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We study the ground state of a nematic phase of the two-dimensional electron gas at filling fraction �

=1/2 using a variational wave function having Jastrow pair correlations of the form �i�j�zi−zj�2 and an
elliptical Fermi sea. Using the Fermi-hypernetted-chain approximation, we find that below a critical value of
the broken-symmetry parameter, the nematic phase is energetically favorable as compared to the isotropic state
for the second excited Landau level. We also find that below a critical value of the layer “thickness” parameter
� �and in the actual materials�, the quantum nematic is energetically favorable relative to the stripe ordered
Wigner crystal phase.
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I. INTRODUCTION

During the past two decades, the quantum Hall effect has
been one of the most intriguing research topics in condensed
matter.1 More recently, the measurements of Lilly et al.2 and
Du et al.3 reveal a strong anisotropic behavior of transport
properties of electrons for the half-filled Landau-level �LL�
system under strong magnetic field and at very low tempera-
ture. The anisotropy commences at the second excited LL
and persists up to the sixth excited LL. The sudden exhibi-
tion of large anisotropies of resistivities in clean two-
dimensional electron gas �2DEG� suggests that there is an
unknown underlying microscopic origin for this kind of
spontaneous symmetry breaking.

These experimental findings prompted several interesting
theoretical proposals which attempt to explain the observed
anisotropic behavior of the half-filled LL system. First of all,
these anisotropic transport properties are consistent with al-
ready predicted stripe and bubble charge-density-wave
phases found4,5 by means of Hartree-Fock calculations of the
2DEG. However, Fradkin and Kivelson6 suggested that the
anisotropic transport might be due to a stripe nematic phase
of the 2DEG in a high magnetic field. This point of view was
investigated further by Fradkin et al.7 where a model for the
nematic phase in a symmetry-breaking field was studied us-
ing Monte Carlo simulation. The results of the Monte Carlo
simulation provide a good fit of the experimental data of
Lilly et al.2 This simulation suggests that the nematic phase
might be a good candidate to explain the anisotropic behav-
ior observed in Refs. 2 and 3. Furthermore, by deriving a
long-wavelength elastic theory of the quantum Hall smectic
state, Wexler and Dorsey8 have estimated the transition tem-
perature from an isotropic to nematic phase to be of the order
of 200 mK. Later, Cooper et al.,9 by applying an in-plane
magnetic field in 2DEG samples which show the above an-
isotropy in transport, give further support for the possible
presence of such a quantum nematic phase.

In the composite fermion theory given by Jain,10 the frac-
tional quantum Hall effect is interpreted as the integer quan-
tum Hall effect of composite fermions. Furthermore, Halp-
erin et al.11 developed a theory of half-filled LL system,
which is the case of our interest, as a compressible Fermi

liquid. Rezayi and Read12 proposed a ground-state wave
function for the half-filled LL system having the Jastrow-
Slater form as follows:

��r�1,r�2, . . . ,r�N� = P̂�
j�k

N

�zj − zk�2

�exp�− 1/4�
k=1

N

�zk�2�det��k��r�i�� , �1�

where �k��r�i� are two-dimensional �2D� plane-wave states,

and P̂ is the LL projector operator. Here, zj =xj + iyj is the
complex 2D coordinate of the j electron. This wave function
is a Jastrow correlated Slater determinant with Jastrow part
similar to the Laughlin state.13

Ciftja and Wexler14 used the Fermi-hypernetted-chain
�FHNC� approximation to study a broken rotational state of
the half-filled LL where the symmetry-breaking parameter
was introduced in the correlation part of the wave function;
namely, the Jastrow factor was modified as � j�k

N �zj −zk�2

→� j�k
N �zj −zk+���zj −zk−��, and the single-particle determi-

nant was the standard circular Fermi sea. The anisotropy
symmetry-breaking parameter � is determined by minimiz-
ing the ground-state energy.

In the present paper, we adopt the ansatz for the ground
state of the nematic state proposed by Oganesyan et al.15 as
a trial wave function in our variational calculations. The
ground-state wave function proposed in Ref. 15 has the same
form as the wave function given by Eq. �1�; however, the
single-particle momenta form an elliptical Fermi sea �Fig. 1�
as opposed to the circular Fermi sea. The broken-symmetry
parameter in our problem is the ratio �=k1 /k2 of the semi-
major k1 and semiminor k2 axes of the elliptic Fermi sea
shown in Fig. 1. We will study the nematic state of the half-
filled LL system using the variational approach and we will
employ the Fermi-hypernetted-chain approximation.16–19

Namely, we investigate whether or not this state, in which
the anisotropy is due to an elliptical Fermi sea, can be ener-
getically favorable relative to the isotropic state and the
stripe ordered Wigner crystal at high LL. We find that the
nematic phase can be stabilized against the isotropic case
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beyond the second excited LL. In addition, we have com-
pared the energy of the nematic state to that obtained by a
self-consistent Hartree-Fock calculation20 of the stripe and
bubble states of the 2DEG. We find that there is a transition
between the stripe ordered ground state and the nematic
phase as a function of the parameter � of the interaction used
by Zhang and Das Sarma21 to take into account the finite
layer thickness. In particular, for the case of the materials2,3

in question, we find that the ground state corresponds to the
nematic state.

II. VARIATIONAL FHNC CALCULATION

The FHNC formalism for Fermi systems was introduced
and developed in Refs. 16–19. A significant advantage of
FHNC over the variational Monte Carlo is that FHNC does
not suffer from finite-size effects. In the current problem,
where we need to estimate small energy differences, the role
of finite-size effects may be significant. The main idea of this
method is to expand the pair distribution function in powers
of the density of the system and it works well for a low-
density system. The variational Monte Carlo becomes advan-
tageous at relatively high density, as in the case of liquid
3He, where the roles of the elementary diagrams and other
nontrivial many-body correlations need to be included.18

In order to apply the FHNC formalism, first we assume
that the unprojected wave function is a good approximation
to the real wave function for the lowest Landau level �LLL�.
Moreover, it is known22 that the projection operator almost
eliminates the high LL components of the wave function.
The potential energy of the high LL can be expressed19 via
the pair distribution function of the LLL using the single
mode approximation discussed in Ref. 23, namely,

V̄L =
	

2
� 	g�r� − 1
Vef f

�L��r�d2r , �2�

where the effective potential Vef f
�L��r� at Landau level L is the

convolution of the effective interaction,21 V�r�=e2 /
�r2+�2,
with the L-order Laguerre polynomials; namely, it is the Fou-
rier transform of

Ṽef f
�L��q� =

2�e2


q
exp�− �q�	LL�q2/2�
2. �3�

In the above formula, � is a length scale which characterizes
the confinement of the electron wave function in the direc-
tion perpendicular to the heterojunction.21

Our calculation proceeds as follows: First, we will calcu-
late the pair distribution functions for isotropic and nematic
states with different values of the anisotropic parameter for
the LLL using the FHNC approximation. Second, the inter-
action energies will be calculated via the pair distribution
functions by using the single-LL approximation, i.e., via Eq.
�2�. Next, the kinetic energy is evaluated for the isotropic and
different nematic states. The energy values of the isotropic
state are compared with anisotropic states for the lowest,
first, and second excited LLs to find out if the nematic state
becomes energetically favorable. Finally, we will carry out a
self-consistent Hartree-Fock calculation20,24 for the more
general case where � can be nonzero and we will compare
the energies of the nematic, isotropic, and stripe ordered
Wigner crystals.

In the FHNC technique, each term in the expansion is
represented as graphical diagrams with well-defined topo-
logical rules. There are nodal, composite, and elementary
diagrams. In the FHNC/0 approximation, which neglects the
elementary diagrams, the pair distribution function is ob-
tained by solving the FHNC integral equations given in Ref.
18 for the case of polarized liquid 3He. These equations re-
quire as input �a� the pair correlation �or Jastrow� factor,
which in our case is given as f2�r�=exp	u�r�
 with u�r�
=4 ln�r�, and �b� the statistical exchange factor l�r�, which
for a 2D Slater determinant is given by l�r�=C�kFr�, where
C�x��2J1�x� /x, J1�r� is the first-order Bessel function, and
kF is the Fermi momentum of the isotropic state. Alterna-
tively, for the anisotropic state having an elliptic Fermi sur-
face with major and minor axes k1 and k2, we find l�r�
=C�X�, with X=��k1x�2+ �k2y�2, where x and y are the coor-
dinates of r.

Since the pseudopotential u�r� has a long-range logarith-
mic form, we follow the standard procedure used in Ref. 1 to
separate it into a short-range and a long-range part as

u�r12� = us�r12� + ul�r12� , �4�

us�r12� = − 4K0�Qr12� , �5�

ul�r12� = 4 ln�r12� + 4K0�Qr12� , �6�

where K0�x� is the modified Bessel function and Q is a wave
vector which introduces a short-wavelength cutoff. The 2D
Fourier transform of ul�r� is given by

ũl�q� = −
8�Q2

q2�q2 + Q2�
. �7�

� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � kx

ky

k1
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FIG. 1. The elliptic Fermi sea used in the present calculation.
The vectors k=2� /L�nx ,ny� within the shaded area denote the oc-
cupied plane-wave states which are included in the determinant.
The ratio �=k1 /k2 is the measure of the anisotropy parameter.
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Only the dd-type nodal and composite functions need to be
split into a short- and a long-range part:

Ndd�r12� = Ndds�r12� − ul�r12� , �8�

Xdd�r12� = Xdds�r12� + ul�r12� . �9�

This leads to a new set of FHNC equations for the short-
range nodal and composite functions, which are solved itera-
tively using a combination of momentum-space and real-
space approach as discussed in the Appendix.

III. RESULTS

We are interested in the potential- and total-energy differ-
ence between the isotropic ��=1� and the anisotropic case
���1�, namely,

VL��,�� = VL�1,�� − VL��,�� , �10�

EL��,�� = EL�1,�� − EL��,�� , �11�

as a function of � and the anisotropy parameter � and for
L=0, L=1, and L=2. In the interesting region, the energy
difference between the nematic and the isotropic state can be
small relative to the energy scale e2 / l0, so high accuracy may
be required. The effective potential for high LL and for small
values of � changes rapidly at small distances and oscillates
at large distances. We have used an adaptive mesh to incor-
porate these multiscale oscillations accurately for up to L
=2. For higher Landau levels, it becomes increasingly more
difficult to carry out an accurate calculation due to the fact
that these oscillations become increasingly more rapid.

Our calculated pair distribution function for the isotropic
state accurately reproduces the pair distribution function re-
ported in Ref. 19. The potential-energy difference VL�� ,��
for various values of � is calculated and shown in Fig. 2
�top�, in units of e2 / �
l0� �where l0=��c /eB�. Notice that for
the case of the LLL and for the first excited LL, VL�� ,��
�0, i.e., the isotropic state is energetically favorable for all
values of � and �. However, as illustrated in Fig. 2 �top�, for
the case of the second excited LL, V2�� ,���0, for all
values of � and for some range of the parameter �, the an-
isotropic state can be energetically favorable provided that
the energy loss due to the anisotropy of the Fermi surface is
not larger than the potential-energy gain.

In the single-LL approximation,23 the kinetic energy of
the isotropic state is quenched. We can estimate the kinetic-
energy difference between the isotropic and the anisotropic
case by ignoring the Landau-level projection operator and,
thus, writing the wave function as �=F�, where � is the
noninteracting Slater determinant and F the Jastrow part. The

kinetic energy contains terms in which the operator ��−A� �2

acts on F. This term gives the same contribution of ��c /2 in
both isotropic and anisotropic cases. Therefore, the main dif-
ference, coming from the term �F�2�*�2�, is due to the dif-
ference in shape of the Fermi sea. This leads to the following
kinetic-energy difference between isotropic and anisotropic

Fermi sea: K−
�2kF

2

4m*

�1−��2

2� . In Fig. 2 �bottom�, we present

the total-energy difference E2�� ,�� between the aniso-
tropic and the isotropic state. Notice that the nematic state is
energetically favorable relative to the isotropic below �c
0.6.

The results of Ref. 14 and ours share some qualitative
similarities; Ciftja and Wexler found that while the ground
state for the lowest LLL is isotropic, for the first and second
excited LL, the anisotropic state becomes energetically fa-
vorable for a certain value of their anisotropy parameter �. In
contrast, in this paper it is found that the isotropic state is
still favorable for the first excited LL. This difference should
be attributed to the difference between the two anisotropic
wave functions: namely, the one used in the present paper
has a symmetric Jastrow factor and an elliptical Fermi sea
and is appropriate to model the nematic state,15 while the
wave function used in Ref. 14 has an anisotropic Jastrow
factor and a circular Fermi sea.

Hartree-Fock energies of the stripe and bubble charge-
density-wave energy have already been reported;20,24 how-
ever, they are only available for the case of �=0. In order to
compare the energy of the nematic state with that of the
ordered stripe and the bubble states for a nonzero value of �,
we carried out a Hartree-Fock calculation using the method
outlined in Refs. 20 and 24. In Fig. 3, the total energy �apart
from a common constant value of ��c /2� is compared with
the results of our Hartree-Fock calculation for finite values of
�. In addition, in Fig. 4, the minimum energy with respect to
the anisotropy parameter � is compared to the minimum
Hartree-Fock energy value with respect to the uniaxial aniso-
tropy parameter 
 �the lattice constants of the uniaxial
Wigner crystal are given in terms of 
 as a1=�3a /2�1−

and a2=�1−
a /2�. Notice that there is a critical value of �,
namely, �c0.4, below which the nematic phase is energeti-
cally favored.
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FIG. 2. Top: The potential-energy difference VL�� ,�� as a
function of � for anisotropy parameter �=2.5 for L=0, L=1, and
L=2 �scaled down by a factor of 10�. Bottom: The total-energy
difference E2�� ,�� as a function of � for various values of the
Fermi sea anisotropy parameter � for the second excited LL.
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A value for the parameter � can be estimated using the
calculation presented in Ref. 21. Using the value of the 2D
electron density for these materials,2 we find that ��62 Å.
This corresponds to a value of ��0.34 in units of the mag-
netic length l0 �l0=181 Å for the value of B�2 T, which
corresponds to the second excited LL in the experiments of
Refs. 2 and 3�. This value of � is less than the critical value
�c0.4 below which the nematic phase is energetically fa-
vorable as compared to the stripe ordered phase �see Fig. 4�.
Therefore, we conclude that our calculation suggests that for
the case of the 2DEG in the heterojunctions used in Refs. 2
and 3 the quantum nematic state6,7,15 may be energetically
lower than the stripe ordered or bubble phases. Furthermore,
it is interesting to probe this transition from the nematic to
stripe to isotropic either by experimentally altering the value
of � or indirectly by means of an in-plane field.

IV. DISCUSSION

So far, because the Hartree-Fock calculations predict a
stripe state, the observed anisotropy in transport was taken as

a signature of a stripe ordered state. This state breaks both
translational invariance in one direction and rotational invari-
ance. The results of Rezayi et al.25 are also usually inter-
preted as a stripe state. However, the systems which can be
done with such an approach are very small, and, in addition,
toroidal boundary conditions were used, which break rota-
tional invariance. Therefore, because of these limitations it
cannot be discerned if the true ground state is a stripe or a
nematic. In our calculation, we find that the optimum nem-
atic phase corresponds to an anisotropy of ��10 near the
physically realized value of the parameter �. This implies
that a nematic state with such large anisotropy cannot be
distinguished from the stripe state in systems with only 12
electrons.25

There are two possible sources of systematic error in the
present calculation. The first is the use of the FHNC/0 ap-
proximation to evaluate the distribution function, where the
contribution of the elementary diagrams is neglected. This
approximation works very well in low-density systems, i.e.,
where the average interparticle distance is large compared to
a hard-core diameter. In the present problem, such a condi-
tion is not clearly fulfilled as there is only a soft core of size
�. The second source of error is the fact that we have ne-
glected the projection operator and assumed that the un-
projected wave function given by Eq. �1� is a good approxi-
mation to the lowest LL. In order to address these concerns,
in Fig. 5 we compare only the potential energy of the nem-
atic and isotropic states with the results of the Hartree-Fock
approximation obtained for the same values of �. Notice that
for values of ��0.6, the results of the FHNC and the
Hartree-Fock �HF� calculation are almost identical. More-
over, the results of the FHNC calculation for the isotropic
state agree very well with those of the HF calculation for all
values of ��0.3. This is an indication that the energy dif-
ference between the nematic phase and that of the isotropic
state and the stripe state below �0.5 may not be an artifact
of the difference in the treatment of the two states �i.e., the
difference between HF and FHNC approximations� but
rather due to the fact that the nematic state for long-range
interactions is energetically favorable for at least the second
excited LL.
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APPENDIX: IMPLEMENTATION OF THE FHNC

In this appendix, we discuss certain technical details ap-
plied in the FHNC iteration procedure. We find that for
higher LL, we needed to solve the FHNC equations using a
combination of real and momentum spaces and, in addition,
a multigrid method because of the combination of the short-
range large-amplitude oscillations �and, as a consequence,
large cancellations� and the long-range small-amplitude os-
cillations.

We are interested in the energy difference 	Eq. �11�
 be-
tween the isotropic ��=1� and the anisotropic case ���1�,
as a function of � and the anisotropy parameter � and for
L=0, L=1, and L=2. In the interesting region, the energy

difference between the nematic and the isotropic state is in-
deed very small relative to the energy scale e2 / l0, so very
high accuracy is required in the present calculation. The ef-
fective potential 	Eq. �3�
 for high LL and for small values of
� changes rapidly at small distances and oscillates slowly at
large distances �see Figs. 6 and 7�. In Fig. 6, the quantity
F�r�= 	g�r�−1
Vef f

2 �r� which is integrated in Eq. �2� is shown
and the integrand rF�r� is also presented in Fig. 7 in order to
illustrate this feature. Notice that in order to capture the
short-range oscillations a very fine mesh is required, and we
need to integrate up to large distances in order to capture the
long-distance fluctuations. In addition, because this oscilla-
tory behavior causes large cancellations in calculating the
potential energy using Eq. �2�, the energy is a small number
relative to the contribution of each of the oscillations. There-
fore, the small-amplitude much slower oscillations at long
distances have non-negligible contribution to the small en-
ergy difference given by Eq. �11�. Because these are slow
and of much smaller amplitude oscillations, the long-
distance contribution can be included with a wider size mesh
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as compared to the grid size required for short-range oscilla-
tions. Hence, it is important to use a small enough size mesh
at small distances and to include large enough distances with
a much wider mesh. The FHNC equations were solved using
an adaptive mesh to incorporate these multiscale oscillations

accurately �see Fig. 7 and the discussion in the figure cap-
tion�. In order to keep ourselves within realistic computa-
tional time scales, we needed to limit the range of our mesh
size and, thus, our results can only be trusted for values of
��0.25.
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