exchange,45 Vosko-Wilk-Nusair
correlation*®) and two GGA functionals (BP86: Becke
exchange,*” Perdew correlation®® as well as PBE: Perdew-
Burke-Ernzerhof exchange and correlation®*). In addition we
applied two hybrid functionals with mixed Hartree-Fock
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TABLE 1. Crystal optimized Gaussian basis sets for Mg (all electrons), Zn (20 valence electron pseudo-
potential), and Cd (20 valence electron pseudopotential).

Mg

Zn

All electrons

20 valence electrons
ecplOmwb (Ref. 38)

20 valence electrons
ecp28mwb (Ref. 39)

s 68370.000 0.0002226 30.324127 0.089131 9.727011 —1.7864259
9661.000 0.0019010 16.316682 —0.124548 7.837523 2.5778948
2041.000 0.0110420 11.408148 -0.329721

529.600 0.0500500 2.569492 0.734637 5.089194 1.0
159.170 0.1690000
54.710 0.3669500 1.40 1.0 1.553326 1.0
21.236 0.4008000
8.791 0.1487000 0.95 1.0 0.714079 1.0
156.79500 —-0.006240 0.15 1.0 0.115 1.0
31.03390 —-0.078820
9.64530 -0.079920
3.71090 0.290630
1.61164 0.571640
0.66 1.0
0.09 1.0
p 156.79500 0.007720 111.824980 0.002059 4.742716 —6.2311994
31.03390 0.064270 19.131910 —-0.082381 3.936655 6.5741920
9.64530 0.210400 5.468838 0.232509
3.71090 0.343140 2.505675 0.559404 1.380391 0.7497260
1.61164 0.373500 0.668485 0.2811080
1.40 1.0
0.65 1.0 0.363423 1.0
0.95 1.0
0.09 1.0 0.125 1.0
0.15 1.0
d 0.33 1.0 44.645629 0.047249 8.469341 —-0.0163606
13.438377 0.218926 3.024231 0.2864728
4.682000 0.452512 1.316367 0.4868518
1.603211 0.518576
0.556393 1.0
0.482766 1.0
0.15 1.0
0.20 1.0

(20%) and DFT exchange and DFT correlation (B3LYP:
Becke parametrization®” as implemented in CRYSTALO3 as
well as B3PW: same as B3LYP except the use of the nonlo-
cal correlation part of Perdew and Wang®). Throughout this
work we used the CRYSTALO3 program in order to be able to
explicitly calculate the Hartree-Fock exchange and to use
hybrid functionals. Therefore we had to use a local Gaussian
basis set. To compare to results obtained with an augmented

plane wave basis set, calculations with the WIEN2K code’!
were also performed (s,p: LAPW+LO including semicore
states; d: APW+lo+LO; R,,=2.2; R,K,.,=9.0; 525
k-points in the irreducible part of the Brillouin zone).

As in the HF case no minimum of PES(a,c) was found,
the cohesive energy was always calculated at the experimen-
tal lattice constants for comparison. The free atoms are cal-
culated with the CRYSTAL program with two different ap-
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TABLE II. Cohesive energies, determined for the experimental lattice constants (eV).
a Mg Zn Cd

Experimental Ref. 54 -1.50 -1.37 -1.16

HF This work -0.36 +0.16 +0.17
Ref. 55 -0.27

LDA S-VWN This work -1.65 -1.52
S-VBH Ref. 55 —-1.80

GGA PBE This work —-1.48 -0.97 -0.77

BP86 This work -0.77 -0.62
BPI1 Ref. 55 -1.37

Hybrid B3PW This work -1.30 -0.82 —0.68

B3LYP This work -0.78 -0.28 -0.20

“References to the functionals used are given in Sec. II.

proaches to account for the necessity of more diffuse
functions for the free atom: (1) adding one diffuse sp shell
explicitly in a even tempered manner; or (2) using the crystal
basis set and adding 18 ghost atoms in the crystal structure
with the same basis set to account for the basis set superpo-
sition error. Both approaches differ by only less than
0.03 eV. The difference between the cohesive energy calcu-
lated at the experimental lattice constants to the one at the
calculated minimum is much larger, e.g., for magnesium in
the HF approximation 0.23 eV. The zero point vibrational
energies for the metals were also taken into account>? (Mg:
0.03 eV, Zn: 0.02 eV, Cd: 0.01 eV). The elastic constants
presented in the results section were computed according to
the procedure described by Fast et al.>® for hexagonal ele-
ments. C; and C;, were computed via their sum and their
difference, which corresponds to a symmetric and an anti-
symmetric distortion in the a-b plane, respectively, the latter
leading to monoclinic symmetry. C3; was obtained by vary-
ing the ¢ parameter. Css is related to a distortion to a triclinic
cell. C; was computed from the relation of the bulk modulus
with the elastic constants.

III. RESULTS

A. Cohesive energies

The cohesive energies computed for the experimental lat-
tice constants and the comparison with experimental values
are compiled in Table II. For all three elements under exami-
nation, common trends have been observed. At the Hartree-
Fock level, the calculated cohesive energy of Mg is much too
low, Zn and Cd are even not bound at all. The LDA values
are generally too high. The best agreement with the experi-
mental value is obtained with the gradient corrected PBE
functional. Applying BP86 or the hybrid functional B3PW
leads to cohesive energies which are 0.2 eV smaller com-
pared to the PBE results. The deviations are much larger if
the hybrid functional B3LYP is used. The cohesive energies
are seriously too low. This is astonishing, as both hybrid
functionals only differ in the correlation part. This is a first
hint that the proper treatment of electronic correlation is cru-
cial for the description of the bonding properties, particularly
in Zn and Cd.

TABLE 1II1. Lattice constants. The numbers in each triple correspond to a (A), ¢ (A), and a/c (italic).

a Mg Zn Cd

Experimental b 3.215.21 1.62 2.67 495 1.86 2.98 5.62 1.89
HF This work 3.315.09 1.54
Ref. 55 3.315.13 1.55

LDA S-VWN This work 2.56 4.88 1.91 293522 1.78
S-VBH Ref. 55 3.13 5.00 1.60

GGA PBE This work 3.195.12 1.61 2.655.12 1.93 3.03 552 1.82
PBE Ref. 57 3.195.15 1.62

BP86 This work 2.635.34 2.03 3.02 558 1.85
BP91 Ref. 55 323512 1.59

Hybrid B3PW This work 3.195.14 1.61 2.655.10 1.92 2.98 5.68 1.91

B3LYP This work 3.195.12 1.61 2.655.74 2.17 3.01 6.04 2.01

“References to the functionals used are given in Sec. II.
PRoom temperature values were taken from Ref. 56.

205123-4



STRUCTURAL AND ELECTRONIC PROPERTIES OF Mg....

PHYSICAL REVIEW B 75, 205123 (2007)

TABLE IV. Bulk moduli and elastic constants; the computed values were determined for the optimized lattice constants, respectively

(10" N m~2). The experimental values are taken from Ref. 58.

d Cy Ciy Ci3 Cs3 Css B
Mg Expt. 0.63 0.26 0.22 0.66 0.18 0.37
PBE 0.60 0.34 0.21 0.75 0.22 0.39
PBEP 0.65 0.30 0.21 0.75 0.22 0.39
B3PWP 0.70 0.29 0.18 0.76 0.22 0.39
7n Expt. 1.79 0.38 0.55 0.69 0.46 0.80
PBE 1.63 0.53 0.36 0.67 0.26 0.71
PBEP 1.64 0.52 0.36 0.67 0.26 0.71
B3PWP 1.80 0.49 0.43 0.41 0.26 0.75
Cd Expt. 1.29 0.40 0.41 0.57 0.24 0.62
PBE 0.70 0.60 0.40 0.58 0.16 0.53
PBEP 0.76 0.55 0.40 0.58 0.16 0.53
BP86 0.65 0.62 0.41 0.52 0.12 0.52
BP86" 0.73 0.53 0.41 0.52 0.12 0.52
B3PWP 1.36 0.47 0.33 0.45 0.17 0.60

“References to the functionals used are given in Sec. II.

"Internal relaxation was ignored for symmetry reducing distortions.

B. Lattice constants

The general trends observed for the cohesive energies are
reflected by the computed lattice constants (Table III). For
Zn and Cd no minimum was found on PES(a,c) at the HF
level. In the case of Zn, for ¢ being kept fixed to the experi-
mental value, the optimized a lattice constant is 2.84 A. The
corresponding cohesive energy at this point on the PES(a,c¢)
is +0.03 eV. The enlargement of the a parameter at the HF
level points to the importance of electronic correlation on the
bonding properties of the elements in the hexagonal layers.
Although bound, this is also true for Mg, where the c/a ratio
significantly shrinks.

The LDA calculations lead, due to the overbinding, in
either case to lattice constants that are too short. The results
obtained with gradient corrected or hybrid functionals are
not consistent. With all these functionals, the a cell param-
eter is in very good agreement with the experimental values.
The interactions within the hexagonal layers seem to be de-
scribed rather well by these types of functionals. Concerning
¢, however, the picture is nonuniform. In the case of Mg, the
values are slightly too small, but consistent. For Zn and Cd,
the PBE and B3PW results are reasonable, likewise the ¢
parameter of Cd, obtained with BP86. The corresponding
value for Zn deviates considerably. Even worse are the val-
ues computed with B3LYP. The optimized ¢ parameter has
shown to be very sensitive to the treatment of electronic
correlation in DFT, which apparently plays a significant role
in the bonding properties of the named elements. The un-
equal dependence of the two respective lattice constants on
the correlation functional suggests that the intralayer and the
interlayer interactions are of a different nature.

The influence of the filled d-shells on the bonding in Zn
and Cd may not be neglected at all. Freezing the d-shell by

using the two valence electron pseudopotential leads to dras-
tic changes of the lattice constants (Zn, PBE functional: a
=295 A, ¢=4.63 A) with a c¢/a ratio (1.57) even smaller
than the ideal one. The discussion of bonding in Zn and Cd
on the basis of s-p hybridization, only taking the screening
effect of the filled d-shell into account,? seems to be insuf-
ficient. It is remarkable that the cohesive energy with the two
valence electron pseudopotential is much larger
(=2.25 eV). So the contributions of the d-shell in the bulk
have to be discussed in connection with the corresponding
contributions in the isolated atoms.

For Zn, full potential calculations with the WIEN2K code,
using the PBE functional, result in lattice constants of a
=2.65 A and ¢=5.04 A. The difference in ¢ of 0.08 A, com-
pared to the CRYSTALO3 result given in Table III, cannot be
explained until now. By preliminary calculations with the
new CRYSTALO6 code, which allows for the wuse of
[f-functions, a significant contribution of polarization func-
tions at the PBE level has been ruled out, as the ¢ parameter
thereby changes only by 0.01 A. The discrepancy between
both programs seems to be within the numerical accuracy
that can be achieved. For example, the change of the linear-
ization energies of the semicore states in WIEN2K by 1 mRy,
which is the accuracy given by the -in/new option, will
change the total energy by 0.5 meV. This corresponds to a
shift on PES(a,c) by about 0.05 A along the ¢ axis. The
double-well structures in the ¢/a dependence of the energy at
certain reduced volumes as discussed by Novikov et al.,
with barriers of at most 0.4 meV, may also be traced back to
numerical effects. The potential energy surfaces computed
with CRYSTALO3 are in general less rough. However, we do
not claim that the numerical accuracy is significantly better.
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C. Elastic constants

The bulk moduli and elastic constants discussed here are
given only for those functionals that have led to optimized
lattice constants in good agreement with experiment (Table
IV). The elastic properties of Mg were analyzed previously
by Baraille e al.>> using various functionals. They showed
that the reasonable results obtained for the bulk modulus
may be due to error cancellation of different erroneous elas-
tic constants, which is especially true at the HF level. The
best results they obtained with a gradient corrected func-
tional, which is confirmed by our PBE data. The hybrid func-
tional B3PW yields likewise good results. However, the an-
isotropy of the elastic properties is less satisfactorily
reproduced also by these functionals. Large relative errors
occur with elastic constants that are related to a symmetry
breaking distortion. For the difference C;;—C,,, which cor-
responds to an asymmetric distortion in the a-b plane, the
error is —30% at the PBE level, if the relaxation of the
atomic positions in the distorted lattice is considered. The
error amounts to +22% for Css, where the distorted lattice is
triclinic. In this case, the value is less sensitive to internal
relaxation. These different responses to internal relaxation in
Mg are also found for Zn and Cd.

Whereas for Mg, PBE and B3PW give quite similar re-
sults, a different behavior of these functionals is observed
with Zn and Cd. With the B3PW hybrid functional, better
Cy; and C|, values are obtained, especially for Cd, where the
PBE results are rather unsatisfactory. On the other hand, Cs;
computed with B3PW, in contrast to PBE, is considerably
too low. This implies that both functionals do not describe
the intralayer interaction, being reflected by C,; and C,, and
the interlayer interaction, which affects Ci;, in a well-
balanced manner. It may be seen as another indication of the
different nature of the intra- and inter-layer interactions.

D. Variation of ¢ and a, band structure

The further investigations on the dependence of the en-
ergy in relation to the lattice constants [PES(a,c)] and the
analysis of the band structures were done on the basis of
calculations with the PBE functional. As pointed out in the
Introduction, previously published theoretical work concen-
trated on the region of PES(a,c) that is related to hydrostatic
compression, i.e., points with optimized c/a ratio at a given
reduced volume. However, already Novikov et al.>® showed
that slightly beside this path, the topology of the Fermi sur-
face may change. In our work we explore another path on
PES(a,c) corresponding to uniaxial stress along the ¢ axis.
In the diagrams in Fig. 1 we plotted the a parameter, opti-
mized with respect to the energy, against the ¢ parameter as
well as the energy PES[a,,,(c),c] relative to the global mini-
mum of the potential energy surface. The diagram for Mg
[Fig. 1(a)] exhibits the expected shape. The a parameter is
increasing with shrinking ¢, and the energy dependence is
parabolic. The corresponding diagrams for Zn and Cd [Figs.
1(b) and 1(c)] are quite different. In both cases, the increase
of a is steeper, and the potential energy surface is very flat
along this path, featuring even a second local minimum at
a=2.82 A and ¢=4.40 A (¢/a=1.56) for Zn. Whether this
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FIG. 1. Optimized a parameter as a function of ¢ (solid lines)
and corresponding energy (broken lines) relative to the global mini-
mum of PES(a,c). The experimental lattice constants are marked
by X(exp).

second minimum is a real physical property of Zn cannot be
decided here. As mentioned above, the PBE functional has
deficiencies to describe the anisotropy of the elastic proper-
ties, and furthermore, the effect is at the limits of accuracy of
the program codes used. In the PES computed with the
WIEN2K code, no second minimum appears. Nevertheless, the
flatness of PES(a,c) along the given path is definitely char-
acteristic for Zn and Cd, at the level of theory applied.

The band structure of Zn at the global minimum displays
remarkable features (Fig. 2, upper left). Besides the fact that
the flat d-bands cross the valence bands, the latter are degen-
erate at the I'-point. The conduction bands stay above the
Fermi level at the L- and at the K-point of the Brillouin zone.
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FIG. 2. (Color online) DFT band structure (GGA PBE functional) of Zn (upper left), Cd (upper right), “Mg-like Zn” (lower left), and Mg
(lower right). Special regions in the Brillouin zone being discussed in the text are emphasized by circles. The Fermi level is marked by a

broken line.

These two features, that are highlighted in Fig. 2 by circles,
change along the considered path on PES(a,c). The degen-
eracy at I' is lifted and the lowest conduction bands fall
below Ep at L and between K and H (Fig. 2, lower left). This
means that exactly those ETTs occur, which were discussed
controversially in conjunction with the change of the elec-
tronic structure under hydrostatic pressure (cf. Introduction).
The mentioned dispute may originate from the tiny effect
under pressure. Steiner et al.'? quoted an energy difference
e—Ep of only —1 mRy at L (p=~24 GPa) with a LDA func-
tional, which rather favors the ETT compared to GGA
functionals.! In our case, at the second local minimum of
PES(a,c), the effect is much more pronounced: e—Ej is
—40 mRy at L as well as —62 and —98 mRy at the K-point.
With these lattice constants, the band structure and thus the
topology of the Fermi surface of Zn is very similar to that of
Mg (Fig. 2, lower right), which is why we name it Mg-like
Zn. It should be emphasized that the energy difference be-
tween real and Mg-like Zn is very low at the PBE level. The
band structure at the minimum computed with the two va-
lence electron pseudopotential is, apart from the absent
d-bands, virtually identical to the one of Mg-like Zn and thus

does not show the properties of the band structure of real Zn.
This again indicates that the filled d-shell plays an important
role in the bonding in Zn.

The statement that the ETTs may be seen as a driving
force for the change of the lattice constants is relativized
when examining the band structure of Cd (Fig. 2, upper
right). At the global minimum with ¢/a=1.82, the d-bands
just touch the valence bands. In this case, the lowest conduc-
tion bands at least partially cross the Fermi level at L and K,
although less noticeably (—14 mRy at L and —24 mRy at K)
than in Mg-like Zn, and with a certain ambiguity, as the
variation of the coefficient « in the PBE functional, as pro-
posed by Novikov et al.,® may change this shape of the band
structure. One feature of the band structure is common for
Zn and Cd at the global minimum and differs from Mg-like
Zn and Mg: The highest valence bands around I' are nearly
degenerate.

IV. CONCLUSION

We have compared various properties of Mg, Zn, and Cd
obtained from HF or DFT calculations, including hybrid
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functionals. At the end, none of the calculations gave entirely
satisfactory results. At least the anisotropy of the bonding in
Zn and Cd is not described in a well-balanced manner. Apart
from the shortcomings, which may be caused by the methods
themselves or by their numerical implementation, three con-
clusions may be drawn from the dependence of the various
properties on the method and on the functional used. (1) The
anomalous c¢/a ratio in Zn and Cd is mainly due to electronic
correlation. (2) The intra- and inter-layer interactions are dif-
ferent, both in Zn and Cd. (3) The filled d-shell not only
screens the nuclear charge in a certain manner, but is explic-
itely involved in the correlation interactions.

The topology of the Fermi surface of Zn differs signifi-
cantly from the one of Mg. However, as shown by our cal-
culations, an electronic topological transition can easily be
achieved by applying uniaxial pressure along the c¢ axis.
From this aspect, the controversy in the discussion of anoma-
lies in the pressure dependence of properties and their rela-
tion to ETTs may indeed be traced back to nonhydrostatic
conditions in the experiments. Whether the ETTs are really
responsible for the unusual ¢/a-ratio in Zn and Cd is another
question. The energy difference between real and Mg-like Zn
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at the DFT level (GGA, PBE) is rather small and at this level
of theory the Fermi surface of Cd shows topological features
like that of Mg, even with the large c/a-ratio. In further
investigations on Zn and Cd, another aspect must come to
the fore, the near degeneracy of the upper valence bands
around the I"-point.

To overcome the current uncertainties related to the meth-
ods used, a more accurate treatment of the electronic corre-
lation such as the method of increments’” is required. More-
over, in order to verify the results obtained from theory,
further experiments have to be performed, both to probe the
response of the elements to uniaxial stress and to elaborate
the relationship between electronic and structural properties.
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