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We calculate the electronic spectrum of bilayer graphene in perpendicular magnetic fields nonperturbatively.
To accommodate arbitrary displacements between the two layers, we apply a periodic gauge based on singular
flux vortices of phase 2�. The resulting Hofstadter-like butterfly plots show a reduced symmetry, depending on
the relative position of the two layers against each other. The split of the zero-energy relativistic Landau level
differs by one order of magnitude between Bernal and non-Bernal stacking.
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After the theoretical prediction of the peculiar electronic
properties of graphene in 1947 by Wallace1 and the subse-
quent studies of its magnetic spectrum,2,3 it took half a cen-
tury until single layers of graphene could be isolated in
experiment4 and the novel mesoscopic properties of these
two-dimensional �2D� Dirac-like electronic systems, e.g.,
their anomalous quantum Hall effect, could be measured.5–7

Inspired by this experimental success, graphene has become
the focus of numerous theoretical works.8–12 For bilayers of
graphene, an additional degeneracy of the Landau levels and
a Berry phase of 2� were predicted to lead to an anomalous
quantum Hall effect, different from either the regular mas-
sive electrons or the special Dirac-type electrons of single-
layer graphene,13 which was confirmed in experiment shortly
afterward14 and used for the characterization of bilayer
samples.15

The low-energy electronic structure of a single layer of
graphene is well described by a linearization near the corner
points of the hexagonal Brillouin zone �K points�, resulting
in an effective Hamiltonian formally equivalent to that of
massless Dirac particles in two dimensions.16 A related
Hamiltonian can be constructed featuring a supersymmetric
structure which can be exploited to derive the electronic
spectrum in the presence of an external magnetic field.17 The
level at zero energy, characteristic for any supersymmetric
system, maps directly to a special half-filled Landau level
fixed at the Fermi energy EF, henceforth called the supersym-
metric Landau level �SUSYLL�.

In this Rapid Communication, we use the nonperturbative
method pioneered in 1933 by Peierls18 for the implementa-
tion of a magnetic field in a model, which led Hofstadter, in
1976, to the discovery of the fractal spectrum of 2D lattice
electrons in a magnetic field.19 Since its discovery, various
aspects of the so-called Hofstadter butterfly have been
studied,20,21 particularly in relation to graphene-like honey-
comb structures.12,22,23 Featuring a large variety of topolo-
gies, all these systems have in common that the atoms inside
the unit cell are located at discrete coordinates. All closed
loops have commensurate areas, and the atomic network is
regular enough that the magnetic phases of all links can be
determined individually without the need of a continuously
defined gauge field. For bilayer graphene, such a direct
scheme for implementing a magnetic field is possible only
for highly symmetric configurations like Bernal stacking.13,24

To handle more general configurations, such as continuous
displacements between the layers, it is in general unavoid-

able to choose a continuously defined gauge that fixes the
phase for arbitrarily placed atoms. The difficulty that arises
can be seen immediately: For any gauge field that is periodic
in two dimensions, the magnetic phase of a closed loop
around a single unit cell must cancel out exactly, correspond-
ing to a vanishing total magnetic flux. Conversely, this
means that any gauge field that results in a nonzero homo-
geneous magnetic field will invariably break the periodicity
of the underlying system.

A possible way to bypass this problem is based on defin-
ing a magnetic flux vortex, here oriented in the z direction
and located in �x0 ,y0�, as25,26

FIG. 1. �Color online� Hofstadter butterfly of a bilayer graphene
in the Bernal stacking configuration. The band structure at zero
magnetic field is rotationally symmetric in good approximation for
an area around the K point and shows a split into four massive
bands, with the two middle ones touching at EF. The density of
states �DOS� of a finite-width ribbon �a pair of �200,0� zigzag rib-
bons� in the same configuration shows the SUSYLL emerging at
finite magnetic field. The split of the SUSYLL �discussed below� is
not visible due to the limited resolution of the plot.
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B�x,y,z� = �0��x − x0���y − y0�ez,

where �0=h /e is the flux quantum. Physically, such a vortex
is equivalent to a vanishing magnetic field, since it leaves the
phase of any possible closed path unchanged modulo 2�.
One possible gauge field resulting in such a single flux vor-
tex can be written as

A�r� =
�0�ez � r�
2��ez � r�2

.

Finding a periodic gauge follows straightforwardly. To the
homogeneous magnetic field, we add a periodic array of flux
vortices with a density such that the average magnetic field is
exactly zero. For the resulting field, which is physically
equivalent to the original, it is now possible to find a gauge
field with the same periodicity as the array of vortices. If the
underlying system is periodic and the array of flux vortices
has commensurate periodicity, there exists a supercell where
the magnetic Hamiltonian is periodic. One possible periodic
gauge that is especially advantageous for numerical imple-
mentation consists in a two-dimensional periodic system
with lattice vectors ax and ay. The reciprocal lattice vectors
�scaled by 2�� are ãi such that ai · ã j =�ij. The magnetic field
is B=��0�ãx� ãy� with � integer. The usual linear—but
aperiodic—gauge for this field would be Alin�r�
=��0�r · ãx�ãy. A periodic gauge can now be defined as

A�r� = ��0�r · ãx��ãy − ���r · ãy��ãx�

where �·� denotes the fractional part of a real number. To
make sure that the phase of every link between two atoms is
well defined, the gauge field is displaced by an infinitesimal
amount such that every atom is either left or right of the
divergent line.

The Hamiltonian without magnetic field—based on a
tight-binding parametrization originally used for multiwalled
carbon nanotubes23,27—consists of a contribution for nearest
neighbors within a layer �i , j	 and one for pairs of atoms
located on different sheets ��i , j		:

H = − 

�i,j	

�i,j
intraci

†cj − 

��i,j		

�i,j
interci

†cj .

In absence of a magnetic field, the intralayer hopping is
fixed to �i,j

intra=�0=2.66 eV, while the interlayer hopping de-
pends on the distance only,

�i,j
inter = � exp�a − �ri − r j�

�
� ,

with �=�0 /8, a=3.34 Å, and �=0.45 Å. A cutoff is chosen
as rcutoff=a+5�. Following the Peierls substitution,18 the
magnetic field B is now implemented by multiplying a mag-
netic phase factor to each link between two atoms i and j:

�i,j�B� = �i,j�B = 0�exp�i
2�

�0



ri

rj

AB�r� · dr� ,

where the integral is computed on a straight line between the
atomic positions ri and r j.

For the bilayer graphene, we arrive thus at a periodic
Hamiltonian with a two-dimensional unit cell containing four

atoms and spanning the area of one hexagonal graphene
plaquette: Aplaquette= �3�3/2�dCC

2 , where dCC=1.42 Å is the
intralayer distance between neighboring carbon atoms. The

FIG. 2. �Color online� Hofstadter butterfly of a bilayer graphene
in two differently shifted configurations. Top panel: AA stacking
�two layers exactly aligned�. The band structure for this highly sym-
metric stacking �same rotational symmetry as for Bernal stacking in
Fig. 1� shows the single-layer cone simply split up in energy. Bot-
tom panel: Intermediate position between Bernal and AA stacking.
The rotational symmetry is broken and the bands split into two
cones at different offsets from the K point and different energies.
The straight lines overlaid at the energy minimum and maximum
are the regular Landau levels of the massive bands. Near EF, one
can make out the parabolic traces of the relativistic Landau levels
and the horizontal lines of the SUSYLLs �see text�. Insets at the
lower right of each panel: DOS of a finite-width ribbon shows the
corresponding behavior in each case.
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effect of a perpendicular magnetic field, measured in flux per
plaquette �=AplaquetteB, can be calculated for commensurate
values �= �p /q��0 �p ,q integers� by constructing a super-
cell of q unit cells. The corresponding Bloch Hamiltonian
H�k� is a 4q�4q matrix that can be diagonalized for arbi-
trary values of k in the two-dimensional Brillouin zone of
area 4�2 /qAplaquette.

To obtain the butterfly plots as displayed in Figs. 1 and 2,
we chose 0� p�q=512, reducing the fraction p /q for effi-
ciency. For each value of � the density of states was calcu-
lated from a histogram over the spectral values for a random
sampling of k over the Brillouin zone. The number of sam-
pling points was chosen individually for different values of p
to achieve convergence. In Figs. 1 and 2, the Hofstadter
spectra of three differently aligned graphene bilayers are pre-
sented. The Bernal stacking �Fig. 1� stands out, as it is the
configuration of layers in natural graphite.24,28 Alternative
configurations like AA stacking were found in ab initio cal-
culations to be energetically unfavorable;29 they can, how-
ever, be thought of as either mechanically shifted samples or
sections of curved bilayers �e.g., sections of two shells in a
large multiwall carbon nanotube� where the alignment un-
avoidably varies over distance. Compared to the Hofstadter
butterfly of a single sheet of graphene,22 two asymmetries are
visible in all three plots: The electron-hole symmetry �E↔
−E� is broken down by the interlayer coupling already at
zero magnetic field: while the lowest-energy states of a
single graphene layer have constant phase over all atoms and
can couple efficiently into symmetric and antisymmetric hy-
brid states of the bilayer system, the states at high energies
have alternating phases for neighboring atoms, so interlayer
hybridization is prohibited by the second-nearest-neighbor
interlayer coupling. For low magnetic fields, two sets of Lan-
dau levels can therefore be observed at the bottom of the
spectrum, indicating a split of the massive band of graphene
at the 	 point �Emin

0 =−3�0, m0
*=2
2 /3�0dCC

2 � into two bands
at different energies and with different effective masses
�Emin

± �Emin
0 ±1.1 eV, m±

* �m0
* / �1�2.1� /�0�, independent of

the relative shift of the two layers; see the straight lines over-
laid in the bottom panel of Fig. 2�. At the top of the spec-
trum, where the split is prohibited, only one degenerate set of
Landau levels appears, as in single-layer graphene. The
original periodic symmetry along the B-field axis at one flux
quantum per graphene plaquette is broken down due to the
smaller areas formed by interlayer loops. The breaking of
this symmetry is comparably small in the AA-stacking con-
figuration �Fig. 2, top� where loops of the full plaquette area
are dominant. In the two other configurations smaller loops
are more dominant, so the periodicity is perturbed more se-
verely. In the intermediate configuration �Fig. 2, bottom�, the
fractal patterns appear slightly smeared out for high mag-
netic fields, due to the reduced symmetry of the system.

The right insets of Figs. 1 and 2 display the spectra of
�200,0� bilayer graphene nanoribbons,30 each in a corre-
sponding configuration, obtained by a method described
before23 that allows handling of continuous magnetic
fields.34 For low magnetic fields, these spectra are strongly
influenced by finite-size effects.31 Only for magnetic fields
larger than B*�4�0 /d2, which for a ribbon of width d

=50 nm relates to �7 T, do the spectra of two-dimensional
bilayer graphene begin to emerge. Prominent in all three in-
sets are the dark, horizontal pairs of lines at the center, the
supersymmetric Landau levels. While these represent dis-
crete levels in two-dimensional graphene sheets, they are
broadened by the finite width of the ribbon to a peak of the
same shape as in carbon nanotubes.23,32 The mesoscopic
character of these split SUSYLLs in dependence on the
width W of the ribbon is captured by the functional form of
the density of states:

��E,B,W� = f„�E − E0�W,BW2
…

where E0 is the position of the maximum.
Single-layer graphene is known to feature an anomalous

supersymmetric Landau level at the Fermi energy.2,8,17 Ne-
glecting Zeeman splitting, this level is fourfold degenerate
�twice spin, twice valley� and half filled. For bilayer
graphene in Bernal stacking �Fig. 1� the SUSYLLs of the
two layers have been shown to be protected by symmetry
and to remain degenerate, giving in total an eightfold
degeneracy.13 In Fig. 2, this degeneracy can be observed to
be lifted for displaced bilayers, leading to a split of the SU-

FIG. 3. �Color online� Evolution of the split of the supersym-
metric Landau level as a function of the displacement between the
two graphene layers. Top panel: Magnitude of the split for displace-
ments in two directions. The light spots correspond to Bernal stack-
ing where the level is nearly-degenerate. Bottom panel: Same data
along a cut at �y=0. The small remaining split at the Bernal stack-
ing configuration originates in the long-range interlayer hoppings
contained in the parametrization. The small discontinuities are
caused by the cutoff rcut. The calculation here was done at �
=�0 /256, but proved to be independent of the magnetic field for
values up to �0.05�0.
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SYLL into a bonding and an antibonding hybrid state in the
two layers, each fourfold degenerate. The continuous evolu-
tion of the split for varying displacement of the two layers
against each other is displayed in Fig. 3. The split reaches its
maximum of 
E�0.3 eV for the AA-stacking configuration
and is minimal for Bernal stacking. For simpler tight-binding
parametrizations that take into account only first- and
second-nearest-neighbor interlayer hoppings, the degeneracy
in the Bernal configuration is known to be exact.13 Here, in
contrast, this degeneracy is split by 
E�0.01 eV due to in-
terlayer hoppings of a longer range, similar to the effect
caused by second-nearest-neighbor interactions within one
layer.33

In conclusion, we have developed a method that allows
the nonperturbative implementation of a magnetic field in
periodic systems with arbitrarily positioned atoms. A � or-
bital parametrization for graphitic interlayer interactions with

arbitrary displacements was then used to calculate the Hofs-
tadter spectrum of bilayer graphene in various configura-
tions, revealing common features like electron-hole symme-
try breaking, and differences, especially in the breaking of
the magnetic-field periodicity. A close look at the supersym-
metric Landau level at low fields near the Fermi energy re-
vealed a breaking of the previously found symmetry, result-
ing in a split of the level, depending on the lateral
displacement of the two graphene layers against each other.

We acknowledge fruitful discussions with I. Adagideli, C.
Berger, V. Fal’ko, F. Guinea, and H. Schomerus. This work
was funded by the Volkswagen Foundation under Grant No.
I/78 340 and by the European Union grant CARDEQ under
Contract No. IST-021285-2. Support from the Vielberth
Foundation is also gratefully acknowledged.

1 P. R. Wallace, Phys. Rev. 71, 622 �1947�.
2 J. W. McClure, Phys. Rev. 104, 666 �1956�.
3 Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 �2002�.
4 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khot-

kevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci.
U.S.A. 102, 10451 �2005�.

5 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �London�
438, 201 �2005�.

6 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

7 Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M.
Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P.
Kim, Phys. Rev. Lett. 96, 136806 �2006�.

8 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801
�2005�.

9 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 �2005�.
10 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B

73, 125411 �2006�.
11 F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B

73, 245426 �2006�.
12 Y. Hasegawa and M. Kohmoto, Phys. Rev. B 74, 155415 �2006�.
13 E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 �2006�.
14 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I.

Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,
Nat. Phys. 2, 177 �2006�.

15 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Science 313, 951 �2006�.

16 D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 �1984�.
17 M. Ezawa, arXiv:cond-mat/0606084 �unpublished�.
18 R. Peierls, Z. Phys. 80, 763 �1933�.
19 D. R. Hofstadter, Phys. Rev. B 14, 2239 �1976�.
20 C. Albrecht, J. H. Smet, K. von Klitzing, D. Weiss, V. Umansky,

and H. Schweizer, Phys. Rev. Lett. 86, 147 �2001�.
21 J. G. Analytis, S. J. Blundell, and A. Ardavan, Am. J. Phys. 72,

613 �2004�.
22 R. Rammal, J. Phys. �Paris� 46, 1345 �1985�.
23 N. Nemec and G. Cuniberti, Phys. Rev. B 74, 165411 �2006�.
24 J. D. Bernal, Proc. R. Soc. London, Ser. A 106, 749 �1924�.
25 A. Trellakis, Phys. Rev. Lett. 91, 056405 �2003�.
26 W. Cai and G. Galli, Phys. Rev. Lett. 92, 186402 �2004�.
27 P. Lambin, J. Charlier, and J. Michenaud, Electronic Structure of

Coaxial Carbon Tubules �World Scientific, Singapore, 1994�,
pp. 130–134.

28 S. Hembacher, F. J. Giessibl, J. Mannhart, and C. F. Quate, Proc.
Natl. Acad. Sci. U.S.A. 100, 12539 �2003�.

29 M. Aoki and H. Amawashi, Solid State Commun. 142, 123
�2007�.

30 K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 54, 17954 �1996�.

31 K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B
59, 8271 �1999�.

32 H.-W. Lee and D. S. Novikov, Phys. Rev. B 68, 155402 �2003�.
33 E. McCann, Phys. Rev. B 74, 161403�R� �2006�.
34 Adapting the conventional notation for carbon nanotubes, an

�n ,0� ribbon has a width of n hexagons and armchair edges.

NORBERT NEMEC AND GIANAURELIO CUNIBERTI PHYSICAL REVIEW B 75, 201404�R� �2007�

RAPID COMMUNICATIONS

201404-4


