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Under Anderson localization, two types of correlation of spontaneous emission in one-dimensional random
media are investigated: i.e., time-domain field correlation Ct

E�r1 ,r2 ,�� and energy-spectrum correlation
C�

P�r1 ,r2 ,���. The results show that the spatial correlation length of Ct
E�r1 ,r2 ,�=0� is unrelated to the

localization length; however, the increase of the correlation length of max��Ct
E�r1 ,r2 ,��� with the localization

length is sensitive and monotonous. In particular, we find that the fields at the different locations keep on
exchanging with each other in a certain fixed speed by investigation of time-domain field correlation. The
speed is almost not affected by the random strength and almost equal to the group velocity of the correspond-
ing periodic structure. Therefore the localized mode is really a dynamic equilibrium state though the energy of
the localized mode is localized. In addition, because it is not convenient to characterize the localization length
by Ct

E�r1 ,r2 ,��, another correlation—energy-spectrum correlation C�
P�r1 ,r2 ,���—is proposed. By investiga-

tion of the energy-spectrum correlation for ��=0, we obtain that there is an approximately linear relation
between the spatial correlation length of energy-spectrum and the localization length. Obviously, in the aspect
of characterizing the localization length, the energy-spectrum correlation is more convenient than the time-
domain field correlation.
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I. INTRODUCTION

Light traveling in a disordered medium exhibits some fun-
damental features which are very different from simple sys-
tems and ordered structures,1,2 such as diffusion localization,
coherent backscattering, and correlations and fluctuations in
the speckle pattern. Among them, Anderson localization3,4 is
still one of the challenging problems, attracting an increasing
interest of theoretical and experimental physicists. Ohm’s
law shows that the transmission of an electron in metal
through a slab of length L is proportional to 1/L. However,
when the wavelike nature of the diffusing particles is taken
into account, the transmission will be significantly impaired
due to the constructive interference of waves in the paths
which obey time-reversal invariance. Therefore the diffusion
constant will also be reduced significantly and even approach
zero when scattering is strong enough.5 Anderson predicted
the destruction of diffusion and showed that the quantum
wave of a particle in a random potential can be localized in
space, which turns a conductor into an insulator.6 Soon, this
phenomenon was generalized to the realm of electromagnetic
waves,7–10 as well as other classic waves.11–13 So far, the
observation of Anderson localization of classical waves re-
mains a subject of debate, primarily because a suitable sys-
tem is hard to find and the observation is often obscured by
such effects as residual absorption and scattering attenuation.
In addition, by using a generalized master equation, Florescu
and John14 have investigated the second-order correlation in
light emission of a random laser15–17 before lasing and after
lasing. We are of the opinion that studying other statistical
properties will benefit our insight into Anderson localization.

In this paper, we will explore the time-domain field cor-
relation �TDFC� and the energy-spectrum correlation �ESC�
of spontaneous emission under Anderson localization and

also investigate the static and dynamic properties of the lo-
calized modes by correlations of spontaneous emission.
Here, we would like to emphasize that our sources of spon-
taneous emission are evenly and randomly dispersed inside
the system so that all the modes in our system �even deep
inside the system� can be excited homogeneously, which is
different from the usual research way—one excites the inner
modes by the external source and then detects the outer fields
to investigate the inner properties of the system. The field
induced by the spontaneous emission can better help us to
probe into the properties of the inner modes deeper inside the
system, especially under Anderson localization. Since our
research is focused on simulating the real spontaneous emis-
sion inside random active media, it can be directly observed
in experiment and valuable in physics. In fact, such a system
with homogenous spontaneous emission can easily be real-
ized in experiment as long as the gain of the active system
with absorption is much smaller than the lasing threshold. In
addition, it is noted that the modes in our system are actually
quasilocalized and the field induced by the spontaneous
emission will not be divergent because the system is finite.

Usually, conventional correlations18–24 in random
media refer to the correlation function of intensity,
C= ��I �r ,���I�r+�r ,�+���� / �I �r ,����I �r+�r ,�+����,
and that of field CE= �E*�r ,��E�r+�r ,�+���� /
�I�r ,���1/2�I�r+�r ,�+����1/2. The above formulas are
suitable in mesoscopic systems or close to the onset of
Anderson localization. However, the objects investigated
here are under Anderson localization �L���, so the cumulant
correlations C and CE become inconvenient. Thus other cor-
relations are attempted, including TDFC and ESC. The
TDFC �i.e., coherence25� is
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Ct
E�r1,r2,�� =

� E*�r1,t�E�r2,t + ��dt

�� �E�r1,t��2dt� �E�r2,t��2dt

. �1�

The formula for the ESC, on the other hand, is constructed as
follows: for a random field E�t�, the amplitude of the com-
ponent with frequency � is the Fourier transform E���
=�−�

� E�t�exp�−j2��t�dt. The average energy per unit area of
those components with frequencies in the interval between �
and �+d� is �E����2d�, so that �E����2 represents the energy
spectral density of the light. The ESC is then defined as

C�
P�r1,r2,��� 	

� �E�r1,���2�E�r2,� + ����2d�

�� �E�r1,���4d�� �E�r2,���4d�

.

�2�

Generally, researchers are interested in calculating aver-
age quantities in random media. So are these authors. We
will focus our attention on the quantities �C�

P� and �Ct
E�,

where �¯� represents a twofold average: self-average and
configurational average; i.e., we will first average them spa-
tially in single configuration, then average them over differ-
ent configurations. The content of the paper is as follows: In
Sec. II, we present the investigated model and the simulation
scenario. Section III is devoted to the average TDFC �Ct

E�. In
Sec. IV, we calculate the average ESC �C�

P�. Our conclusions
are summarized in Sec. V.

II. MODEL

As shown in Fig. 1, our one-dimensional random system
is made of binary layers with dielectric constants 	a=4.0 and
	b=1.0, and the layer thickness is random, La�Lb�= �1+

�u� �m, amid them, u is random strength, and 
 is a ran-
dom number evenly distributed in 
−0.5 0.5�. The system
totally consists of 1000 pairs of binary layers. Obviously, this
structure possesses a periodic background; thus, those local-
ized modes in the band-gap region simultaneously contain
the devotion of both band gap and disorder, and the smaller
the random strength, the more prominent the effect of period.

In order to exclude the band-gap effect, we set the investi-
gated frequency region �i.e., spontaneous emission frequency
range� in the band of rigorously periodic structure. The spon-
taneous emission sources are added by the way of the effec-
tive electric current J, which are composed of randomly gen-
erated sine-wave pulses.26 For concreteness, for a random-
generated sine-wave pulse with random starting phase 
i,
starting time ti, and random pulse length tpi, we can represent
it with sin
�0�t− ti�+
i�, ti� t� ti+ tpi; then, the effective
random current is composed of many such sine-wave pulses:
i.e., J=�i sin
�0�t− ti�+
i�, which possesses average pulse
length tp. The source generated in this way is a quasimono-
chromatic field with the central frequency w0. The larger tp,
the narrower its spectral width. In our simulation, the central
frequency of spontaneous emission �0=1.885�1015 s−1,
which lies in the middle of the third band of the rigorous
periodic structure. In fact, the complex amplitudes of the
sources generated above are correlative in time domain and
present a Gaussian distribution in statistics. Figure 2 shows
the complex phasor amplitude at one instant of time. By
statistics, the probability distribution of the complex phasor
amplitude comes to a “Gaussian molehill,” which manifests
the source generated in the above way is a narrow-band
Gaussian noise source indeed. In our finite-difference time-
domain �FDTD� simulation, to get flat spectra, each random
source is composed of nine narrow-band Gaussian noise
sources with different central frequencies which slightly de-
viate from �0. Its relative width of spectrum ��0 /�0 is
1.0%; thus, about dozens of modes will be excited in our
system. In addition, the perfect-matched-layer absorbing
boundary condition is used in the FDTD algorithm, and spa-
tial interval �x=0.025 �m, time step �t=8.33�10−17 s.

III. TIME-DOMAIN FIELD CORRELATION

In this section, the dependence of the average TDFC on
the spatial interval for different random strengths u is calcu-
lated by a numerical method and explored theoretically. First
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FIG. 1. Geometrical structure of our model. The layers are infi-
nite in extent in the yz plane.

FIG. 2. The statistical distribution of our spontaneous emission
source which is a narrow-band Gaussian noise.
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of all, we generate a random configuration corresponding to
a certain specified random strength u, then add some random
spontaneous emission stated above and simulate it with the
FDTD algorithm. In the end, we process the simulation re-
sults by Eq. �1�. For each random strength u, we average 20
configurations at least. After the average, the correlation is a
function of �r �=r2−r1�. In the following, we will investi-
gate the average TDFC in two scenarios: spatial TDFC for
�=0 and spatial TDFC for ��0.

A. Spatial TDFC for �=0

Figure 3 shows the average TDFC ��Ct
E��x=x2−x1 ,�

=0��� versus the spatial interval �x for different random
strengths u. Contrary to our intuition, the correlation shows
no relation with the random strength u or the localization
length �; nor is sensitive to them. We know that the localized
modes will overlap with each other in space and frequency,27

which is also consistent with our numeric results. Figure 4
shows the spectral comparison of two different locations in a
single realization; obviously, a similarity between them does
exist. In order to uncover the dilemma, we represent Ct

E in
frequency form. According to Parseval’s theorem, we have

Ct
E�r1,r2,� = 0� =

� E*�r1,��E�r2,��d�

�� �E�r1,���2d�� �E�r2,���2d�

.

�3�

Obviously, Ct
E�r1 ,r2 ,�=0� is also a spatial frequency-

domain field correlation. For arbitrary location in our system,
E�r , t� can be written as

E�r,t� = E�x,t� = �
i

E�x,�i�e−i��it+�i�, �4�

where �i is the frequency of the ith localized mode, �i is the
phase of the ith localized mode, and E�x ,�i� is the complex
amplitude; in fact, it is a real number. Here, r is replaced by
x for the investigated object is a one-dimensional system.
Hence, Ct

E�x1 ,x2 ,�=0� can be expressed in the following
form:

Ct
E�x1,x2,� = 0� =

�
i

E�x1,�i�E�x2,�i�

��
i

�E�x1,�i��2�
i

�E�x2,�i��2
. �5�

In addition, we notice that there is a spatial carrier frequency
for E�x ,�i�: namely,

E�x,�i� = f i�x�sin�kix + 
i� , �6�

where ki is the spatial carrier frequency and f i�x�, which
possesses approximately exponential form with central peak,
is a slowly varied quantity. Then the numerator of the right-
hand side of Eq. �5� can be expressed as

�
i

E�x1,�i�E�x2,�i� =
1

4�
i

f i�x1�f i�x2��eiki�x1−x2� + e−iki�x1−x2�

− ei
ki�x1+x2�+2
i� − e−i
ki�x1+x2�+2
i�� . �7�

The third and fourth terms on the right-hand side of Eq. �7�
will be canceled out because of the random phase 
i; then,
the first and second terms are left. Thus the net result is

Ct
E�x1,x2,� = 0� =

1

2

�
i

f i�x1�f i�x2��eiki�x1−x2� + e−iki�x1−x2��

��
i

�f i�x1��2�
i

�f i�x2��2
.

�8�

So we can know that Ct
E�x1 ,x2 ,�=0� is mainly deter-

mined by the spatial interval �x1−x2� and ki, whereas
f i�x1�f i�x2� which is related with the localization length will
be mainly reflected in the peak value of �iE�x1 ,�i�E�x2 ,�i�
because it is a slowly varied quantity. Obviously, after nor-
malization, �Ct

E�x1 ,x2 ,�=0�� decreasing with �x will only
depend on the range of ki which is irrelevant with the local-
ization length; i.e., the correlation length of Ct

E�x1 ,x2 ,�=0�
does not depend on the localization length. In general, it is
the stochastic property of ki and the cancellation between the
different localized mode smashing the correlations although
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FIG. 3. �Color online� The average TDFC ��Ct
E��x ,�=0��� ver-

sus the spatial interval �x for different random strengths u.
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FIG. 4. The spectral comparison between two different locations
with the interval �x=25� in a certain realization of random strength
u=0.3. The double arrows indicate the similarity between them.
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E�x ,�� possesses similar structure in the spectrum between
the different locations.

B. Spatial TDFC for �Å0

Now the issue comes to whether we can find a way to
remove the cancellation between the different localized
modes. After transforming Ct

E�x1 ,x2 ,�� into the frequency
domain, we get

Ct
E�x1,x2,�� =

� E*�x1,��E�x2,��e−i��d�

�� �E�x1,���2d�� �E�x2,���2d�

=
1

2

�
i

f i�x1�f i�x2��eiki�x1−x2� + e−iki�x1−x2��e−i�i�

��
i

�f i�x1��2�
i

�f i�x2��2
.

�9�

We find that there is an offset phase �i� for each ki. If there
is a certain �p which makes ki�x1−x2�+�i�p=0 or ki�x1

−x2�−�i�p=0 hold for arbitrary ki, we get

Ct
E�x1,x2,�p� =

� E*�x1,��E�x2,��e−i��pd�

�� �E�x1,���2d�� �E�x2,���2d�

=
1

2

�
i

f i�x1�f i�x2��1 + e±i2ki�x1−x2��

��
i

�f i�x1��2�
i

�f i�x2��2
. �10�

The second term on the right-hand side of Eq. �10� is mainly
determined by the width of spontaneous spectrum, whereas
the first term is related to the localization length � tightly.

Obviously, �Ct
E�x1 ,x2 ,��� will reach the maximum at �=�p

because of the cancellation of the first term on the right-hand
side of Eq. �10� diminishing. If ��Ct

E��x ,���� versus � and �x
is plotted, there will be a ridge.

In the following, we will validate the above discussion.
Figure 5 shows ��Ct

E��x ,���� versus � and �x for the random
strength u=0.15. As we see from Fig. 5, there is a ridge
indeed, whose projection into �x and � plane is shown in
Fig. 6, in which the projections for other random strength u
are also plotted. When �x is larger than a certain value, �x is
linearly increased with �p, while the linear relation cannot be
held when �x approaches zero. This is because the second
term on the right-hand side of Eq. �10� has considerable im-
pact on Ct

E�x1 ,x2 ,�p� in the small-�x region. In addition, we
do not show �p varied with �x for u=0.45 and u=0.5 be-
cause their ridges are not very prominent.

For the case that �Ct
E�x1 ,x2 ,��� approaches the maximum

at �p= ±ki�x1−x2� /�i, we can take another perspective: the
fields at the different locations �x1 ,x2� at instant t include the
component at instant t−�p of each other; thus, we can define
a field-exchange speed �FES� v ft=�x /�p. Table I shows v ft
for different u.

The mean value of the field-exchange speed v ft is 0.625C,
and its root mean square is 0.0043C. The ratio of them is
0.7%. Obviously, the field-exchange speed v ft is almost not
affected by the random strength u. In order to probe into the
physical inherence of the FES, various attempts are tried. In
the end, we find that the FES is almost the group velocity of
the period structure corresponding to the random system
�namely, the structure of random strength u=0�. By the trans-
fer matrix method, we get the group velocity in the vicinity
of the frequency �0 which is 0.632C. The difference between
the FES and the group velocity of the period structure is only
1.1%. We know that the localized mode is a dynamic equi-
librium state. The question is how the state is preserved and
how to characterize it. Here, we think it is just the field

FIG. 5. �Color online� The average TDFC ��Ct
E��x ,���� versus �

and �x for random strength u=0.15.
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FIG. 6. �Color online� �p varied with �x for different random
strengths u.

TABLE I. The field-exchange speed v ft for different random strengths u.

u 0.1 0.15 0.2 0.25 0.3 0.35 0.4

v ft �C�a 0.623 0.628 0.620 0.624 0.628 0.621 0.632

aLight speed in vacuum.
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exchange �or, in other words, photon exchange� which pre-
serves the localization of modes, and the dynamic property
of localized modes can be characterized by the FES just as
its static property is characterized by the localization length.
It should be noted that this does not mean there exists energy
transfer. This is very like a bottle of air; the molecules keep
on moving though the whole is localized. Furthermore, we
can infer that, with stronger difference of the refractive indi-
ces, the pumping threshold for the random system will de-
crease, because the FES will decrease with the difference of
the refractive indices �just as the group velocity does� and the
localized mode with slower FES will obtain more gain. This
has already been shown theoretically and experimentally.28,29

��Ct
E�x1 ,x2 ,�=�p��� varied with �x for different random

strengths u and the correlation length of Ct
E�x1 ,x2 ,�=�p� ver-

sus the localization length � are shown in Figs. 7 and 8,
respectively. Here, the correlation length is defined as Lc
=�0

� � �Ct
E�x1 ,x2 ,�=�p�� �d�x. As we see from Figs. 7 and 8,

the increase of the correlation length with the localization
length is sensitive and monotonous; this further confirms that
the cancellation between the different localized modes can be
removed by the offset phase �i�p.

IV. ENERGY-SPECTRUM CORRELATION

In the aspect of characterizing the localization length, the
TDFC is very complex, thus we propose another correlation

�i.e., ESC� defined by Eq. �2�. For ��=0, it follows that

C�
P�x1,x2,�� = 0� =

� �E�x1,���2�E�x2,���2d�

�� �E�x1,���4d�� �E�x2,���4d�

=

�
i

f i
2�x1�f i

2�x2�
2 + cos�2ki�x��

3��
i

�f i�x1��4�
i

�f i�x2��4
. �11�

In Eq. �11�, the limitation of summation on the terms con-
taining random phase 
i to be zero has been used. From Eq.
�11�, we can know that C�

P�x1 ,x2 ,��=0� is directly relative
to localization length �; no need to offset phase ki�x similar
to Sec. III. The average ESC �C�

P� depending on the different
random strengths u is investigated according to Eq. �2� for
��=0. The calculating procedure is the same as Sec. III; we
generate a random configuration corresponding to a certain
specified random strength u, add some sources of random
spontaneous emission, and simulate it with the FDTD algo-
rithm. In the end, we process the simulation results by Eq.
�2� instead. For each random strength u, we average over 20
configurations at least. After the average, the correlations are
also a function of �x. Figure 9 shows that the average ESC
��C�

P��x ,��=0��� varies with spatial interval �x, and Fig. 10
shows the correlation length Lc of C�

P�x1 ,x2 ,��=0� versus
the localization length �. Similar to Sec. III, the correlation
length Lc of C�

P�x1 ,x2 ,��=0� is defined as Lc

=�0
� � �C�

P��x ,��=0�� �d�x. Just as we see from Figs. 9 and
10, the average ESC becomes more and more strong as the
random strength increases; its correlation length approxi-
mately linearly increases with the localization length. Here,
the random phase inducing decorrelation in TDFC has di-
minished. Obviously, ESC is more convenient than TDFC in
characterizing localization length, which means that we can
determine the localization length by ESC in experiments. In
addition, we also notice that ESC has inherent relation with
TDFC. After some transformations and deductions, we can
get
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FIG. 7. �Color online� The average TDFC ��Ct
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ied with spatial interval �x for different random strengths u.
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ied with spatial interval �x for different random strengths u.

CORRELATION OF SPONTANEOUS EMISSION IN A ONE-… PHYSICAL REVIEW B 75, 205111 �2007�

205111-5



C�
P�x1,x2,���

=

�
−�

�

Ct
E*�x1,x1,��Ct

E�x2,x2,��d�

��
−�

�

�Ct
E�x2,x2,���2d��

−�

�

�Ct
E�x1,x1,���2d�

=

�
−�

�

Ct
E*�x1,x1,��Ct

E�x2,x2,��d�

��1c�2c

, �12�

where �1c ,�2c is coherence time at x1 ,x2, respectively. So it
follows that the ESC is the correlation of time-domain field
autocorrelation.

V. CONCLUSION

In summary, under Anderson localization, the TDFC and
ESC of spontaneous emission in one-dimensional random

media are investigated by numerical and theoretical methods
in the present paper. For �=0, the correlation length of
TDFC is unrelated with the random strength u. The reason
has been discussed in detail in Sec. III. Briefly, it is the
cancellation between the different localized modes that
makes the dependence of the correlation length of the TDFC
on the random strength disappear. After removing the can-
cellation between the different localized modes, the increase
of the correlation length of max��Ct

E���� with the localization
length is sensitive and monotonous. In particular, we demon-
strate that the localized mode is a dynamic equilibrium state
by investigation of the TDFC. Although the energy of the
localized mode is localized, the fields at the different loca-
tions keep on exchanging with each other at a certain fixed
speed. In fact, this is exactly the appearance of causality. The
field-exchange speed is almost not affected by the random
strength; its magnitude is very close to the group velocity of
the corresponding periodic structure. The difference between
them is about 1.1%. We think that the localization length
does not sufficiently characterize the localized modes, while
the field-exchange speed is a very useful parameter which
can characterize the dynamic property of the localized mode.
Furthermore, we can infer that, with a stronger difference of
the refractive indices, the pumping threshold for the random
system will decrease. In addition, by investigation of the
ESC for ��=0, we obtain that there is an approximately
linear relation between the spatial correlation length of the
energy spectrum and the localization length. Obviously, in
lieu of characterizing the localization length, the ESC is
more convenient than the TDFC.
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