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We study the spin polarization and its associated spin-Hall current due to electric-dipole-induced spin
resonance in disordered two-dimensional electron systems. We show that the disorder-induced damping of the
resonant spin polarization can be strongly reduced by an optimal field configuration that exploits the interfer-
ence between the Rashba and Dresselhaus spin-orbit interactions. This leads to a striking enhancement of the
spin susceptibility while the spin-Hall current vanishes at the same time. We give an interpretation of the spin
current in geometrical terms which are associated with the trajectories the polarization describes in spin space.
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The ability to coherently control the spin of charge carri-
ers in semiconductor nanostructures is the main focus of
spintronics.1 Band-structure and confinement effects in these
systems lead to a strong spin-orbit interaction �SOI� offering
the possibility of efficiently accessing the charge carrier spin
via the control of its orbital motion.2–13

A versatile and efficient scheme of spin control is electric-
dipole-induced spin resonance �EDSR�,10,11,14–20 where elec-
tric radio frequency �rf� fields give rise to internal fields cou-
pling to the spin. By choosing an adequate configuration of
the electric rf fields and a static magnetic field defining a
quantization axis for the spin, arbitrary spin rotations can be
realized. This is analogous to standard paramagnetic spin
resonance techniques; it has the advantage, however, that it
can be integrated in gated nanostructures, thereby avoiding
magnetic rf coils.

In a two-dimensional electron gas �2DEG� with pure
Rashba SOI the amount of spin polarization that can be
achieved by EDSR is severely limited by disorder.19 Similar
limitations are found for pure Dresselhaus SOI. However, if
both Dresselhaus and Rashba SOIs are present, interference
between the two SOI mechanisms can occur and qualita-
tively new behavior emerges, such as anisotropy in spin
relaxation21–23 and transport.24–26 For spin relaxation this an-
isotropy is most pronounced if both SOIs have equal

strength. In this case, the spin along the �11̄0� direction �see
Fig. 1� is conserved,21,27 and the associated spin relaxation
rates vanish, whereas they become maximal along the per-
pendicular direction �110�. For the driven system considered
here, we show that similar interference effects occur, and that
not only the internal rf field but also the EDSR linewidth
becomes dependent on the direction of the magnetic field. In
a microscopic approach we show then that, due to this de-
pendence, an optimal configuration exists where the line-
width and the internal field simultaneously become minimal
and maximal, respectively, and that, as a remarkable conse-
quence, the spin susceptibility is dramatically enhanced. In
other words, this optimal configuration allows one to obtain
a high spin polarization with relatively small electric fields,
thus making the power consumption for spin polarization
minimal.

Due to spin-orbit interaction, angular momentum can be
transferred between spin and orbital degrees of freedom.
This fact leads, in particular, to a dynamical coupling be-
tween spin and spin current described by the Heisenberg

equation of motion.19,28,29 Exploiting this coupling, we show
that the spin current can be interpreted in geometrical terms:
the spin dynamics generated by the rf fields describes an
elliptical trajectory. The spin-Hall conductivity can then be
expressed entirely in terms of the semiminor and semimajor
axis and the tilt angle of this ellipse. Since the spin dynamics
�trajectories� is experimentally accessible, for instance with
optical methods,8,9 this opens up the possibility for a direct
measurement of the spin-Hall current. Finally, we find that
for the optimal configuration the spin current vanishes, in
stark contrast to the spin polarization which, as mentioned,
becomes maximal.

We consider a noninteracting 2DEG consisting of elec-
trons with mass m and charge e which are subject to a ran-
dom impurity potential V. We take into account linear SOI
�ij�ijpj�

i of the Rashba and Dresselhaus types where
�i, i=1,2 ,3, are the Pauli matrices and p is the canonical
momentum. Taking the coordinate axes along the �100�,
�010�, and �001� crystallographic directions, the internal
magnetic field � is then given by �cf. Fig. 1� ��p�
=��py ,−px ,0�+��px ,−py ,0� where � and � is the strength
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FIG. 1. �Color online� �a� Momentum-dependent magnetic fields
induced by Rashba �black arrows� and Dresselhaus SOI �red �gray�
arrows� �R�p�=��py ,−px� and �D�p�=��px ,−py�, respectively.
Inset: The sum �R+�D for equal strength of the SOI ��=�� is
shown. The interference of the two types of SOI leads to a suppres-
sion or enhancement of the spin splitting in certain crystallographic
directions. �b� Polar plot of the resonance susceptibility �̄res �in
arbitrary units� as a function of � for �=� /2 and �L�=1 �black,
solid curve�, �L�=2 �red, dotted�, and �L�=3 �blue, dashed�. The
configuration of the external magnetic and electric fields B0 and E0

is shown. For B0 �E0 � �110� both SOI contributions add construc-
tively in the direction perpendicular to B0, leading to an enlarged
Rabi field.
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of the Rashba and Dresselhaus SOIs, respectively. Addition-
ally, the external static magnetic field is given by B0=B0e�

with e� = �−sin � , cos � ,0�, and the external electric rf field by
E�t�=E�t��−sin �� , cos �� ,0�, where � and �� are the angles
enclosed with the �010� direction. The system is described by
the Hamiltonian

H =
1

2m
�p − eA�2 + ���p − eA� + b0� · � + V , �1�

where A�t�=−�tdt�E�t�� is the vector potential associated
with E, and b0=g	BB0 /2 with g the electron g factor and 	B
the Bohr magneton.

Spin polarization. We turn now to the calculation of the
spin polarization �magnetization /	B� per unit area, S���
=�−



 dt ei�t���t�	 /2�, evaluated in linear response to an ap-
plied electric field E���=E0����−�0�+���+�0�� /2 and in
the presence of both Rashba and Dresselhaus SOIs. Due to
the interference between these two SOI mechanisms we need
to carefully extend earlier calculations,19 which were re-
stricted to Rashba �Dresselhaus� SOI only, to this new situ-
ation. We will then be able to identify a configuration that
allows one to obtain a maximum degree of spin polarization
due to this interference.

Working in the linear response regime, Si��� is obtained
from the Kubo formula averaged over the random distribu-

tion of impurities in the 2DEG. We evaluate this average
with standard diagrammatic techniques, assuming the
impurities to be short ranged, isotropic, and uniformly
distributed. In this case, the impurity average V�x�V�x��

�m��−1��x−x�� is � correlated and proportional to the mo-
mentum relaxation time �. We further take the Fermi energy
EF= pF

2 /2m to be the largest energy scale in the problem.
Then, to leading order in 1/ pFl with l= pF /m� the mean free
path, the averaged spin polarization is given by the the dif-
fuson diagram, giving rise30 to a correction �i→i
ij� j of
the spin vertex �cf. Ref. 19� in the Kubo formula. Thus, the
spin susceptibility defined by Si���=�ij���Ej��� is given by

�ij��� = �
k=1

k=3

2e����ik − �1 −
1

�
ik��kj , �2�

where �=m /2��2 is the two-dimensional density of states
and ����=1− i��.

We evaluate the vertex correction  of Eq. �2� for the case
of a magnetic field B0 that is large compared to the internal
fields induced by SOI. This regime is characterized by aR

�pF /2b0�1 and aD
�pF /2b0�1. The components ij

with i , j=1,2 ,3 of the vertex correction are then found to be
given by

 =
1

��L
2 − �2��2 + q�y2� − cos2���

� − 1
+ ��� − 1� + q11

− y2

2�� − 1�
sin�2�� + q12 y cos��� + q13

− y2

2�� − 1�
sin�2�� + q12 y2� − sin2���

� − 1
+ ��� − 1� + q22 y sin��� + q23

− y cos��� − q13 − y sin��� − q23 y2 + ��� − 1� + q33

� , �3�

where y=2b0� /�=�L�. Here, the functions qij and q are sec-
ond order in aR and aD, and depend on the frequency �, the
Larmor frequency �L, and the angle �.36 In the EDSR sys-
tem, Pauli paramagnetism gives rise to a constant equilib-
rium polarization Seq=���Le� along B0 which is independent
of the electric field. The polarization dynamically generated
by E���, however, depends on the amplitude of the oscillat-
ing internal field perpendicular to B0. It is thus instructive to
consider the longitudinal �along B0 �e�� and the transverse
�along e�
e� �e3 and e3� polarization components given by
S�2=e� ·S and S�1=e� ·S, S�3=S3, respectively.

As a result, we find the polarization S�i���
= �̄i�� ,���E��� in terms of the transformed susceptibility �̄.
To lowest order in aR ,aD, only the transverse components
�i=1,3� are finite. They are given by

�̄i��,��� = Seql����� cos��� − �� − � sin��� + ���

� wi� 1

�L − � + �� − i�
+

1

�L + � − �� + i�
 ,

�4�

where w1=1 for the in-plane �i=1� and w3=−i� /�L for the

out-of-plane component �i=3�, and l���=e� /��1− i��� is
proportional to the Drude conductivity.37

Close to resonance the scattering from disorder leads to a
renormalization of the magnetic field dependence. The reso-
nance is shifted by a term

�� = Re q�� = �L�/2�L�2

=
pF

2�

�2 ��2 + �2 − 2�� sin�2���
�L�

1 + ��L��2 , �5�

corresponding to an effective g factor which depends on both
the amplitude and the orientation of the magnetic field. The
linewidth � of the resonance peak is given by

� = − Im q�� = �L�/2�L�2

= 2pF
2�/�2���2 + �2 + 2�� sin�2���

+
��2 + �2� − 2�� sin�2��

2�1 + ��L��2�  . �6�

Note that in � the Rashba and Dresselhaus SOIs do not sim-
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ply add up but can interfere with each other, enabling a
strong enhancement of the susceptibility as we will see next.
In Fig. 1 we plot the spin susceptibility at resonance, �̄res

� �cos���−��−sin���+���� /�, for the case �=� /�=0.5
measured in Ref. 25. The angle �� has been tuned to maxi-
mize �̄res, which displays a pronounced dependence on the
magnetic field direction. In Eq. �6� we note that � scales with
the mean square fluctuations of the internal magnetic fields
�[e� ·��pFn̂�]2	n̂ and �[e� ·��pFn̂�]2	n̂, where �·	n̂ denotes a
uniform average over all �in-plane� directions n̂. Comparison
with a simple model31,32 of spin relaxation �Bloch equation�
shows that the first term in Eq. �6� comes from pure dephas-
ing, i.e., from disorder-induced fluctuations of the internal
fields along B0, while the second term is due to fluctuations
along e�. Choosing a configuration with �=��=−� /4 and
tuning the SOI strengths to �=�, the first term vanishes
while the second is subject to narrowing due to the magnetic
field. The width becomes �DP/ �1+ ����2� where �DP

=2��pF�2� /�2 is the D’yakonov-Perel spin relaxation rate
for Rashba SOI. Increasing the frequency such that �at reso-
nance� �L�=���1 will lead to an increase of the inverse
width �−1 and, hence, of the susceptibility at resonance,
given by

��̄�=�
res � = Seq

e��

��DP

�1 + ��L��2. �7�

For comparison, we find the ratio to the resonance suscepti-
bility �̄�=0

res in the pure Rashba case as ��̄�

=�
res / �̄�=0

res �= �1+y2��1+1/ �2�1+y2��� growing quadratically
with y=�L�. Thus, the spin polarization can be substantially
enhanced by tuning the SOIs to equal strengths and by in-
creasing the magnetic field. Finally, the range of validity for
the linear response regime can be estimated as follows.
Assuming full polarization ��S�=��3,res� /Seq�1� and parameters
for a GaAs 2DEG �Ref. 9� with spin-orbit splitting
�SO=�pF=600 	eV, Fermi wavelength �F=18 nm, and
�L�=10, we find from Eq. �7� that the linear response
is valid for electric fields with amplitudes up to E0
=4��SO/�F�L��4�104 eV m−1.

Polarization and spin current. We consider the spin cur-
rent defined by I3= ���3 ,v�	 /2. Using the Heisenberg equa-
tion of motion the spin current components Ix�

3 and Iy�
3 along

e� and e� can be expressed in terms of the polarization at
frequency � as

�Ix�
3

Iy�
3  =

�

2m��2 − �2�
��� − � sin�2����i�S�1 + �LS�3� − i�� cos�2��S�2

�� + � sin�2���i�S�2 − � cos�2���i�S�1 + �LS�3�
 . �8�

We consider the configuration �=��=−� /4 such that the
SOI-induced internal rf field is perpendicular to B0 and the
longitudinal component S�2�t�=Seq is not altered in linear
response in E. Note that in this case Eq. �8� simplifies such
that Ix�

3 =��i�S�1+�LS�3� / �2m��−���. This relation differs
from the naive model of an average spin-orbit field, equating
the internal field �(p�t�) with its average �(�p	�t�). Con-
trary to Eq. �8�, we then find i�S�1+�LS�3=�1S�1, where �1

is a phenomenological transverse relaxation rate. Discrepan-
cies with the model of an averaged spin-orbit field occur
similarly for other effects, such as the generation of an out-of
plane polarization33 and Zitterbewegung.34

We proceed by evaluating the spin-Hall current Ix�
3 in

terms of the vertex correction Eq. �3� which was obtained in
the diagrammatic approach and is valid up to second order in
aR ,aD. The linear combination i�S�1+�LS�3 cancels in low-
est order �cf. Eq. �4�� such that Ix�

3 is given by the second-
order terms qij ,q. From Eqs. �2� and �8� we find the spin-
Hall conductivity, defined as �x�y�

3,res=�Ix�
3 /2E���, to be given

by

�x�y�
3,res =

e

4�

i�L���2 − �2�
�3�2 − 2�� + 3�2� − i2�L��� − ��2 . �9�

Remarkably, for high frequencies �L���−��2� ��+��2 and
��� Eq. �9� reaches the universal limit �x�y�

3,res= �e� /8� �inde-
pendent of the SOI and disorder details� which was also ob-
tained in the clean limit in Ref. 35. Indeed, for the condition

�L��1 ��L=��, many cycles of the electric rf field pass
through between subsequent scattering events such that the
system effectively behaves as ballistic. This regime can be
exploited to achieve high spin polarizations as described
above. Moreover, the singularity in Eq. �8� for �=� is re-
moved in Eq. �9� up to the accuracy O�aR

2 ,aD
2 ,aDaR� consid-

ered here, and we find that �x�y�
3,res vanishes in the configura-

tion where �̄ is maximal, i.e., for �=� and �=��=−� /4.
We turn now to a geometrical interpretation of the

spin-Hall current relating it to the trajectories S
= �(S�1�t� ,S�3�t�) � t�R� followed by the tip of the polariza-
tion vector. For an applied electric field E���
=E0e�����−�0�+���+�0�� /2 with frequency �0, this tra-
jectory is given by the polarization �as a function of time�

�S�1�t�
S�3�t�

 = ���0��cos �0t

sin �0t
 �10�

with the matrix

���0� = E0�Re �̄1��0� − Im �̄1��0�
Re �̄3��0� − Im �̄3��0�

 �11�

containing the Fourier components �̄1,3��� of the susceptibil-
ity evaluated at �=�0. Equation �10� constitutes a
quadratic form for the trajectory given by S
= ��S�1 ,S�3� �S�t ·�2S�=1� with real, positive eigenvalues �1,2

�say �1��2� of the defining matrix �2= ��−1�t�−1. Thus, S
is of elliptic shape with semimajor and semiminor axes
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a=1/��1 and b=1/��2, respectively. We can further deter-
mine the angle � enclosed by the semimajor axis of S and
the S�1 direction since the matrix �2 is diagonalized by a
rotation � around S�2. The polarization of Eq. �10� can thus
be written as

�S�1�t�
S�3�t�

 = �cos � − sin �

sin � cos �
�a cos��0t + ��

b sin��0t + ��
 . �12�

Here, � is a phase shift between the electric field and the
polarization. From Eqs. �10� and �12�, we can relate the real
and imaginary parts of the susceptibilities �̄1 and �̄3 to the
parameters a, b, �, and �. In particular, we obtain the spin-
Hall current �Eq. �8�� at resonance ��L=�� as

Ix�
3 ��� =

�E���ei��−��

2m�� − ��E0
i�L�a − b� . �13�

Equation �13� provides a remarkable interpretation of the
spin-Hall current in terms of the geometric properties of the

orbit S. The component Ix�
3 is given by a complex phase

depending on the rotation angle � and the difference between
the semiminor and semimajor axes, a−b. In the linear re-
sponse regime, the spin-Hall current characterizes the devia-
tion from a circular orbit with a=b to an elliptic shape �with
a�b�. Therefore, Ix�

3 becomes accessible in terms of simple
geometric properties of S in experiments capable of resolv-
ing individual polarization components.

In conclusion, we predict a substantially enhanced spin
polarization due to interference effects of Rashba and
Dresselhaus SOIs. The spin-Hall current associated with this
polarization can be interpreted in terms of the trajectory in
spin space and vanishes if the polarization is maximal.
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