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The mechanical behavior of single-walled carbon nanocones �SWCNCs� with 19.2° apex angles under
compression was investigated in the study reported herein. The analysis was performed using molecular
dynamics simulation. Two different loading directions, i.e., axial compression and in-plane compression, were
applied to study their influence on the strain energy of CNCs. We derived empirical formulas for calculating
the critical strains of CNCs with various top radii that were subjected to both axial and in-plane compression.
The results of the simulation reveal that cones under in-plane compression show a higher energy level than
those under axial compression. In the buckling and post-buckling stage, each shape change, accompanied by an
abrupt release of energy in the energy-strain curve, was analyzed. The possible reasons for early plastic failure
were examined, with the buckling behavior of CNCs with geometrical parameters �top radius, bottom radius,
and height� involved. Our computed results show that for the fixed ratio of height/bottom radius, CNCs with
smaller top radii tend to be stiffer.

DOI: 10.1103/PhysRevB.75.195435 PACS number�s�: 61.46.Fg, 81.07.�b

I. INTRODUCTION

Since the discovery of fullerenes1 and carbon nanotubes,2

the research community has paid much attention to carbon
nanostructures. Sequent reports have shown that carbon is a
flexible material that can form a variety of structures, such as
carbon onions,3 carbon boxes,4 nanocapsules,5 and carbon
nanocones �CNCs�.6–8 The first study of CNCs claimed that
closed cones could be uniquely determined by measuring the
five distinct opening angles of 19.2°, 38.9°, 60°, 86.6°, and
123.6°, although only 19.2° angles were observed in
samples.6 The following report confirmed the existence of all
five apex angles.7 Later studies found that through precise
control of the synthetic conditions, the tailoring of the mor-
phology of CNCs was possible. The newly synthesized open
CNCs had similar structures to closed cones, except that the
tips were cut off.9–12 Terrones et al.10 and Muradov et al.13

believed that open cones had very flexible structures, which
could explain the difference between the angles observed in
their samples and those in closed cones. However, Ekşioğlu
et al.14 proved that the open cone approach cannot explain
the different apex angle observed in the sample, and that
open cones should have the same apex angles as closed
cones. Nevertheless, similar to CNTs, CNCs can also be cat-
egorized as single7,8 and multiwalled.9–12,15,16

Despite active research activities in this area, theoretical
work has fallen behind experimental studies. Researchers are
still struggling to establish universally accepted approaches
for CNC structures and growth mechanisms. Klein17 devel-
oped a formal “topo-combinatoric” procedure for treating
CNCs. Compernolle et al.18 determined accurate geometries
of CNCs of different sizes with a triangle, square, or penta-
gon at the apex using a quantum chemical optimization
method. Ekşioğlu et al.14 carried out comprehensive studies
on the structures of CNCs by employing molecular models
and structural analyzes.

Nevertheless, investigations into the mechanical proper-
ties of CNCs are scarce. Wei et al.19 used continuum elastic
theory and molecular dynamic �MD� simulation to show that

the Young’s modulus of a single-shell CNC is cos4 � that of
an equivalent single-walled CNT �SWCNT�. It should be
noted that the CNC was simulated by applying tensile strain
up to 5%, which meant that no buckling occurred and the
detailed strain energy curve was not given. Jordan et al.20

studied the mechanical chiral inversion of closed CNCs with
large apex angles by compressing the cone tip with a spheri-
cal indenter using MD. They showed that the CNC can have
true chiral inversion without breaking the chemical bonds.

Our earlier work21 verified the implementation of Bren-
ner’s second generation potential by comparing our result of
�8,0� CNT to those of other reported works. Because little
theoretical research has been devoted to the simulation of
CNCs, the validation of our results by comparing them with
those of others was unrealizable.

In the study reported herein, the compressive properties of
CNCs were investigated by employing the MD technique
using Brenner’s “second generation” reactive empirical
bond-order �REBO� potential.22 Preliminary buckling behav-
ior was investigated for a single-walled open cone with an
apex angle of 19.2°. Using regression approaches, empirical
formulas were obtained for the critical strains of CNCs under
both axial and in-plane compression deformations by fitting
the MD simulations. The morphological changes and the en-
ergy release are discussed in detail here.

II. COMPUTATION MODEL

The numerical simulation was carried out by classical mo-
lecular dynamics simulation. The short-range interaction
force between atoms was second-generation reactive empiri-
cal bond-order �REBO� potential of Brenner, as follows:22

Eij
REBO = VR�rij� − bijVA�rij� , �1�

where VR�r� and VA�r� are the repulsive and attractive pair
terms, and bij is the reactive empirical bond order between
atoms.

For the long-range interaction force, the van der Waals
potential was applied23
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Eij
vdw = �0, rij�rs�,

c3k�rij − rk�3 + c2k�rij − rk�2, rs� � rij�rm� ,

ELJ�rij� , rm� � rij�rb�,
� �2�

where cn,k are cubic spline coefficients, rs�=0.2 nm, rm�
=0.32 nm, rb�=1.0 nm, and ELJ is defined as the Lennard-
Jones 12-6 potential,24 which is computed as

ELJ = 4����ij

r
�12

− ��ij

r
�6� . �3�

Therefore, the potential sum becomes

E = 	
i

	
j�i

�Eij
REBO + Eij

vdw� . �4�

As proposed by Mao et al.,25 the van der Waals potential
should be turned on only if the short-distance potential be-
comes zero. Otherwise, the steep repulsive wall of Lennard-
Jones 12-6 potential in the short range can form an artificial
reaction barrier.

The analysis in this study was carried out without tem-
perature control. The equations of motion were investigated
with Gear’s predictor-corrector algorithm,26 and the axial
compression of open CNCs with 19.2° apex angles was
achieved by applying an appropriate rate at one end and
keeping the other end unmoved. At the beginning of each
simulation, the CNC was allowed to equilibrate after being
generated from two-dimensional �2D� graphene. The follow-
ing stage involved recording the trajectories of the atoms,
energies, and forces for later analysis. At this stage, the end
atoms on one side were moved inwardly by small steps in
two directions—axial or in-plane of the side surface as
shown in Fig. 4, which is parallel to the initial CNC side
surface with constant direction—whereas the other end of the
nanocone remained unmoved. The inner atoms were relaxed
and adjusted by the conjugate gradient minimization method.
The atoms at both sides were not affected by the interatomic
forces. Different from CNTs, the sides of CNCs are not par-
allel to the central axis. This significantly different configu-
ration requires a very small loading rate for relaxation under
compression. The smaller rate also demands more computa-
tional effort. In this study, we used 10 m/s as the applied rate
on one end.

Among the five basic angles, the apex angle of 19.2° as
observed in samples7,8,13 is the smallest. In our simulation,
all CNCs had apex angles of 19.2°. To avoid chiral
inversion20 and facilitate the application of strain rates, we
studied open CNCs instead of their closed counterparts. The
smallest upper diameter of our computed cases was 10 Å,
which is in accordance with the theoretical prediction of the
top radius of a CNC.7 The structures of the computation
cases were initially generated by folding over the graphene
sheet with an overlap angle of 300°, as shown in Fig. 1; this
is technically referred to as the disclination angle. This pro-
cess produces closed CNCs, and the open CNC model can be
established by cutting off the tip, as shown in Figs. 2 and 3.

III. NUMERICAL RESULTS AND DISCUSSION

A. A slender CNC „H :Rb=4:1…

To study the classic buckling behavior of CNCs under
compression, a relative slender CNC was selected with the
following parameters: Rt=6 Å, Rb=18.5 Å, H=74 Å. Each
time step used in this simulation equals 1 fs, and the simu-
lation lasts for 40 000 time steps. The applied compressions
are along axial or parallel to side surface, respectively. The
strain energy of the selected slender CNC �having 2211 at-
oms� versus strain are shown in Fig. 4. In the case of axial
loading, as shown in Fig. 4, at small strain ���0.034� the
CNC undergoes elastic deformation, and the total strain en-
ergy follows E=0.5E��2. As the strain increases to �a
=0.0345, which is associated with point a in Fig. 4, buckling
occurs and the strain energy per atom drops significantly.
The cone passes the linear elastic stage and enters the post-

FIG. 1. Carbon graphene removed wedge with a disclination
angle of 300°, ready to form the CNC.

FIG. 2. Schematic illustration of the geometric parameters of the
CNCs used in the study.
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buckling stage. When the strain reaches �b=0.035, the en-
ergy has already decreased by 17.9% at critical point b, as
shown in Fig. 4. The energy curves in the stage show ap-
proximate linearity by parts. At point c in Fig. 4, the strain is
�c=0.037, with the energy increasing slightly by 1.75%. Af-
ter a gap near point d, where �d=0.0377, the energy de-
creases by approximately 5.6%. As buckling develops, the
curve climbs up again, which means that the increase of
energy from compression cannot be totally eliminated by fur-
ther energy dissipation from morphological changes, and en-
ergy starts to concentrate within the CNC again.

Figure 5 depicts the acute morphological changes as the
deformation increases. When the compression is applied axi-
ally, the CNC starts to buckle at �a=0.0345, as shown in Fig.
5�a�, being slightly concave in the vicinity of the top edge.
The occurrence of local buckling leads to the loss of most
symmetries of the CNC, leaving only one mirror plane
through the x-z plane. The local buckling develops spontane-
ously until the other side becomes concave, as shown in Fig.
5�b�, and eventually induces the plastic failure that accom-

panies the net release of strain energy. Further strain en-
hances this pattern until the kink forms a “fin” at point c, as
shown in Fig. 5�c�, followed by another energy release. As
the fin develops �d�, the configuration reorganizes itself and
becomes two concave areas approximately perpendicular to
the fin at �d=0.038, as shown in Fig. 5�d�. The planes of
symmetries increase to two, which are perpendicular to each
other and cross the central axis. After the strain exceeds
0.038, the fin moves downward while the cone maintains the
symmetries, and the strain energy starts to rise as shown in
Fig. 5�e�. In the case of in-plane compression, the geometri-
cal shapes are similar to those in axial compression, except at
point C, where the morphological changes are not as obvious
but show a close resemblance to point B. The strain energy
of each critical point for the axial loading is much smaller
than that for in-plane compression.

Under axial compression, we compare the critical strain
of CNC to that of a �10,10� CNT with the ratio of
length/ radius=6 in our previous report.21 The radius in the
middle of cone is 12.25 Å, giving that the ratio of length to
middle radius equals 6, thus CNT and CNC have the same
length/radius ratio and are comparable. The critical strain of
the CNC for the buckling is 0.035 while the critical strain of
the CNT is 0.067, implying a earlier post-buckling stage of

FIG. 3. �Color online� Schematic illustration of CNCs with Rt

=10 Å, Rb=15 Å, and H=30 Å.

FIG. 4. �Color online� The dynamic response of the selected
CNC with the ratio of the height to bottom radius H :Rb=4:1 under
axial compression and in-plane compression, respectively.

FIG. 5. �Color online� Morphological changes for the slender
CNC �H :Rb=4:1� under in-plane loading and axial loading. The
values underneath illustrate the strains and strain energies that cor-
respond to each configuration.
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CNCs than CNTs when the ratio of length to radius of CNTs
is equal to the ratio of length to middle radius of CNCs.

Local buckling occurs first near the edge as shown in Fig.
5�a� or, alternatively, the earlier buckling to the CNC can be
attributed to the asymmetrical geometry about the middle
plane or the inherent properties of the atomic carbon struc-
tures. If the former factor contributes to the early failure,
then a different loading direction parallel to the side surface
of the CNC should enhance the stiffness. To verify this hy-
pothesis, the selected cone should be compressed using an-
other loading direction, which is elaborated as follows.

The different response to applying the in-plane compres-
sion along the side surface of the CNC is shown in Figs. 4
and 5. The curve that represents in-plane compression dem-
onstrates similar behavior to that which represents axial
compression. The critical strain �point A� is 3.5% smaller
than that in the case of axial loading; however, the energy
level is 6.2% higher than the latter case. The energy sponta-
neously declines by 13.9% when it reaches point B. After
that, a slight increase in energy occurs at point C, followed
by a second drop at point D, reducing the energy by 8.24%.
The curve then rises as the deformation propagates. The
CNC shows a significant increase in stiffness when it is load-
ing superficially rather than axially, which falls into our ex-
pectation as previously mentioned. The loading direction has
a significant effect on the strain energy levels.

The geometrical details of the critical points under in-
plane loading are provided in Fig. 5. The shapes generally
agree well with those under axial loading, except point C.
This can be interpreted as the in-plane compression rate hav-
ing a very small horizontal component due to the sharp apex
angle, but quite a large vertical component, which almost
achieves the same value of axial loading. After buckling
takes place, the CNC is less affected by the horizontal com-
ponent than the vertical component, and tends to follow the
buckling patterns that occur under axial compression. How-
ever, as shown in Fig. 5, the in-plane simulation returns even
lower critical strain but higher critical energy. That can be
explained in terms of force. The in-plane force can be de-
composed into vertical and horizontal components. The axial
force acted on the CNC under axial compression is larger
than the vertical component of in-plane force acted on the
CNC under in-plane compression, and thus the axial simula-
tion gives greater strain than in-plane simulation. On the
other hand, the axial force is smaller than the in-plane force
�the resultant force of the vertical and horizontal compo-

nents� which leads to a larger critical energy of the in-plane
simulation.

To show the energy distribution along the height of the
CNC, the average energy per layer is introduced. Here, the
average energy per layer is obtained from dividing the total
energy of a layer by the number of atoms of the layer. Under
axial compression, the distribution of the average energy per
layer along the height of the cone is shown in Fig. 6 at the
critical strain. It is observed that the average energy per atom
is the highest at the top and decreases till the lowest at the
bottom. This phenomenon is expected due to the fact that the
strain decreases from the top layer to the bottom layer.

B. The effect of the top radius on the buckling of CNCs

To study the effect of the top radius on the buckling of
CNCs, the height to bottom radius ratio was fixed as 2:1, and
the critical strains of CNCs with various top radius from
10 Å to 25 Å were simulated. The results are given in Table
I. The critical strain decreases as the top radius increases.
Furthermore, the strain energy per atom of CNCs with vari-

TABLE I. Strain and energy at critical points of cones with different Rt for H :Rb=2:1.

Rt �Å� Rb− �Å� H− �Å� Atoms

Critical point for
axial loading

Critical point for
in-plane loading

�cr

Strain energy
�eV/atom� �cr

Strain energy
�eV/atom�

10 15.11 30.22 928 0.0322 0.030 0.0311 0.031

15 22.66 45.32 2086 0.0241 0.015 0.0230 0.015

20 30.21 60.42 3699 0.0194 0.008 0.0189 0.008

25 37.77 75.54 5784 0.0170 0.006 0.0164 0.006

FIG. 6. Average strain energy per layer at critical strain. The
cone is divided into 8 layers from top to bottom excluding the
boundary layers at the endings. Height of each layer is 0.74 nm.
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ous top radii was simulated, and the results for axial com-
pression and in-plane compression are displayed in Fig. 7.
The curves show that under axial loading, the CNC with a
smaller diameter has a larger critical strain and higher energy
for the fixed height/bottom radius ratio. The strain energy of
the cone with the smallest top diameter decreases by 5.4%
after the buckling occurs, whereas the other cones show flat
transitions from the elastic region to the plastic region rather
than an obvious drop around the critical strain. The post-
buckling behavior of Rt=10 Å predicts an approximately lin-
ear relationship between energy and strain. However, the
other cones show very irregular behavior in the post-
buckling region. In addition, in the case of in-plane loading,
most parts of the energy curves in Fig. 7 are located above
those in the axial loading, which means that there is an en-
hancement in the stiffness due to an alternative loading di-
rection. The curves also tend to behave like those under axial
loading. Nevertheless, differences of strains and energies at
the critical points between the two loading directions are
insignificant. Especially in the elastic region, the curves that
stand for different loading directions are even closer for
CNCs with larger upper diameters.

The critical strains of open CNCs with various top radii
are plotted in Fig. 8 for the same ratio of H /Rb. Using re-
gression analysis, two functions in the form of second order
exponential decay were formulated to demonstrate the trends
of critical strain as top radius Rt increases. Figure 8 shows
that the critical strain drops quickly when the top radius is
smaller. For a larger top radius, the critical strain decreases
slowly with the increase of the top radius, thus indicating
that the critical strain approaches a constant when the top
radius is large enough. The two fitted curves are quite close
to each other, showing a limited influence on the critical
strain using different compression methods.

C. The effect of height on the buckling of CNCs

To demonstrate the effects of different heights on the criti-
cal strain, the energy-strain curves of CNCs with the same
top radius but different heights were calculated, and the re-
sults are shown in Fig. 9 and Table II for the case of axial
compression. As illustrated in Fig. 4 and Fig. 7, the strain
energies of CNTs under axial compression and under in-
plane compression are very close; hence, the conclusion for
CNCs under axial compression can also be applied to CNCs
under in-plane compression. Figure 9 shows that as the
height increases, the critical strain obviously decreases with
the energy suddenly dropping from 11.49% to 26.45% for
various heights, as shown in Table II. This occurs because

FIG. 7. Dependence of strain energy on the strain for open
CNCs with the same H /Rb ratio but different top radii of 10 Å,
15 Å, 20 Å, and 25 Å, where PC stands for the in-plane compres-
sive deformation, and AC represents axial compressive
deformation.

FIG. 8. Critical strain as a function of top radius for the open
CNCs with the same H /Rb ratio.

FIG. 9. Dependence of strain energy on the strain for the CNCs
with the same top radius but different heights under axial loading.
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the higher the cone is, the greater its instability. The critical
strain also shows the same tendency as the overall height
increases, as shown in Table II. When the height of a cone
increases from 40 Å to 80 Å, the strain decreases 0.001 per
step in perfect unison. For different computation cases, the
energy drops around the critical point are related to the cone
height. The highest cone tends to present the largest energy
drop percentage, which results from the large absolute en-
ergy drop as the numerator and the relatively small strain
energy as the denominator, as shown in Fig. 9.

IV. CONCLUSIONS

In the study reported herein, single-walled open CNCs of
different geometric configurations were investigated using

the MD technique. Simple empirical formulas were obtained
for the calculation of the critical strains of CNCs with vari-
ous top radii under both axial compression deformation and
in-plane compression deformation. Our computed results
show that the critical strain and energy of CNCs are much
smaller than those of their CNT counterparts. Their behavior
beyond the elastic region shows no signs of brittleness or
plasticity. The loading directions also have effects on buck-
ling behavior and strain energy. In-plane compression in-
duces larger strain energy than axial compression. In the case
of a fixed ratio of height/bottom radius, the stiffness of a
CNC with a smaller radius is greater than that of a CNT with
a larger radius. The energy drop percentage around the criti-
cal point is related to height of the cone. Higher CNCs tend
to lose more energy during the transition from the elastic
region to the plastic region.
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