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We study the mean-field theory, and the properties of fluctuations, in an out of equilibrium Bose-Fermi
system, across the transition to a quantum condensed phase. The system is driven out of equilibrium by
coupling to multiple baths, which are not in equilibrium with each other, and thus drive a flux of particles
through the system. We derive the self-consistency condition for a uniform condensed steady state. This
condition can be compared both to the laser rate equation and to the Gross-Pitaevskii equation of an equilib-
rium condensate. We study fluctuations about the steady state and discuss how the multiple baths interact to set
the system’s distribution function. In the condensed system, there is a soft phase �Bogoliubov, Goldstone�
mode, diffusive at small momenta due to the presence of pump and decay, and we discuss how one may
determine the field-field correlation functions properly including such soft phase modes. In the infinite system,
the correlation functions differ both from the laser and from an equilibrium condensate; we discuss how in a
finite system, the laser limit may be recovered.
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I. INTRODUCTION

In the last decade, there have been enormous advances in
the experimental realization and theoretical understanding of
the phenomenon of quantum condensation, i.e., macroscopic
occupation of a single quantum mode, in different physical
conditions. The phenomena range from Bose-Einstein con-
densation �BEC� of structureless bosons to the BCS-type col-
lective state of fermions and have been studied in several
physical systems such as degenerate atomic gases and
superconductors.1 Further, recent experimental advances in
manipulation of atomic Fermi gases have led to realization of
the BCS-BEC crossover regime2,3 and low-dimensional
atomic condensates have also been explored.4–7 From the
early days of experimental investigation of BEC there have
been enormous efforts in order to realize quantum condensa-
tion in the solid state.1 For this, the currently promising can-
didates are excitons in coupled quantum wells,8–10 microcav-
ity polaritons,11–13 quantum Hall bilayers,14 and Josephson
junction arrays in microwave cavities.15 Although all these
systems potentially may condense at temperatures orders of
magnitude higher than those for dilute atomic gases, it has
proven to be much more difficult to realize BEC in the solid
state than in atomic traps. Recently, a comprehensive set of
experiments16 reports polariton condensation in CdTe-based
microcavities, but still the level of control in the study of the
condensed states in solid state is far from the finesse
achieved in atomic vapors.

In these various candidates for condensation, one should
distinguish different classes of systems. Equilibrium super-
conductors are special in that the decay of pairs is disal-
lowed. In equilibrium particle-hole condensates, such as
quantum Hall bilayers or charge density waves, particle-hole
mixing �tunneling in bilayers� leads to a gapped spectrum;
however, the gap may be very small. Nonequilibrium
particle-hole condensates in the solid state are, to a much

greater extent than atomic gases, subject to dephasing and
decay. It is not usually possible to isolate the condensate
from the environment: lattice phonons, impurities, and im-
perfections of the crystal structure lead to dephasing, and due
to poor trapping, particles escape, requiring external pump-
ing to sustain a steady state. The dephasing and decay pro-
cesses are often faster than thermalization, putting the system
out of thermal equilibrium. The decay and consequent lack
of equilibrium have for a long time presented the major ex-
perimental obstacle in the realization of solid-state conden-
sation in otherwise appropriate conditions. Even if one can
accelerate thermalization,16,17 comparing the decay rates to
other energy scales, one may see that decay and the conse-
quent flux of particles through the system remain a more
important effect in solid state than in atomic gases.

Thus, a significant presence of dissipation and decay also
poses fundamental questions about the robustness of a con-
densate, for example, whether a steady-state condensate is
possible with incoherent pumping and decay, and if so, how
it differs from thermal equilibrium and from a laser.18 Quan-
tum condensation in dissipative systems also provides a con-
nection to other phenomena of collective behavior in the
presence of dissipation such as pattern formation,19,20 par-
ticularly in lasers,21–23 and also recently in a system related
to that studied here, the coherently pumped polariton optical
parametric oscillator.24,25 Other recent examples of phase
transitions and coherence in driven systems include quantum
criticality in magnetic systems in the presence of
currents,26,27 and transport through a Kondo dot coupled to
multiple leads.28 The relation between lasing and BEC is
particularly relevant for polariton BEC, where the experi-
mental distinction between the two is not straightforward.29

Microcavity polaritons in particular, being made from fer-
mionic particles and photons, have several special features
and so provide an excellent laboratory to study condensation
in dissipative environments. Due to the large wavelength of
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their photonic component and nonlinearities associated with
underlying fermionic structure, the physics exits the regime
of weakly interacting bosons at even modest density.30 Put-
ting aside a few subtleties characteristic only for polaritons,
one can say that with increasing density the quantum con-
densation transition moves from BEC �fluctuation domi-
nated� to something like the BCS �mean-field, interaction
dominated� collective state,30 analogous to the BCS-BEC
crossover in atomic Fermi gases near Feshbach resonance.2,3

This allows one to explore the influence of non-equilibrium
and dissipation not only on the usual BEC but also on more
exotic forms of quantum condensation. A further complica-
tion is that polaritons in planar microcavities are two-
dimensional �2D� particles, and so, in an infinite equilibrium
system, although there is a Berezhinskii-Kosterlitz-Thouless
�BKT� transition to a superfluid phase, below the transition
long-wavelength fluctuations destroy the off-diagonal long-
range order and result in algebraic decay of phase coherence.
Dissipation changes the structure of collective modes and
influences the spatial and temporal coherences in 2D quasi-
condensates, changing the power-law controlling the decay
of phase correlations.18 Finally, microcavity polaritons can
also be trapped either in stress-induced harmonic
potentials31–33 or in natural traps provided by microcavity
disorder which reduce the influence of long-wavelength fluc-
tuations and may allow the existence of a true condensate
and phase coherence over the whole system size.16 How this
confinement, when combined with pumping and decay,
modifies the properties of coherence in such systems is an
interesting question,34 which has not yet been fully ad-
dressed.

The last issue is particularly relevant for the deeper un-
derstanding of the differences and connections between a
polariton condensate and the laser. Apart from the obvious
difference; the laser being a collective coherent state of
massless noninteracting photons while the condensate con-
sists of massive and interacting bosons �in polariton conden-
sation both massive photons and strongly coupled excitons
are coherent�, there are more subtle differences connected
with fluctuations and so expected differences in the decay of
correlations.18 Lasing is normally considered in systems with
a well-defined single or a few mode structure and so the
phase fluctuations which control the laser linewidth are those
of a phase diffusion of a single mode.35 In contrast, conden-
sation is usually studied in systems where there is a con-
tinuum of single particle modes, and thus collective excita-
tions involve coherent interaction of these different modes
which affects the decay of coherence and the line shape of
the emission.18 While lasing in systems with transverse free-
dom has been investigated for its pattern forming
properties,22 there remain many open questions concerning
the decay of correlations and the crossover from a small
system with few spatial modes to the infinite and many-mode
limit.

Although semiconductor microcavities in strong coupling
provide a natural system to explore such phenomena, all
these issues are by no means restricted to polariton conden-
sation. With recent advances in manipulating dilute atomic
gases similar conditions can be engineered; an immediate
example is that of an atom laser in which a continuous leak-

age of atoms from atomic BEC takes place. To our knowl-
edge, the description of the output from an atom laser has
been to date largely analogous to that of the photon laser,36

and the influence of the continuum of modes connected with
atomic BEC on the coherence properties of the atom laser
has not been addressed.

In a previous paper,18 we addressed some of these issues.
We used a model Bose-Fermi system coupled to independent
baths, not in thermal or chemical equilibria with each other,
providing incoherent pumping and decay. We show that
steady-state spontaneous condensation can occur in such sys-
tems and can be distinct from lasing: The condensate can
exist at low densities, far from the inversion required for
lasing. We also found that the collective modes are qualita-
tively altered by the presence of pumping and decay: The
low-energy phase mode �Goldstone, Bogoliubov mode� be-
comes diffusive at small momenta. By considering the effect
of phase fluctuations, we described the decay of correlations,
which at large times and distances differs both from that for
a thermal equilibrium condensate and from that for a laser.

In this paper, apart from providing technical details of the
method, we address several aspects of quantum condensation
in dissipative environments, which we did not address in our
previous paper. In particular, we study the influence of the
exciton density of states and the temperature of the pumping
bath on the nonequilibrium phase diagram. We also analyze
how the nonthermal occupation of photon states is controlled
by competition between the pumping and decay baths, and
how this occupation deviates from that in thermal equilib-
rium. We do not a priori assume that the system is close to
equilibrium, and so the system’s distribution function may be
of any form. Finally, we provide a full account of how to
determine field-field correlation functions in the condensed
state, where phase fluctuations may be large, and so expan-
sion to second order is insufficient. These field-field correla-
tion functions describe the decay of correlations at large
times and distances, and their Fourier transform gives the
line shape of a nonequilibrium condensate. This is an impor-
tant extension to the nonequilibrium path integral techniques
which to our knowledge has not been done before. In the
final section of this paper, we study how dissipation influ-
ences spatial and temporal coherences in a finite-size con-
densate and show how the linewidth of emission from polar-
iton or atom condensates should be determined taking proper
account of the spatial fluctuations. We further emphasize the
fundamental difference between emission from a polariton
condensate or an atom laser and that from the photon laser.

The paper is organized as follows. The model for the sys-
tem, and for the reservoirs to which it is coupled is intro-
duced in Sec. II, Then in Sec. III we show how to integrate
out first the reservoirs, and then the fermionic fields to give
an effective action in terms of the photon field. We then
study this effective action in the saddle-point approximation
in Sec. IV. In Sec. V, by discussing fluctuations about the
saddle point, we consider the stability of the saddle-point
solutions and show how the instability of the normal state,
and the photon distribution functions, compare to an equilib-
rium treatment. Having identified the stable and unstable
saddle-point solutions, Sec. VI then presents numerical re-
sults for the critical conditions at which steady-state, non-
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equilibrium condensation occurs. The effects of fluctuations
on correlation functions in the condensed case are studied
again in Sec. VII, where care is taken to correctly describe
phase fluctuations in the broken symmetry system. Section
VIII then studies how finite size modifies correlation func-
tions and the relation between the previous results and laser
theory. Finally, Sec. IX summarizes our results.

II. MODEL

Our Hamiltonian is

Ĥ = Ĥsys + Ĥsys,bath + Ĥbath, �1�

where

Ĥsys = �
�

���b�
†b� − a�

†a�� + �
p
�p�p

†�p

+
1

�L2�
�

�
p

�g�,p�pb�
†a� + H.c.� �2�

describes two fermionic species b� and a�, interacting with
bosonic modes �p normalized in a 2D box of area L2, with
L→�. Condensed solutions of Eq. �2� have been studied in
the context of atomic Fermi gases37–39 and microcavity
polaritons.30,40,41 In this work, we focus on microcavity po-
laritons, and so this model describes the interaction between
disorder-localized excitons which are dipole coupled to cav-
ity photon modes �p, with low p dispersion, �p��0
+p2 /2mph, where mph= �� /c��2� /w� is the photon mass in a
2D microcavity of width w. The disorder-localized excitons
are described here as in previous works30,40,41 by hard-core
bosons; i.e., the Coulomb interaction between excitons is de-
scribed by exclusion, preventing multiple occupation of a
single disorder-localized state �. This hard core boson is
represented by a two-level system, described here as two
fermionic levels, b�

† ,a�. Thus, the combination b�
†a� creates

an exciton in the localized state with energy ��. This energy
�� includes the Coulomb binding within an exciton state. In
such a description, it is important not to confuse the fermion
states �representing a hard-core bound exciton� with the un-
derlying conduction and valence band states �see, e.g., Refs.
41 and 42 for further discussion of this point�. In order that
these fermionic levels describe a two-level system, it is nec-
essary that the constraint b�

†b�+a�
†a�=1 is satisfied, i.e., that

exactly one of the two levels is occupied. In thermal equilib-
rium, this constraint can be exactly imposed by a shift of
Matsubara frequencies,43 and in that case it can be easily
seen that the difference between imposing the single occu-
pancy constraint exactly and imposing it on average leads
only to a factor of 2 in the definition of temperature. Out of
thermal equilibrium, no simple shift to the Matsubara fre-
quencies is possible, although an extension to the nonequi-
librium case has been proposed.44 For simplicity, in this
work, we will impose the single occupancy constraint on
average, as discussed below when introducing the occupa-
tion functions of the bath.

Because of the imperfect reflectivity of the cavity mirrors,
photons escape, so the system must be pumped �excitons

injected� to sustain a steady state. As illustrated schemati-
cally in Fig. 1, the imperfect reflectivity of the mirrors is
represented by coupling to the continuum of bulk photon
modes. Incoherent fermionic pumping is described by cou-
pling to a pumping bath—which is represented mathemati-
cally as two separate fermionic baths, coupled to the two
fermionic modes. Thus, the coupling of the system to these
pumping and decay baths is written as

Ĥsys,bath = �
�,k

��,k
a �a�

†Ak + H.c.� + ��,k
b �b�

†Bk + H.c.�

+ �
p,k
	p,k��p

†
k + H.c.� . �3�

Here, Ak and Bk are fermionic annihilation operators for the
pump baths, while 
k are bosonic annihilation operators for
photon modes outside the cavity. The Hamiltonian corre-
sponding to the evolution of these baths is given by

Ĥbath = �
k

�k
�a

Ak
†Ak + �

k

�k
�b

Bk
†Bk + �

k

�k
	
k

†
k. �4�

The pumping bath, if thermalized at some finite nonzero
temperature, acts as a source of particles and also tries to
drive the polariton distribution function toward a thermal
distribution in equilibrium with the bath. In some physical
systems, one might also consider a bath which purely pro-
vides a thermalization mechanism, such as phonons, which
redistribute energy, but do not change particle number. We
do not explicitly consider such a bath. However, in the ex-
ample of microcavity polaritons, our model may still capture
much of the important behavior, for the following reason.
One may consider the low energy polaritons as being
pumped by a reservoir of higher energy excitons. These ex-
citons are formed by the binding of the electrons and holes
injected by the pump laser, and subsequent relaxation by
phonon emission, and are thus partially thermalized. By re-
garding our pumping bath as describing a partially thermal-
ized exciton reservoir, our model, being interacting, could
thus describe the thermalization of low-energy polaritons
pumped by such a reservoir.

FIG. 1. �Color online� Schematic diagram illustrating parts of
the Fermi-Bose system and its coupling to baths. The parts in the
box labeled system are described by Eq. �2�, while the effective
couplings to the baths, described by Eq. �3�, lead to effective pump
and decay rates � and �, as will be discussed later.
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Although in the absence of other processes, the excitons
would thermalize to the pumping bath, they are also strongly
coupled to photons, which in turn couple to a second envi-
ronment of the bulk photon modes outside the cavity. The
strongly coupled exciton-photon system would be therefore
influenced by two independent environments which are not
in thermal or chemical equilibrium with each other. Even in
the steady-state, if the rates of dissipation to the environment
are larger than the polariton-polariton interactions, the sys-
tem would remain out of thermal equilibrium. In addition,
even if the thermalization via polariton-polariton interaction
is fast, so the system distribution function would be close to
thermal, particles are continuously added and removed from
the system. We show that this particle “current” has dramatic
consequences on the properties of such a condensate even if
it remains close to equilibrium.

We would like to stress that there are two distinct issues,
both of which we intend to address. The first is that of non-
equilibrium distribution functions, in systems where the in-
ternal thermalization rate is slower than the pumping and
decay rates—i.e., when the coupling to the external baths is
strong, and the baths are not in equilibrium with each other.
The second issue is the presence of particle “current” in
strongly dissipative systems—even if internal thermalization
rates are large, this current may be important if the pumping,
decay, and thermalization rates are large compared to other
energy scales.

In the next section we will introduce the path integral
formalism which will allow us to treat the nonequilibrium
conditions. Our approach will then be to assume that the
pumping and decay baths are much larger than the system,
and so the populations in the baths are fixed. This will enable
us to describe the properties of the system as influenced by
its coupling to the baths. These influences modify both the
system’s spectrum and the population of this spectrum. We
will look for steady states of the system in the presence of
pumping and decay, and study the excitation spectra around
these steady states.

III. PATH-INTEGRAL FORMULATION

In order to study the system away from thermal equilib-
rium, we proceed using the path-integral formulation of non-
equilibrium Keldysh field theory, as described in detail in
Ref. 45. Following the prescription there, we write the quan-
tum partition function as a coherent state path integral over
bosonic and fermionic fields defined on a closed-time-path
contour C. Arranging the fermionic fields into a Nambu vec-

tor ̄= �b̄ , ā� and = �b ,a�T, loosely referred to as “particle-
hole” space, the partition function can be formally written as

Z = N� �
p

D��̄p,�p��
�

D�̄�,��

��
k

D�Āk,Ak,B̄k,Bk,
̄k,
k�eiS,

where N represents a constant of normalization and the total
action can be separated into constituent components S=S
+S�+Sbath,+Sbath,�. The part,

S = �
C

dt�
�,p

̄��i�t − ���3 − g�,p�̄p�− − g�,p�p�+��,

describes the free exciton evolution together with the dipole
interaction between excitons and photons. Due to the Nambu
formalism, the term in brackets is a matrix and has been
decomposed in terms of the Pauli matrices �i operating in
the particle-hole �b ,a� space �with �0=1�. The time deriva-
tive is taken along the Keldysh contour C. Similarly,

S� = �
C

dt�
p
�̄p�i�t − �p��p

describes the free photon dynamics. The excitonic environ-
ment and the interactions between excitons and their envi-
ronment is given by

Sbath, = �
C

dt�
�,k

�Āk�i�t − �k
�a

�Ak + B̄k�i�t − �k
�b

�Bk

− ��,k
b �b̄�Bk + B̄kb�� − ��,k

a �ā�Ak + Āka��	 ,

while the photonic environment is given by

Sbath,� = �
C

dt�
p,k

�
̄k�i�t − �k
	�
k − 	p,k��̄p
k + 
̄k�p�	 .

As described in Ref. 45, the standard procedure is to re-
place the fields on the closed-time-path contour by a doublet
of fields �= �� f ,�b� on the forward and backward branches.
This then leads to four Green’s functions: forward
iG��t , t��= 
� f�t��b

†�t���, backward iG��t , t��= 
�b�t�� f
†�t���,

time-ordered iGT�t , t��= 
� f�t�� f
†�t���, and anti-time-ordered

iGT̃�t , t��= 
�b�t��b
†�t���. In the homogeneous steady-state,

these are functions of r−r� and t− t� alone, and when trans-
formed into p and � space, in the case of photon fields, the
functions iG� and iG� give the luminescence and absorption
spectra, respectively. Again following Ref. 45, as these four
Green’s functions are not independent, one proceeds by mak-
ing a rotation to classical cl= � f +b� /�2 and quantum
q= � f −b� /�2 components. All fields are from now vec-
tors in Keldysh space, i.e., �= ��cl ,�q�, and we define an
additional matrix in Keldysh �cl ,q� space as

�M =
1
�2

��cl �q

�q �cl
 = �cl�0

K + �q�1
K,

�where �i
K are Pauli matrices in Keldysh space�. One may

then write the action as

S = �
−�

�

dt�
�,p

̄��i�t − ���3

−
g�,p

�2
�̄p

M�− −
g�,p

�2
�p

M�+�1
K�,

S� = �
−�

�

dt�
p
�̄p�i�t − �p��1

K�p,
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Sbath  = �
−�

�

dt�
�,k

�− ��,k
b �b̄��1

KBk + B̄k�1
Kb�� − ��,k

a �ā��1
KAk

+ Āk�1
Ka�� + B̄k�i�t − �k

�b
��1

KBk + Āk�i�t − �k
�a

��1
KAk	 ,

Sbath � = �
−�

�

dt�
p,k

�− 	p,k��̄p�1
K
k + 
̄k�1

K�p�

+ 
̄k�i�t − �k
	��1

K
k	 .

A. Treatment of environment

As we are interested in the properties of the system, rather
than the properties of the baths, we next integrate over the
bath fields, to leave an effective action expressed only in
terms of the fields describing the system. If the baths are
much larger than the system, then their behavior is not af-
fected by the interaction with the system. One may then
evaluate correlation functions of bath operators as for free
bosons and free fermions; these correlators in turn depend on
the distribution function of the baths, i.e., the population of
the bath modes. The effects of the environment then enter as
self-energies for the system fields, which modify both the
spectrum and its occupation. This procedure is described in
Ref. 45; we summarize the results here to show how it ap-
plies to our system and also how our notation differs slightly
from Ref. 45. For the decay �photon� bath one has

Sbath � = −� �
−�

�

dtdt��
p,p�

�̄p�t��1
K�

k

	p,k	p�,k

���i�t − �k
	��1

K	−1�1
K�p��t�� .

In Keldysh space, Green’s function for a free boson has the
following form:

��i�t − �k
	��1

K	−1 = �D̂k
K�t − t�� D̂k

R�t − t��

D̂k
A�t − t�� 0

 ,

where �after the Fourier transform with respect to t− t�� the
retarded, advanced, and Keldysh Green’s functions are, re-
spectively,

D̂k
R/A��� =

1

� − �k
	 ± i0

,

D̂k
K��� = �− 2�i��2nB��k

	� + 1	��� − �k
	� .

If the bath distributions are thermal, then nB would be the
Bose occupation functions; however, one can also consider
arbitrary function for nB.

Let us now make a number of restrictions on the photon
bath to simplify the analysis. Firstly, we will assume that
Sbath� does not contain terms off-diagonal in pp�. This means
that each confined photon mode p couples to a separate set of
bulk photon modes, i.e., that 	p,k	p�,k=0 unless p=p�. Physi-
cally, this can be interpreted as conservation of in-plane mo-
mentum in the coupling of two-dimensional microcavity

photon modes to bulk modes. Next, we restrict to the case
that all p photonic modes couple to their environments with
the same strength, i.e., 	p,k=	k. Then, if the bath frequencies
�k
	 form a dense spectrum, and the coupling constants 	k are

smooth functions of the frequencies, we may replace the sum
over bath modes by an integral,

�
k

	k
2 →� d�		��	�2N	��	� ,

where we have introduced N	��	� as the bath’s density of
states. After integrating over �	, we obtain46

Sbath � = − �
−�

�

d��
p
�̄p���� 0 dA

dR dK 
�−��

�p�− �� .

By writing dR,A���=R���� i����, we may split the bath
self-energy into an imaginary part, describing broadening,

���� = �	2���N	��� ,

and a real energy shift,

R��� =� d�	
	2��	�N��	�
� − �	

.

In terms of these, the Keldysh component becomes dK���=
−i2�����2nB���+1	.

Although the formalism allows one to consider any den-
sity of states and coupling strength as a function of fre-
quency, one possible choice is a Markovian �or Ohmic�
bath—i.e., a white noise environment—where the density of
states for the bath and the coupling constant of the system to
the bath are frequency independent, and so 	2��	�N	��	�
=	2N	. For this case, the real energy shift R��� is zero, while
����=�. In this work, we will consider this Markovian limit,
but due to the bath’s occupation function, the Keldysh com-
ponent will remain frequency dependent. Combining the free
photon action with the effective action for the photon decay,
using F����=2nB���+1, one has

S� + Sbath � = �
−�

�

d��
p
�̄p���

�� 0 − � − �p − i�

− � − �p + i� 2i�F��− ��
�p�− �� .

One can follow a similar procedure for the baths connected
with the pumping process.

Sbath  = −� �
−�

�

dtdt�

��
�,��

b̄��t��1
K�

k

��,k
b ���,k

b ��i�t − �k
�b

��1
K	−1�1

Kb���t��

+ �
�,��

ā��t��1
K�

k

��,k
a ���,k

a ��i�t − �k
�a

��1
K	−1�1

Ka���t�� .
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Green’s function for a free fermion is

��i�t − �k
���1

K	−1 = �P̂k
K�t − t�� P̂k

R�t − t��

P̂k
A�t − t�� 0

 ,

where in frequency space,

P̂k
R/A��� =

1

� − �k
� ± i0

,

P̂k
K��� = �− 2�i��1 − 2nF��k

��	��� − �k
�� .

In the same way as above, nF would be the Fermi occupation
function for a thermal distribution.

For compact notation, we will define additional matrices
in �b ,a� space as

�↑ = �1 0

0 0


and

�↓ = �0 0

0 1
 ,

and so

Sbath  = �
�,��

�
−�

�

d�̄���� �
�,��

�

������− �� ,

�
�,��

�

= � 0 pb,�,��
A

�↑ + pa,�,��
A

�↓

pb,�,��
R

�↑ + pa,�,��
R

�↓ pb,�,��
K

�↑ + pa,�,��
K

�↓
 ,

where pb/a,�,��
R/A/K =�k��,k

b/a���,k
b/a Pk

R/A/K with the fermionic propa-
gators Pk

R/A/K, as defined earlier. Now we make similar re-
strictions as for the photonic environment: we consider all
excitons coupled equally strongly to the environment �the
coupling constants of the system to the bath is � indepen-
dent� and take the Markovian limit. Without much loss of
generality, we can further assume that the coupling strength
of the two fermionic species to their pumping baths are the
same, after all of which ��,k

b/a =�. As in the bosonic case, in
the Markovian limit, the real self-energy shift vanishes, and
imaginary part takes the form,

� = ��2Np,

with Np being the bath’s density of states. Of course, due to
the distribution function of the bath, despite the Markovian
limit, the effective pumping rate of a given exciton state will
depend on its energy. The final form is then

�
�,��

�

��� = � 0 − i��0

i��0 2i��Fb�− ���↑ + Fa�− ���↓	


where Fb���=1−2nF
b��� and Fa���=1−2nF

a��� are the fer-
mion distribution functions.

Any function for the bath distribution nF
b and nF

a can be
considered within this formalism. One physical choice, as
illustrated in Fig. 2, can be pumping of quantum-well exci-

tons by contact with some thermal reservoir with a chemical
potential �B, i.e.,

Fb��� = tanh
�

2
�� − �B�, Fa��� = tanh

�

2
�� + �B� , �5�

where �=1/kBT. Note that, as discussed earlier, these bath
distributions have been chosen so that on average, 
b†b
+a†a�=1; i.e., the single occupancy constraint for these fer-
mionic states to represent two-level systems is obeyed on
average. In the absence of any other processes, contact be-
tween the excitons and the pumping reservoir would control
the population of excitons, and so


b†b − a†a� = nF
b��� − nF

a�− �� = − tanh
�

2
�� − �B� .

Thus, by pumping with a thermalized source of electrons,
one will find a thermalized distribution of excitons.

Before proceeding further, let us examine what the form
of the self-energy due to the bath tells us about the relation
between thermalization and dephasing. In principle, one
could consider a non-Markovian environment where for
some range of frequencies one has ����=0 and ����=0.
Then, for that range, there would be no damping, but also
pK���=0, dK���=0, so the system distribution in such a
range would not be influenced by the bath—i.e., no thermal-
ization. Thus for a full thermalization of all relevant modes
of the system, one needs a nonzero coupling to the low fre-
quency modes of the environment, which will at the same
time introduce dephasing.

B. Integration over fermionic fields

After eliminating the bath’s degrees of freedom, the full
action S becomes

FIG. 2. �Color online� Schematic diagram illustrating occupa-
tion of A and B baths, and their coupling to the two fermionic
levels. In the case shown, the bath chemical potential is below the
energy level �, so the pumping cannot lead to inversion. The flow of
energy is from the pumping bath, through the fermionic levels of an
exciton, to the photons, and energy is then lost into the photon bath.
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S = �
−�

�

dtdt���
�,��

̄��t�G�,��
−1 �t,t�����t�� + �

p
�̄p�t�� 0 i�t − �p − i�

i�t − �p + i� 2i�F
�t − t��
�p�t��� ,

where G is the exciton Green’s function. Introducing the abbreviations �cl=�p
gp,�
�2 �p,cl and �q=�p

gp,�
�2 �p,q, we may write G as

G�,��
−1 �t,t�� = � ��q�t��+ + �̄q�t��−���,�� �i�t�0 − ���3 − �cl�t��+ − �̄cl�t��−���,�� − i��0

�i�t�0 − ���3 − �cl�t��+ − �̄cl�t��−���,�� + i��0 − ��q�t��+ + �̄q�t��−���,�� + 2i��Fb�↑ + Fa�↓�
 . �6�

Note that Fb�t− t��, Fa�t− t�� as well as i�t are time nonlocal.
It is now explicit how the competition between the two en-
vironments works. The photon environment, with the distri-
bution function F
 of modes outside of the cavity, affects the
free photon evolution. Similarly, the fermionic environment,
with the bath distributions Fb, and Fa, enters the exciton
Green’s function, now also modified by the presence of cav-
ity photons. The spectrum of this coupled system will com-
bine both the strong coupling between excitons and photons
as well as the dissipation to the environment. The occupation
of these modes will be a nontrivial combination of the dis-
tributions of the baths as well as the exciton-photon interac-
tion.

The action S is quadratic in fermionic fields, and therefore
it is possible to integrate over the fermionic degrees of free-
dom , and, in the same spirit as in previous studies of the
equilibrium properties of this model,29,30,40,41 obtain the total
effective action for the photon field alone

S = − i�
�

Tr ln G�,�
−1 + �

−�

�

dtdt��
p
�̄p�t�

�� 0 i�t − �p − i�

i�t − �p + i� 2i�F
�t − t��
�p�t�� . �7�

Other than those approximations explicitly discussed in the
text, this expression is exact; i.e., it makes no assumption
about what form �p�t� takes. Note, however, that due to the
nonlinear term Tr ln G�,�

−1 the action is highly complex and
contains all powers of �cl and �q. Therefore, some expansion
scheme needs to be performed.

IV. SADDLE-POINT (MEAN-FIELD) ANALYSIS

In order to determine the state of the pumped, decaying,
strongly coupled system, we will follow a standard method
for path integrals, and first find the saddle point solution. The
saddle-point equations for action �7� have the following
form:

�S

��̄p,q

=� dt����i�t − �p���t − t�� − dR�t − t��	�p,cl�t��

− dK�t − t���p,q�t��� − �
�

gp,�

�2
�− i�Tr�G�,��−�0

K� = 0,

�S

��̄p,cl

=� dt���i�t − �p���t − t�� − dA�t − t��	�p,q�t��

− �
�

gp,�

�2
�− i�Tr�G�,��−�1

K� = 0.

It can be seen that the second equation is satisfied by �p,q
=0 �classical saddle point�. Setting �p,q=0 into Eq. �6� gives
the usual structure for the mean-field exciton Green’s func-
tion, which ensures causality,45

G−1 = � 0 �GA	−1

�GR	−1 �G−1	K  ,

and so

G = �GK GR

GA 0
 ,

where GK=−GR�G−1	KGA. It is now clear why the Keldysh
rotation discussed earlier, i.e., working in terms of �cl ,q�
components rather than �f ,b�, is more convenient. By reduc-
ing the number of dependent functions, both Green’s func-
tion and inverse Green’s function contain a zero block, and
so become easier to invert. With this structure Tr�G�−�0

K�
=Tr�GK�−� and Tr�G�−�1

K�=Tr��GR+GA��−	=0 since
GR�t , t�+GA�t , t�=0. Thus, we are left with only the first of
the saddle point equations, which now becomes

� dt���i�t − �p��t−t� − dR�t − t��	�p,cl�t��

= �
�

gp,�

�2
�− i�Tr�G�,�

K �−� .

Since we consider an infinite homogeneous system �no trap�,
we expect a uniform saddle point. We therefore consider the
solutions to be of the form �p=���p�. It is difficult to invert
�G−1	R,A matrix for an arbitrary time dependence of the �
fields. We are, however, interested in the nonequilibrium
steady state so we take the only time dependence of the
photon field � to be oscillation at a single frequency. There-
fore, we propose the following ansatz:

��t� = �e−i�St. �8�

Substituting this ansatz in the action of Eq. �7� will lead to
explicit time dependence within the exciton inverse Green’s
function. This time dependence can be removed straightfor-
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wardly by implementing an appropriate gauge transforma-
tion, described by the following matrix in particle-hole
space:

U = �ei�S/2t 0

0 e−i�S/2t  .

The trace is invariant under unitary transformations,
Tr ln G−1=Tr ln UG−1U†, so the effects of such time depen-
dence appear in only two places: Firstly, in the time deriva-
tive terms, which lead to the energy shifts �p→ �̃p=�p−�s
and ��→ �̃�=��−�s /2, and secondly, in a gauge transforma-
tion of the bath functions dR/A/K���→dR/A/K��+�S�,
pb

R/A/K���→pb
R/A/K��+

�S

2
�, and pa

R/A/K���→pa
R/A/K��−

�S

2
�. In

practice, the latter substitutions mean replacing �B→ �̃B
=�B−�S /2 in Fa and Fb.

With �q=0 and the above time dependence described by
the gauge transformation, the matrix G−1 can now be easily
inverted and the final form for the mean-field exciton
Green’s functions are

GR/A��� =
�� ± i���0 + �̃��3 + g� f�+ + g�̄ f�−

�2 − E�
2 ± 2i�� − �2 , �9�

and

Gbb/aa
K ��� = − 2i�

Fb/a������ ± �̃��2 + �2	 + Fa/b���g2�� f�2

��� − E��2 + �2	��� + E��2 + �2	
,

�10�

Gba
K ��� = − �Gab

K ����* = − 2i�g� f

�
�Fa��� + Fb����� + �Fb��� − Fa������̃� + i��

��� − E��2 + �2	��� + E��2 + �2	
,

�11�

where a and b define the particle-hole space as follows:

G = �Gbb Gba

Gab Gaa
 ,

and E�=��̃�2 +g2�� f�2. Note that only the site-index diagonal,
i.e., �� ,��, component appears in the gap equation, and so
we have omitted the site index in G for brevity. Also, since at
the saddle point �q=0, then � f =

�cl+�q
�2

=
�cl
�2

. In this work we
consider gp,�=g. The influence of the distribution of the os-
cillator strength has been addressed in Ref. 41. The mean-
field exciton Green’s functions physically correspond to ex-
citons strongly renormalized by the presence of the mean-
field photon field and damped by the coupling to the
environment. The Keldysh Green’s function, which contains
the distribution of excitons, depends on the distributions of
the pumping bath. In general,

GK = GRF − FGA,

where F has a meaning of the quasiparticle distribution func-
tion. We can determine the mean-field distribution function
for excitons in a self-consistent photon field from Eqs.
�9�–�11�,

Fbb/aa��� =
Fa��� + Fb���

2
±

�Fb��� − Fa���	��̃�
2 + �2�

2�E�
2 + �2�

,

Fba��� = �Fab�*��� =
g� f�Fb��� − Fa���	��̃� + i��

2�E�
2 + �2�

,

where Fa and Fb are the bath’s distributions given by Eq. �5�,
with �B→ �̃B. Note that, since this is a mean-field approxi-
mation, only coherent photons enter in this distribution.
Thus, in the uncondensed case where �=0 the exciton dis-
tributions reduce to Fbb/aa=Fb/a and Fab=0: i.e., in the ab-
sence of coherent photons, the mean-field approximation ne-
glects the effect of photons on the exciton distribution. The
distribution of the photonic environment will, however, enter
the distribution of fluctuations about the mean-field, as will
be discussed in Sec. V A.

With ansatz �8�, the saddle-point equation becomes

��0 − �S − i��� f = �
�

g

2
�− i�Tr�Gba

K � . �12�

As in equilibrium, this is a self-consistent equation for the
order parameter �condensate�. With changing density the
type of transition moves from interaction dominated BCS-
like mean-field regime to a fluctuation dominated BEC
limit30 �strictly speaking BKT in 2D�. So the above equation
is analogous to the gap equation in the theory of BCS-BEC
crossover. Here, it relates the coherent photon field with the
exciton Green’s function strongly modified by the presence
of such a coherent field. Physically, it means that the coher-
ent field is generated by a coherent polarization in the exci-
ton system which in turn is generated by the presence of the
coherent field. Thus, Eq. �12� can be viewed as a nonequi-
librium generalization of the gap equation. One difference
with respect to equilibrium is that the distribution function
contained in GK now may not be thermal. However, the more
important difference is that the gap equation �Eq. �12�	 is
now complex and gives two equations for two unknowns: the
order parameter � and the frequency �S.

The common oscillation frequency �S would in thermal
equilibrium be the system’s chemical potential, considered as
a control parameter, adjusted to match the required density,
and the �real� gap equation determines only �. Here, because
different baths have different chemical potentials, the system
is not in chemical equilibrium with either bath, so both �S
and � must be found from the gap equation. The density,
which can be found given � and �S, is set by the relative
strength of the pump and decay.

Thus, the real part of the gap equation is analogous to the
gap equation for closed equilibrium system, where the right
hand side describes polarization due to nonlinear susceptibil-
ity. By considering the existence of pumping and decay, one
also introduces the imaginary part, which describes how the
gain balances the decay �as in lasers� but now in the strongly
coupled exciton-photon system. If one were to instead con-
sider the equilibrium theory, and merely add decay rates, one
could not a priori guarantee that the fluctuation spectrum
would be gapless, as should arise from spontaneous symme-
try breaking. By ensuring that gain and decay balance, the
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fluctuation spectrum above the ground state which satisfies
both the real and imaginary parts of the gap equation, will
indeed be gapless. By connecting the equilibrium self-
consistency condition �gap equation, Gross-Pitaevskii equa-
tion�, and the laser rate equation, Eq. �12� puts the conden-
sate and the laser20 in the same framework and so allows
study of the crossover and the relation between the two.

Using �11� the mean-field equation becomes

��0 − �S − i��� f = �
�
� d�

2�
� fg

2�

�
�Fa + Fb�� + �Fb − Fa���̃� + i��
��� − E��2 + �2	��� + E��2 + �2	

.

�13�

Note that � appears both in the denominator �as it gives rise
to the dephasing� and in the numerator �it gives rise to pump-
ing�.

As in thermal equilibrium, the normal state � f =0 is al-
ways a solution of Eq. �13�, but for some range of parameters
there is also a condensed � f �0 solution. For � f �0 the final
form of the gap equation is

�̃0 − i� = g2��
�
� d�

2�

�Fa + Fb�� + �Fb − Fa���̃� + i��
��� − E��2 + �2	��� + E��2 + �2	

.

�14�

Now, for a given set of parameters, we can solve the real and
imaginary parts of this equation to determine the coherent
photon field � f and its oscillation frequency �S.

We can reduce the number of parameters in our theory by
measuring energies in units of the exciton-photon coupling g
and, noting that our equations have made no assumption
about the origin of energies, taking �0 as some reference
energy, such as the bottom of the exciton band. The indepen-
dent parameters in our theory are then the distribution of
exciton energies �i.e., ��→�d��S���	, the detuning of the
photon from the reference point �=�0−2�0, the pumping
bath chemical potential �B−�0, the pumping �decoherence�
strength �, and the coupling to the decay bath �.

Having found the self-consistent oscillation frequency �S
and coherent field, one can then calculate the excitonic den-
sity and polarization. The polarization, i.e., 
a†b� �where
�
a†b��2 also gives the number of condensed fermion pairs–
condensed excitons�, follows directly from the gap equation,
so the magnitude of polarization is given by ��̃2+�2� f. The
excitonic density is given by

�
�

1

2
�b�

†b� − a�
†a��

=
1

4
i�
�
� d�

2�
�Gaa

K ��� − Gbb
K ���	 =

�

2 �
�
� d�

2�

�
�Fb − Fa��g2���2 − �2 − �̃�

2 − �2� − �Fb + Fa�2��̃�
��� − E��2 + �2	��� + E��2 + �2	

.

�15�

Since our choice of bath populations in Eq. �5� implies that
the empty state corresponds to 
b†b�=0 and 
a†a�=1, it will
be convenient to shift the exciton density so that the empty
state corresponds to zero density; thus,

�exciton = �
�

1

2
�1 + b�

†b� − a�
†a�� . �16�

In the limit that the temperature of the pumping bath goes to
zero, one can perform the various integrals in Eqs. �14� and
�15� in terms of elementary functions. These forms are pre-
sented in Appendix A.

A. �=0, �=0 limit

In order to understand the meaning of the gap equation,
and the connection to condensation in a closed equilibrium
system, it is instructive to take the limit �→0 and �→0 in
Eq. �14�. This will also provide a consistency check of the
nonequilibrium theory as it should recover the equilibrium
limit as the coupling to the environment approaches zero.
The real part of Eq. �14� can be rewritten as

�0 − �S =
g2

4E
� d�

2�
� �

�� − E�2 + �2 −
�

�� + E�2 + �2�
���Fa��� + Fb���	 + �Fb��� − Fa���	

�̃�
�
� .

From the definition of the � function, we have

lim
�→0

�

�� − E�2 + �2 = ���� − E� ,

and so, using Fa�−��=−Fb���, the real part of the gap equa-
tion reduces to

�0 − �S =
g2

4E
�Fb�E� + Fa�E�	 +

g2�̃

4E2 �Fb�E� − Fa�E�	 .

�17�

Similarly, the imaginary part of the gap equation can be re-
arranged as

�

�
=

g2

4E2 �Fa�E� − Fb�E�	 . �18�

Let us consider the limit where � /�→0; i.e., coupling to the
photon bath vanishes faster, and so the distribution will be
set by the pumping bath. Then the left-hand side of Eq. �18�
is zero and so one requires Fa�E�=Fb�E�. Using the gauge
transformed versions of the thermal distribution functions in
Eq. �5�, this condition becomes �̃B=0, i.e., that �S=2�B.
Setting this solution into Eq. �17�, we recover the equilib-
rium gap equation at a temperature T set by the pumping
bath,

�̃0 =
g2

2E
tanh

�

2
E.

This limit provides a reassuring test of the formalism and
also supports the interpretation that the real part of the gap
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equation connects the order parameter with nonlinear suscep-
tibility, while the imaginary part describes the balance of
gain and decay, and so controls �S and the particle density in
the system.

V. SECOND-ORDER FLUCTUATIONS AND
STABILITY OF SOLUTIONS

Having found the self-consistency condition, considering
the possibility of uniform condensed solutions, we next con-
sider the stability of such solutions. The consideration of
stability is important firstly since, as discussed above, � f =0
is always a solution of Eq. �12�, so one must determine
which of the normal and condensed solutions is stable, and
secondly, because we considered only spatially homoge-
neous fields, with a single oscillation frequency, so one may
find that neither � f =0 nor our ansatz of Eq. �8� is stable,
suggesting more interesting behavior. There is an important
difference in interpretation of the saddle point equation be-
tween the closed-time-path path-integral formalism used
here and the imaginary-time path integral in thermal equilib-
rium. In the imaginary time formalism, extremizing the ac-
tion corresponds to finding configurations which extremize
the free energy; thus, stable solutions correspond to a mini-
mum of free energy, and unstable to local maxima. Here, in
contrast, for a classical saddle point �i.e., �q=0�, the action is
always S=0, and the saddle point condition corresponds to
configurations for which nearby paths add in phase. Thus, in
order to study stability, one must directly investigate fluctua-
tions about our ansatz, and determine whether such fluctua-
tions grow or decay.

In considering the question of stability, we will first dis-
cuss stability of the normal state, which is instructive as it
shows how the question of whether fluctuations about the
nonequilibrium steady-state grow or decay is directly related
to the instability expected in thermal equilibrium systems
when the chemical potential goes above a bosonic mode. We
will then turn to the spectrum of fluctuations about our con-
densed ansatz. While we will discuss here whether such fluc-
tuations are stable or unstable, we will defer until Sec. VII
the evaluation of correlation functions associated with these
fluctuations. This is because, as discussed there, these fluc-
tuations include phase modes, and phase fluctuations may
become large. It is, therefore, insufficient to only expand to
second order in fluctuation fields, but one must instead rep-
arametrize �=��0+�ei, and then describe the correlation
functions of � in terms of those of phase  and amplitude �,
including the effects of  to all orders. Such a complication
is, however, not needed in order to study whether fluctua-
tions are stable or not, and so it is reasonable to postpone
such a treatment, and consider an expansion in terms of �
=�0+�� to second order in �� instead.

Thus, to find the spectrum of fluctuations, we consider the
effective action governing fluctuations about either �=�0 or
about �=0. Considering the effective action in Eq. �7�, and
expanding to second order in ��, one finds a contribution
from the effective photon action, and a contribution from
expanding the trace over excitons. This latter contribution
can be found by writing G�,�

−1 = �G�,�
sp �−1+�G�

−1, where Gsp is

the saddle-point fermionic Green’s function, which depends
on the value of the saddle-point field � f, as given in Eqs.
�9�–�11�, and the contribution of fluctuations �G�

−1 is given
by

�G−1 =
− 1
�2

�g��̄q�− + g��q�+��0
K

+
− 1
�2

�g��̄cl�− + g��cl�+��1
K.

Thus, one can expand the action as

− i�
�

Tr ln�G�,�
−1 	

= �− i��
�

Tr ln��G�,�
sp �−1	 + �− i��

�

Tr�G�,�
sp �G�

−1�

+ �− i��−
1

2
�

�

Tr�G�,�
sp �G�

−1G�,�
sp �G�

−1� .

In this expansion, we have retained only the terms diagonal
in site index; i.e., we neglected any bath induced interaction
between different exciton sites. Such bath induced interac-
tions should be small for small �, and their inclusion would
considerably complicate the formalism. Such an approach is
also equivalent to considering a separate set of baths for each
disorder localized state �.

Because, in the presence of a coherent field, the effective

action can contain terms like ���� and ��̄��̄, it is conve-
nient to introduce a Nambu structure of photon fields. Thus,
the photon fluctuations are described by a 2�2=4 compo-
nent vector, with one factor of 2 from the Keldysh structure,
and one from the Nambu structure; hence,

�� =�
��cl���

��̄cl�− ��
��q���

��̄q�− ��
� , �19�

in terms of which the action for fluctuations �Sf is

�Sf =� d�

2�
��̄���� 0 �D−1	A

�D−1	R �D−1	K����� .

For convenience later, we shall introduce the notation,

�D−1	R/A/K = �K1
R/A/K K2

R/A/K

K3
R/A/K K4

R/A/K
 . �20�

By definition, we have: �D−1	A= ��D−1	R�†, and in addition
the Nambu structure implies certain symmetries between the
elements of �D−1	R/A/K, which together can be written as

K1
R��� = K1

A���* = K4
R�− ��* = K4

A�− �� ,

K2
R��� = K2

A�− �� = K3
R�− ��* = K3

A���*, �21�

K2
K��� = − K3

K���* = K2
K�− �� ,
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K1
K��� = K4

K�− �� . �22�

Introducing the compact notation,

�f � g	� =� d�

2�
f���g�� − �� ,

we may thus write

�D−1	R��,p� =
1

2�� − �̃p + i� 0

0 − � − �̃p − i�
 + i

g2

4 �Gbb
R � Gaa

K + Gbb
K � Gaa

A Gba
R � Gba

K + Gba
K � Gba

A

Gab
R � Gab

K + Gab
K � Gab

A Gaa
R � Gbb

K + Gaa
K � Gbb

A

�

, �23�

and

�D−1	K��,p� =
1

2�2i�F��� + �S� 0

0 2i�F��− � + �S�


+ i
g2

4 �Gbb
K � Gaa

K + Gbb
R � Gaa

A + Gbb
A � Gaa

R Gba
K � Gba

K + Gba
R � Gba

A + Gba
A � Gba

R

Gab
K � Gab

K + Gab
R � Gab

A + Gab
A � Gab

R Gaa
K � Gbb

K + Gaa
R � Gbb

A + Gaa
A � Gbb

R

�

. �24�

A. Normal state excitation spectra and distributions

The excitation spectrum can be found from the poles of
the fluctuation Green’s function, i.e., from the zeros of
det�D−1	R. To extract the occupation of the spectrum, one can
extract the boson distribution function via

DK = − DR�D−1	KDA = DRFS − FSDA,

where simply DR/A= ��D−1�R/A	−1. While, in general, these are
2�2 matrices in Nambu space, in the normal state this struc-
ture is redundant, and so the distribution function is the di-
agonal constant matrix FS=2nS+1, where nS describes the
occupation of the modes. Alternatively, one can invert the
Keldysh rotation in order to find the physical Green’s func-
tions,

D�,� =
1

2
�DK � �DR − DA	� , �25�

which, as discussed in Sec. III, relate directly to the lumines-
cence, L�� ,p�= iD��� ,p� /2�, and absorption A�� ,p�
= iD��� ,p� /2�. Still, assuming the normal state, so that the
Nambu structure is redundant, these become

L��,p� = nS���Im�−
DR��,p�

�
� ,

A��,p� = �nS��� + 1	Im�−
DR��,p�

�
� .

While this form illustrates how the spectral weight and oc-
cupation can be separately extracted from the luminescence
and absorption, in order to study these quantities, it is more
helpful to write them in terms of the components, K1

R,K of the
inverse Green’s function. In the normal state, there are no
anomalous �off diagonal in Nambu space� contributions, and

so K2
R/A/K=K3

R/A/K=0. Thus, the normal state luminescence,
absorption, and distribution functions are given by

�L,A���,p� =
− iK1

K��� � 2 Im�K1
R���	

4��K1
R��,p��2

, �26�

FS��� =
− iK1

K���
2 Im�K1

R���	
. �27�

Let us now discuss what can be understood in general
from the form of these equations, and then illustrate this
discussion with the simple case ��T. From the difference of
luminescence and absorption in Eq. �26�, one can identify a
spectral weight,

2�S��,p� =
Im�K1

R���	
Re�K1

R��,p�	2 + Im�K1
R���	2 . �28�

Thus, if the imaginary part of K1
R��� is a smooth function of

omega, then one will have almost Lorentzian peaks of the
spectral weight at values �* where Re�K1

R��*�	=0. The
width of these peaks, i.e., the linewidth, is then given by
Im�K1

R��*�	. Thus, the imaginary part plays one role as de-
termining the linewidth. It also plays a second role, since
from Eq. �27�, a zero of the imaginary part causes the distri-
bution to diverge; however, at these same points Eq. �28�
implies that the spectral weight vanishes, so the number of
photons does not diverge. Since a Bose distribution would
diverge at the chemical potential, we can use this as a defi-
nition of an effective boson chemical potential, so
Im�K1

R��eff�	=0. These results are illustrated in Fig. 3, which
shows the luminescence, absorption, spectral weight, and
distribution function against the real and imaginary parts of
K1

R and K1
K.
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From the above, it is clear that the form of Im�K1
R���	 as

well as K1
K��� conspire to set the effective photon distribu-

tion. Using the expressions in Eqs. �9�–�11�, and for the mo-
ment restricting to the case ��=�, we may write

− iK1
K��� = �F
���

+
g2

4
�2 Re� d�

2�

1

�� − �̃ + i���� − � + �̃ − i��

− 4�2� d�

2�

Fb���Fa�� − ��
��� − �̃�2 + �2	��� − � + �̃�2 + �2	

� ,

�29�

2 Im�K1
R���	 = �

+ g2�2� d�

2�

Fb��� − Fa�� − ��
��� − �̃�2 + �2	��� − � + �̃�2 + �2	

.

�30�

For the case of pumping baths being individually in thermal
equilibrium, one may get some insight into how the pump
and decay baths compete to set the systems distribution. In
the limit ��T, where T is the temperature of the pumping
bath, the distribution functions Fb/a��� are smooth, while the
denominators lead to sharp peaks of width �. One can then
approximate the integrals by assuming that over each Lorent-
zian peak, the distribution function takes its value at the
maximum of that peak, and so

FS��� =

�F
��� +
g2��1 − Fb��̃�Fa��̃ − ��	

�� − 2�̃�2 + 4�2

� +
g2��Fb��̃� − Fa��̃ − ��	

�� − 2�̃�2 + 4�2

. �31�

From this one can see immediately two trivial limits. If
�=0 or if g=0, then there is no influence of the pumping
bath and so FS���=F
���, i.e., the photon distribution in the
system is the same as the distribution of bulk modes outside
the cavity. Similarly, if �=0, the photon bath has no effect,
and

FS��� =
1 − Fb��̃�Fa��̃ − ��
Fb��̃� − Fa��̃ − ��

.

Thus, as one might expect, if the fermions are in thermal
equilibrium with Fb,a���=F����̃B� where F���
=tanh��� /2�, then by using a standard hyperbolic trigono-
metric identity, this gives a thermal Bose distribution for the
photons, with the same temperature, but twice the chemical
potential, as expected since one boson corresponds to two
fermions,

FS��� = coth��
2

��̃ − �̃B� −
�

2
��̃ − � + �̃B��

= coth��
2

�� − 2�̃B�� .

The above expressions have been written after the gauge
transformation described following Eq. �8�. Of course, in the
normal state, such a gauge transform has no effect, since it
just corresponds to an arbitrary shift of the origin for mea-
suring energies, but we use the transformed notation for con-
sistency with the condensed case.

More generally, the two distributions compete to control
the photon distribution, which, in general, will not be ther-
mal even if the baths are individually thermal, because they
have different chemical potentials and temperatures. It is
clear from Eq. �31� that the effect of the pumping bath is
largest near �=2�̃, and far from this value, both numerator
and denominator are instead dominated by the photon bath.
Physically, this means that the effect of the pumping bath is
only important at energies where the photons are nearly reso-
nant with, and so couple strongly to, the excitons.

B. Instability of the normal state above the transition

The discussion in the previous section, which defined �eff

by zeros of the imaginary part of K1
R and �* by zeros of the

real part, allows one to understand the instability of the nor-
mal state. It can be seen that the gap equation �14�, if evalu-
ated at � f =0, is equivalent to the condition K1

R��=0,p=0�
=0, �measuring � relative to �S�. This can be understood
physically by seeing that the vanishing of K1

R��=0,p=0�
implies that there is a zero mode, corresponding to global
phase rotations, as one expects in a broken symmetry system.
Thus, this condition implies that there is a frequency at
which both real and imaginary parts simultaneously vanish;
i.e., the gap equation is the condition that if �eff=�*, the
effective chemical potential reaches the bottom of the normal
mode spectrum. One can say “bottom of the spectrum” since
the p dependence only enters the real part of K1

R and �* will
increase as p increases; thus, if �p=0

* ��eff, then there will be
a nonzero p for which �p

* =�eff. Thus, the existence of a

FIG. 3. �Color online� Relation between real and imaginary
parts of K1

R and K1
K and the luminescence, absorption, spectral

weight, and distribution function. Plotted for �=0.2g, �=0.02g, T
=0.1g, and �B=−0.5g. �cf. Fig. 4�. The upper panel shows the real
and imaginary parts of K1

R and their zeros marked by arrows. The
lower panel shows how these lead to peaks in the luminescence
spectrum and how the zero of Im�KR

1	 defines divergence of the
distribution function.
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nontrivial solution to the gap equation can still be understood
as a “chemical potential” reaching the bottom of the band,47

even in this nonequilibrium context, as is illustrated in Fig. 4.
It is also possible to connect the effective chemical poten-

tial reaching the bottom of the band to the instability of the
normal state, i.e., fluctuations growing in time. Let us con-
sider poles, �p of the retarded Green’s function, i.e., zeros of
K1

R��p ,p�. If these poles have negative imaginary parts, they
correspond to fluctuations that decay in time, and if positive,
to growing fluctuations; thus, stability requires the imaginary
part to be always negative. It is clear that at large enough
momenta, the Green’s function is that of bare photons and is
stable. Thus, if there are to be unstable modes, then there
must be some p value at which the imaginary part of the
poles goes from negative to positive. For reasonable systems,
where the linewidth is a smooth function of momentum, this
means the imaginary part must go through zero. A zero of
Im��p	 means there is a real frequency which satisfies
K1

R��p ,p�=0. However, the existence of a real frequency sat-
isfying this condition was, as discussed previously, exactly
the gap equation at �=0. Thus, if �p=�p

* =�eff for some
�p � = pc, then for �p ��pc one will find positive imaginary
parts. To illustrate this, consider a linear expansion in �, so
that

K1
R��,p� � �� − �p

*� + i��� − �eff� � C�� − �p� .

Then one finds Im �p� ��eff−�p
*�.

Two more important connections can be drawn from the
relation between poles of the retarded Green’s function, the
distribution, and the gap equation. The first is that, as for any
second-order phase transition, approaching the phase transi-
tion from the normal side, the fluctuation Green’s function
describes a susceptibility which diverges at the transition.
The second relates to the dual role that Im�K1

R��p
*�	 played as

the linewidth. As one approaches the phase boundary, at
which real and imaginary parts both have zeros, one must
have that the effective linewidth vanishes. These points are
illustrated in Fig. 5. Note, however, that Im�K1

R���	 is, of

course, not a constant, and so there will be some nontrivial
line shape, but a linewidth defined by full width half maxi-
mum will vanish on approaching the condensed state, as a
peak develops at �=0. The vanishing of homogeneous line-
width at the transition is a manifestation of diverging suscep-
tibility in an infinite system. Finite system size is expected to
smear out this divergence and result in the homogeneous
linewidth remaining nonzero, but still having a minimum
near the transition. Additionally, inhomogeneous broadening
of exciton energies will add to the linewidth measured in
experiments.

C. Fluctuations in condensed state—stability and
collective modes

From the previous section, we conclude that when there is
a nontrivial solution to the gap equation, the normal state is
unstable. We wish now to determine whether our ansatz of
Eq. �8� is stable. As discussed above, if there were a region
with unstable modes �i.e., positive imaginary parts of poles�,
then this would lead to the existence of a true pole at real
omega, at the boundary of the unstable region. Making use
of the symmetries in Eq. �21�, for the condensed case, poles
of the retarded Green’s function correspond to solutions of

K1
R��,p�K1

R�− �,p�* − K2
R���K2

R�− ��* = 0. �32�

Unfortunately, this expression is not simple, and numeri-
cal evaluation would be necessary to trace the behavior of all
zeros as a function of momentum. However, in order to un-
derstand the stability, we can instead consider separately ze-
ros of the real and imaginary parts of Eq. �32�. If zeros of
these two parts coincide for some pc, there is a real pole, and
thus instability for �p ��pc. It is clear that the imaginary part
should have a zero at �=0 �measuring frequency from the
common oscillation frequency �S�, as the imaginary part of
Eq. �32� is an odd function of �. This zero physically corre-
sponds to the divergence of the distribution function at �
=0. Numerical investigation suggests that this is the only
zero of the imaginary part. Thus, we are interested in zeros
of the real part, evaluated at �=0, but arbitrary p.

FIG. 4. �Color online� Energy of zeros of the real and imaginary
parts of K1

R as a function of �B, demonstrating how �eff, the zero of
Im�K1

R� approaches �*, a zero of Re�K1
R	 at the transition. Results

are plotted for �=0.02g, TB=0.1g, and three values of � as indi-
cated. The dotted vertical line marks the locations of the trace plot-
ted in Fig. 3.

FIG. 5. �Color online� Linewidth of the lower mode �solid, left
axis� and energy integrated luminescence p� =0 �dashed, right axis�
in the normal state as a function of pumping bath chemical poten-
tial, as the phase boundary is approached. Results are shown for
two different dephasing parameters � with �=0.02g for all three.
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It is clear that there is a zero at �=0, p=0, corresponding
to the symmetry under global phase rotations, but being at
p=0, this does not lead to instability. From this pole, or
alternatively working directly from the definitions of KR in
Eq. �23�, and the gap equation �14�, one can show that
K1

R��=0,p=0�=K2
R��=0�. Thus, writing A=Re�K1

R��=0,p
=0�	, instability occurs if there is a nonzero p solution of

�A −
1

2

p2

2mph
2

− A2 =
1

4

p2

2mph
� p2

2mph
− 4A = 0,

which will exist if and only if A�0.
Physically, this says that the Goldstone mode will be un-

stable for 0� �p ��pc if the “static compressibility”
Re�K1

R�0,0�	�0. In equilibrium, the expression for the com-
ponent K1

R�0,0� is real and negative, but including pumping
and decay, there are regions where solutions of the gap equa-
tion, Eq. �14�, exist but which are unstable. Since
Re�K1

R�0,0�	 is the real part of the second derivative of the
action with respect to � ��=0, k=0�, it can also be seen as a
derivative of the gap equation; thus, unstable solutions are
characterized by a nonlinear susceptibility that increases as
coherent field increases.

As a result, there are ranges of the parameters �, �, and
�B for which neither the normal state nor the ansatz of Eq.
�8� are stable. We have not investigated what alternate stable
solutions might exist under these conditions; however, the
existence of a real pole in the response at a nonzero momen-
tum might suggest one should investigate the possibility of a
coherent field at nonzero p. Such a possibility would not be
too surprising, as spontaneous pattern formation is seen in
laser systems with a continuum of modes.22

VI. NUMERICAL ANALYSIS OF THE MEAN FIELD

A. Phase diagram

Having discussed the conditions under which the uniform,
single-frequency condensed solution is stable, we may now
consider an effective phase boundary—i.e., find the ranges of
parameters for which there is a stable condensed solution.
For numerical analysis we choose all baths to be individually
in thermal equilibrium. However, as the baths need not be in
equilibrium with each other, the system can still be far from
thermal equilibrium. Since the cavity photon modes start at
energies much above the zero for bulk photon modes, we
take the chemical potential of the decay bath to be large and
negative. In addition, since at room temperature the popula-
tion of the bulk photon modes at the energy of cavity modes
is negligible, we consider the decay bath to be always at zero
temperature. In the following, we will first present calcula-
tions at zero pumping bath temperature, with a delta function
density of states, i.e., ��=�, and at zero detuning. Following
that, we will then analyze the influence of finite temperature
of the pumping baths and of inhomogeneous broadening of
excitons. At zero bath temperature, the bath distributions are
entirely defined by their chemical potentials, and so there
remain three control parameters, �B, �, and �. Note that in
this case the pump and decay baths are at the same tempera-
ture, but have very different chemical potentials, thus leading

to a particle flux through the system, driving it out of equi-
librium. In Fig. 6, we illustrate the boundary as a function of
�B, �, and � by plotting its section in two planes; the plane
of fixed � �Fig. 6�a�	, and the plane of fixed �B �Fig. 6�b�	.

It is worth noting that, for �B�0 and fixed � ,�B there is
both upper and lower critical �. The maximum � is always
present �i.e., even if �B�0� and it results because increased
coupling to the bath causes dephasing. Let us discuss the
origin of the minimum critical �. If the bath is at zero tem-
perature, it pumps only that part of the effective excitonic
density of states with energy less than the bath chemical
potential �B. If there is no inhomogeneous broadening �i.e.,
��=��, then the effective exciton density of states is set en-
tirely by its coupling to the baths; i.e., it is Lorentzian with
width �. Thus, the efficiency of pumping depends on how, by
broadening the excitonic energy, the pump leads to a nonzero
density of states below the chemical potential �B. As a result,
at �=0 there is no pumping, and so no condensation, and a
minimum � is required before there is sufficient gain to over-
come the decay. If there is inhomogeneous broadening of
exciton energies or the pumping baths are at finite tempera-

FIG. 6. �Color online� Phase boundaries at zero temperature, no
inhomogeneous broadening. Panel �a� Fixed decay rate �. Panel �b�
Fixed chemical potential �B �note that �B�0 implies inversion in
the pumping bath but not necessarily in the system�. The insets
show in detail the region of small � and �. Solid lines mark the
limit of stability of the normal state. Dashed lines mark the limit of
stability between the uniform condensed state and some other un-
known state. The uniform condensed state is stable in the shaded
regions. The asterisk in panel �b� marks a point of fixed �, � for
comparision between the plots.
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ture, this effect is less significant, as is seen in Fig. 8.
From the boundaries of the stable region, it appears that a

uniform condensed stable solution is only possible if ���0,
with �0�0.2g. The origin of this upper critical � requires
further investigation.

B. Coherent fields and densities

As well as the phase boundary, one may study the evolu-
tion of a number of properties of the condensate—e.g.,
mean-field density of condensed photons, �� f�2, excitonic
density �from Eq. �15�	, and thus the total mean-field density,
being the sum of condensed photon and exciton densities,
polarization 
a†b� �where �
a†b��2 gives the number of con-
densed fermion pairs–excitons�, and common oscillation fre-
quency �S. These are shown in Fig. 7, for two values of �
and a range of different �, chosen to illustrate both the re-
gime of weak coupling to baths, where the results are similar
to those in thermal equilibrium, and also strong decay and
pumping, for which the results are instead comparable to the

laser. For comparison, the value of �eff, and the fermion-pair
�excitonic� density in the normal state are shown, which con-
nect smoothly to the condensed quantities, as expected for a
second order phase transition. Note that for �=0.15, �=1.0
the excitonic density �exciton�0.5 indicating inversion as is
expected in the lasing case.

C. Influence of bath’s temperatures and
excitonic density of states

We now consider the effects of finite bath temperature and
of the inhomogeneous broadening of the exciton energies. As
such calculations are numerically intensive, we present a
limited, but illustrative set of results. In the upper panels of
Fig. 8, the equivalent of Fig. 6�b� is shown, but with a
Gaussian density of states and at small but nonzero tempera-
ture of the pumping bath �the decay bath, of bulk photon
modes, is still at T=0�. One can clearly see that by adding
inhomogeneous broadening, ��=0.15g, the lower critical �
has been modified, and for large �B entirely eliminated. The
lower panels of Fig. 8 show a higher temperature, for which
none of the curves show any lower critical �.

One can also plot a phase boundary at fixed � ,� as a
function of pumping bath temperature T and �B, or alterna-
tively derive the excitonic density �exciton from Eq. �15� to
plot the boundary as a function of T and density. By doing
this, we can investigate the influence of decoherence and
particle flux introduced by pumping and decay on the phase
diagram, which can still be significant, even if the system
distribution function would be close to thermal. For the pa-
rameters chosen for the figures, we are in the regime of den-
sities where the phase transition is well described by mean-
field theory, and so the number of incoherent photons at the
transition is small. Thus, in this regime, the distribution func-
tion of excitons below and at the transition is set by the
pumping bath; thus, if the pumping bath is thermal, then the
exciton distribution is too. This means we can study the in-

FIG. 7. �Color online� Properties of the system as a function of
bath chemical potential. Plotted for T=0 and ��=�. Panel �a� �
=0.02g and panel �b� �=0.15g, values of � as indicated. Within
each panel, four graphs are shown. Top: the common oscillation
frequency in the ansatz of Eq. �8�, measured from �p=0=0. Second:
density of condensed photons. Third: exciton density from Eq. �16�.
Bottom: polarization, given by ��̃2+�2� f. Solid lines indicate
where a stable condensed solution exists; dotted lines are the �un-
physical� result of the uniform condensed solution when it is un-
stable. Dashed lines for �S and �exciton show the comparable quan-
tities in the normal state.

FIG. 8. �Color online� Phase boundary for constant chemical
potential �B, as in Fig. 6�b�, but with a Gaussian distribution of
excitonic energies, ��=0.15g, and nonzero temperature �top row
T=0.01g, bottom row T=0.5g�. As a result, the requirement for a
minimum coupling strength � before a transition occurs is removed
for some phase boundaries. Solid lines, dashed lines, and shaded
region mark instability of normal state, instability of uniform con-
densed state, and stable condensed region, as in Fig. 6.
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fluence of dephasing due to pumping and decay separately
from the influence of nonthermal distribution functions. This
also allows direct comparison to the equilibrium limit,
which, as discussed in Sec. IV A should be recovered as �
→0, �→0. This is illustrated in Fig. 9, where the critical
bath temperature as a function of system density is plotted
�and for comparison, the critical �B at each temperature is
also shown�. It is apparent that the presence of pumping and
decay shifts the phase boundary to higher densities, and that
the �→0 as T→0 behavior seen in equilibrium does not
survive. Physically, this increase of critical density is due to
the decoherence introduced by pumping and decay. The be-
havior at T→0 is unsurprising, as the limit �→0 corre-
sponds to the equilibrium chemical potential �→−�. In the
presence of nonzero decay rate �, one requires a nonzero
effective gain �imaginary part of gap equation�, and so no
solution exists with �B→−� even at T=0, i.e., the critical
density never goes to zero.

VII. FLUCTUATIONS IN CONDENSED STATE
TO ALL ORDERS IN PHASE

The low energy modes of the broken symmetry system
correspond to slow phase variations. Since there is no cost to
global phase rotations, the action depends only on deriva-
tives of the phase, and so phase fluctuations may become
large. Thus, describing �=�0+�� and considering only
terms to second order in �� may underestimate how phase
fluctuations reduce long range coherence. Therefore, we will
instead consider the parametrization �=��0+�ei, and
evaluate correlation functions of � in terms of the correlation
functions of amplitude � and phase , including the phase
fluctuations to all orders. In equilibrium, the effect of phase
fluctuations on the field-field correlator is responsible for the
reduction from long-range order to power-law correlations in
two dimensions, and so has been much studied �see, e.g.,
Refs. 48 and 49�. Here, in order to calculate the lumines-
cence and absorption spectrum, we will, however, need also
to include density fluctuations.

Combining such a reparametrization of the fields with the
nonequilibrium Keldysh formalism requires a little care. The
first important consideration is that the parametrization re-
quires one to work with fields where 
���2� is macroscopic.
This means we should reparamtezise the fields � f ,�b defined
on the forward and backward contours �see Sec. III�, as op-
posed to the fields �q ,�cl, since 
��q�2� is not macroscopic.
This consideration is similar to the fact that the parametriza-
tion should be done for the fields as functions of space and
time rather than functions of p and �. The second consider-
ation is that, in calculating the physical correlation functions,
D�,�, this will involve cross terms between the two
branches, and so one must keep track of which branch � and
 are on.

The technical details of how to derive the field-field cor-
relation functions in terms of amplitude and phase Green’s
functions are presented in Appendix B. For the forward
Green’s function �corresponding to luminescence�, the result
is found to be

iD�†�
� �t,r� = �0�1 +

i

2�0
�iD�

� �t,r� − iD�
� �t,r�	

−
1

4�0
2 �iD��

� �0,0� − iD��
� �t,r�	 +

1

8�0
2 �iD�

� �0,0�

+ iD�
� �0,0� − iD�

� �t,r� − iD�
� �t,r�	2�

�exp�− �iD
� �0,0� − iD

� �t,r�	� . �33�

The above procedure includes amplitude fluctuations � and
gradients of phase fluctuations �, �t to second order as
they both have restoring force and cost energy, so that they
are expected to be small. The phase fluctuations , however,
may be large and in the above result are taken to all orders.

To calculate the luminescence spectrum one must then
Fourier transform the result D�†�

� �t ,r� to give the spectrum in
frequency and momentum space. The first term in the braces
in Eq. �33� proportional to �0 describes the emission from the
condensate which is now broadened by the exponential term
containing the phase fluctuations. It is clear that the phase
fluctuations determine the condensate line shape and the de-
cay of spatial and temporal coherence. An example of lumi-
nescence as given by Eq. �33� is shown in Fig. 10. We will
discuss its features in Sec. VII A.

If one were to assume phase fluctuations were small, then
this expression could be expanded to linear order in Green’s
functions, and one would find

iD�†�
� �t,r� = �0�1 −

iD��
� �0,0�

4�0
2 − iD

� �0,0�� +
iD��

� �t,r�
4�0

+
i

2
�iD�

� �t,r� − iD�
� �t,r�	 + �0iD

� �t,r� .

This is instructive, as the last three terms describe the fluc-
tuation Green’s function iD��†��

� �t ,r�, obtained taking the
fluctuation fields to second order, while the first corresponds
to a depleted condensate density. Such a linearization would

FIG. 9. �Color online� Critical density �and associated critical
bath chemical potential� at a given nonzero bath temperature.
Evaluated for a Gaussian density of states, with ��=0.15g and val-
ues of � and � as indicated in the legend. The dotted line marks the
limit �→0, �→0, for which the equilibrium result, with distribu-
tions set by the pumping bath is recovered.
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describe the luminescence as a sum of two terms; a conden-
sate term, which due to its lack of space or time dependence
would be a sharp peak, and a fluctuation term. Furthermore,
if one were to consider the frequency spectrum of fluctua-
tions by integrating this linearized form over momentum one
would have a simple power law form, with a power depend-
ing only on the dimension,23 but not on parameters of the
system.

By allowing phase fluctuations to be large, and keeping
the phase-phase Green’s function in the exponent, the con-
densate acquires a line shape as a result of phase fluctuations,
and this line shape can in the equilibrium limit recover the
standard power law correlations seen in two dimensions. The
form of this line shape is discussed further in Sec. VII A.

However, for �, p far from zero, such linearization does
not introduce any major changes; the effects of large phase
fluctuations matter mostly at large times. Large fluctuations
between fields separated by small t or r would imply large
gradients, and thus have a large energy cost. Thus, Fig. 11
illustrates the absorption, luminescence, and spectral weight
over large ranges of �, p using a linearized approach �which
at this large scale coincides with the full expression given by
Eq. �33�	 while Fig. 10, obtained from the full expression of
Eq. �33�, shows the effect of phase fluctuations at small �, p.

For the detailed analysis of the features of the lumines-
cence spectra, we refer to Ref. 18. Note that for large � , p, as
shown in Fig. 11, the main features of the nonequilibrium

FIG. 10. �Color online� Photoluminescence from the region of
small � and small p �shown in terms of an angle of emission �
=tan−1�cp /�0�, calculated including effects of phase fluctuations to
all orders. Both panels have �=0.02g, �=0.2g, and �B=0.0g. The
upper panel has T=0.1g as in the middle row of Fig. 11, while the
lower has T=0.01g, for which the features described in the text
appear more sharply.

FIG. 11. �Color online� Spectral weight, photoluminescence, and absorption spectra, as a function of emission angle, tan−1�cp /�0�. For
all graphs, �=0.02g and T=0.1g. Top row: uncondensed case, �=0.2g, and �B=−0.5g �cf. parameters in Figs. 3 and 4� Middle row:
condensed case, �=0.2g, and �B=0.0g. Bottom row: condensed case, �=0.5g, and �B=0.0g �transition to weak coupling�.

MEAN-FIELD THEORY AND FLUCTUATION SPECTRUM OF… PHYSICAL REVIEW B 75, 195331 �2007�

195331-17



spectra are similar to those predicted for equilibrium conden-
sation in Refs. 30 and 41. In the normal state one can see the
upper and lower polariton modes �top row of Fig. 11� in the
spectral weight and absorption, and only the lower polariton
in the luminescence as the upper polariton is not occupied at
this low power. When system condenses �middle row of Fig.
11� the structure of modes changes dramatically, showing the
pairs of phase and amplitude modes above and below the
chemical potential. Finally, when the coupling to the pump
baths, i.e., the pumping strength, is further increased �bottom
row of Fig. 11� the system crosses to weak-coupling regime
and the polariton splitting is suppressed. In Fig. 11 the occu-
pation of the excited states will not be thermal, in contrast to
the analogous figures in Refs. 30 and 41, this is, however, not
easy to observe on these contour plots. Also, since Fig. 11
corresponds to pumping baths at finite temperature in con-
trast to zero temperature in Ref. 18 the sharp occupation
edge visible there is here smeared out. However, the main
qualitative difference between the spectra of a pumped de-
caying condensate presented here and that for a closed sys-
tem given in Refs. 30 and 41 is most visible on small �, p
scale, as presented in Fig. 10. This will be discussed in detail
in Sec. VII A.

A. Condensate line shape—effects of dissipation and low
dimensionality on decay of correlations

The long range field-field correlations are influenced by
the properties of the soft phase modes, i.e., the Goldstone or
Bogoliubov modes.18,24 By considering the asymptotic be-
havior of the phase-phase correlator at small frequencies and
momenta, one can thus find the asymptotic form of the field-
field correlator. In an equilibrium two-dimensional system,
the long-distance field-field correlations decay with a power
law below the BKT transition. We will now investigate how
this asymptotic behavior is affected by the presence of pump
and decay. For convenience, let us rewrite Eq. �B4�, assum-
ing an isotropic system,

iD�†�
� �t,r� = �0�1 + O�1/�0�	exp�− f�t,r�	 , �34�

f�t,r� =� d�

2�
� pdp

2�
�1 − J0�pr�ei�t	iD

� ��,p� . �35�

Here, J0�pr� is a Bessel function, from the integration over
azimuthal angle. We are thus interested in the limits f�t
=0,r→�� and f�t→� ,r=0�, describing the large distance
and long time decay.

For comparison, let us first summarize how this method
reproduces the standard result in the equilibrium case. In
equilibrium, the distribution function is a constant matrix
F���=2nB���+1, and so

iD
� ��,p� =

1

2
�F��� − 1��iD

R ��,p� − iD
A ��,p�	

= nB����− 2�Im�D
R ��,p�	 . �36�

For an equilibrium coherent system, the low-energy modes
will be the linear Goldstone modes of the form �=cp. By

analytic continuation of the imaginary time �Matsubara�
Green’s function, one finds

Im�D
R ��,p�	 = Im� − C

�� + i0+�2 − c2p2�
= −

�C

2cp
���� − cp� − ��� + cp�	 . �37�

And so, combining Eqs. �35�–�37�, one finds that the singular
contribution to f�t ,r� is given by

f�t,r� =
C

2��c
�

0

1/�c dp

p
�1 − J0�pr�cos�cpt�	 + ¯ , �38�

where � is inverse temperature, and the effect of the thermal
distribution has been approximated by the upper cutoff
of the integral. The lower cutoff is controlled by how
J0�pr�cos�cpt� approaches 1 as p→0, and thus depends on r
and ct. For small p, the leading term in the expansion for
both cos�cpt� and J0�pr� is quadratic, and so the lower cutoff
for the integral is given by p�1/�r2+c2t2. Thus,

f�t,r� �  ln��c2t2 + r2

�c
 .

Thus, one recovers the standard result, and logarithmic be-
havior of f�t ,r� leads to power decay of correlation func-
tions, with  �kBT /�0.

Let us now consider the asymptotic form of Green’s func-
tion in the nonequilibrium case. We shall first consider the
retarded Green’s function, as the poles of this function de-
scribe the normal modes; the result of calculating D

� , as
will be discussed later, is to introduce the population of these
modes. The retarded Green’s function, using the notation of
Eq. �20�, can be written as

iD
R ��,p� =

C

K1
R��,p�K1

R�− �,p� − K2
R���K2

R���
.

As discussed in Sec. V C, the gap equation implies that
K1

R��=0, p=0�=K2
R��=0�. Combining this with the symme-

tries in Eq. �21�, one can show that the most general expres-
sion to quadratic order in p, � in the denominator can be
written as

D
R ��,p� �

C

�2 − c2p2 + 2i�x
, �39�

where C, c, and x are coefficients to be derived from the full
expressions. Without pumping and decay, x=0+, and one re-
covers the equilibrium result. With nonzero x, the poles of
the Green’s function, which define the low energy modes of
the system, have the form

� = − ix ± i�x2 − c2p2,

and are thus diffusive, rather than dispersive for p�x /c.18

This can be clearly seen in the luminescence shown in Fig.
10: At low momentum, where the real part of the pole van-
ishes, but the imaginary part does not, the luminescence is
dispersionless �i.e., flat�, but broadened. Such a form should
be generic for broken symmetry in a pumped decaying sys-
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tem, and indeed the same form has recently been seen in a
related context, of coherently pumped polaritons in photonic
wires, described as an optical parametric oscillator,24 as well
as in a more generic model.50 This result also shows why it
was so important to have solved a complex gap equation,
rather than just to have added decay rates to the equilibrium
model. Adding phenomenological decay rates “by hand”
would lead to a form of the retarded Green’s function,

D
R ��,p� =

C

�� + ix�2 − c2p2 .

Such a form does not describe a system with spontaneously
broken symmetry, as there is no pole at �=0, p=0, and thus
such an approach misses the appearance of a diffusive mode.

Let us now consider D
� , and thus the effect of the dis-

tribution function. As was discussed in Sec. V A, the distri-
bution function can be expected to diverge at the energy
where the imaginary part of the denominator of the retarded
Green’s function vanishes. This is clear at �=0 �measured
relative to the common oscillation frequency �S�, due to the
presence of a real pole at �=0, p=0. However, this diver-
gence will be exactly canceled by the vanishing of
DR�� , p�−DA�� , p� as �→0, since both the divergence and
the vanishing are due to the same imaginary part. Thus, near
�=0, the asymptotic form of D

� �� , p� is the same as that of
�D

R �� , p��2, i.e.,

iD
� ��,p� �

C2

��2 − c2p2�2 + 4�2x2 .

The effect of the distribution will be to introduce some upper
energy cutoff. Thus, the equivalent of Eq. �38� is

f�t,r� =
�C

2c2x
�

0

1/�c dp

p
�1 − J0�pr�d�p,t�	 , �40�

where the time dependence is described by

d�p,t� = e−xt� x
�x2 − c2p2

sinh��x2 − c2p2t�

+ cosh��x2 − c2p2t�� . �41�

Equation �40� has an interpretation similar to Eq. �38�, a
large p cutoff from the distribution function and a short-
distance cutoff set by the coordinates. For a thermal distri-
bution function, the upper cutoff would be given by 1/�c
�kBT /c. Although the photon distribution in the pumped
decaying system is not thermal, if the pumping and decay
baths are thermal �as considered earlier�, then the photon
distribution will vanish for large enough energies. As such,
we will write 1 /�c�Emax/c, where Emax depends on both
pumping and decay, and would reduce to kBT in equilibrium.
The result is thus f�t ,r�� � ln�1/Q�c�, where Q is the lower
cutoff. However, the form of the lower cutoff can be differ-
ent, and it depends on the relative values of r, ct, and c /x. In
the two regions of interest defined at the start of this section,
one finds

Q = �
1

c�t/x
if r � 0,t → �

1

r
if r → �,t � 0.� �42�

Inserting this cutoff, one finds

f�t,r� � �� �/2�ln�c2t/x�c
2� if r � 0,t → �

 � ln�r/�c� if r → �,t � 0.
� �43�

Thus, there is still power law decay, but due to pumping and
decay, the powers for temporal and spatial decay do not
match, and since  � may depend on x, both power laws will
differ from equilibrium.

Since the long time decay is power law, the line shape
will also have a divergence at low frequency, and as such
there is no well defined condensate linewidth in an infinite
system. In fewer than two dimensions, i.e., in a one-
dimensional system,24 or a fully confined system such as a
laser with discrete modes, the long-time decay will be expo-
nential, and so a linewidth can be found in such systems. The
crossover between power law and exponential decay in a
large but finite 2D system is discussed in Sec. VIII. In three
dimensions, the limit of f�t ,r� at large times and distances is
finite �as opposed to divergent as in two, one, or zero dimen-
sions�. As a result, there is phase coherence to arbitrarily
large distances, and so, writing the asymptotic values of
f�t ,r� as f�, there is a contribution to the luminescence that
goes like

iD�†�
� ��,p� =� dt� d3r�0e−f�ei�t+ip·r + ¯

= �0e−f������3�p� + ¯ ,

i.e., in an infinite homogeneous 3D system, there would be a
peak at �=0, p=0, with a peak height given by the conden-
sate density, which is depleted by phase fluctuations.

VIII. FINITE-SIZE EFFECTS

In the previous section, we discussed how the continuum
of phase modes leads, in two dimensions, to logarithmic
phase-phase correlation functions as a function of distance
and time. In this section, we consider how confinement,
which leads to a discrete spectrum of phase modes will
modify that result. In a confined system, there will not be
translational invariance, and so the field-field correlation
function will, in general, depend on both positions, rather
than just on separation. However, if we are interested in the
equal-position, long-time limit, which is relevant for the line
shape, we can then write

f�t,r,r� = − �
n
� d�

2�

C�!n�r��2�1 − ei�t�
��2 − 	n

2�2 + 4�2x2 ,

where we have introduced the wave function !n�r� and en-
ergy 	n of the nth phase mode. It is clear that if !n�r�=eipnr

and 	n=cpn, we recover the previous result.
Let us now discuss briefly the energy spacing � of phase

modes 	n. Schematically, for a box of size R, one has �

MEAN-FIELD THEORY AND FLUCTUATION SPECTRUM OF… PHYSICAL REVIEW B 75, 195331 �2007�

195331-19



=c /R, i.e., the sound modes, with discrete momentum spac-
ing. In contrast, the energy spacing of single-particle states in
such a box would be �=1/2mR2. Since the sound velocity
increases as condensate density increases, one can have �
"�. �NB in a harmonic trap, the Thomas-Fermi radius, and
the sound velocity have the same dependence on �0, so the
phase mode level spacing is the single particle spacing.51 A
harmonic trap is, however, a special case in this regard.	

To understand how discrete mode spacing modifies
f�t ,r ,r�, let us first reconsider how the logarithm term arose
from the integral. Schematically, we had

f�t,r,r� � �
0

Q dp

Q
+ �

Q

1/�c dp

p
=

Q

Q
+ ln� 1

�cQ
 ,

i.e., the dependence on the coordinates, via the cutoff Q is
logarithmic, as the contribution from p�Q is constant. For
the discrete sum, after integrating over �, instead of Eq. �40�
we have

f�t,r,r� =
�C

2x
�

n

N �!n�r��2

	n
2 �1 − d�p =

	n

c
,t� �44�

with d�p , t� as in Eq. �41�. The upper cutoff is introduced
here by truncating the sum at N such that 	N=c /�c�Emax.
Considering the long time limit, this sum can also be split
into two parts; for modes 	n��x / t the summand is effective
energy independent, while for 	n"�x / t, with the density of
states in 2D, one recovers a logarithmic divergence. How-
ever, the existence of these two parts depends on the relative
values of the energy of the lower cutoff �x / t, the upper cut-
off Emax, and the level spacing �. We assume Emax"�x / t,
which just means considering long enough time delays, and
so there are three important cases:

�i� ���x / t�Emax. In this case there are many terms con-
tributing to both the small and large 	n sums, and so the
result is as for the integral: schematically f�t ,r ,r�=1
+ln�Emax

�t /x�, and there are power laws, as in the infinite
system. This case cannot, however, persist to arbitrarily large
times.

�ii� �x / t���Emax. At long enough times, the previous
case will switch to this case. Here, there are only a few terms
in the low energy contribution. A characteristic term, for 	n
�x gives d�	n /c , t��1−	n

2t /2x. Since the number of low
energy modes is now of order 1, rather than of order x / t�2,
the contribution from these modes is of order t /x, and not of
order 1. Thus, the dominant contribution is f�t ,r ,r�
���C /2x��t /2x�, and so the decay of field-field correlations
is exponential as in a single mode case.

�iii� �x / t�Emax��. In this case, no phase fluctuations
are populated, i.e., no terms survive in the sum, and so the
entire system is coherent. Using �=c /R, this condition is
equivalently R��c=c /Emax; i.e., the “thermal length” is
larger than the system size.52

To summarize, if temperature is low enough �or in the
case of nonthermal distribution the relevant energy to which
the modes are occupied is small enough�, phase fluctuations
are frozen out, as one expects. If phase fluctuations are not
frozen out, there are two limits; at long enough times, one

always sees linear growth of fluctuations, resulting in the
exponential decay of field-field correlations and recovery of
the standard laser line shape.35 However, for large enough
systems, so level spacing is small, there is a range of time
delays during which the growth of phase fluctuations is loga-
rithmic in time, giving rise to a power-law decay of field-
field correlations, as one would expect in the infinite system.

A. Self-phase modulation

The analysis so far shows how, due to finite size, the
power-law correlations associated with a continuum of
modes change to the exponential decay of correlations asso-
ciated with phase diffusion of a single mode. There has been
previous work on extending the picture of phase diffusion of
a single mode due to pumping noise35 to the case of inter-
acting systems, for which there is an additional source of
noise from self-phase modulation �SPM�.36,53,54 These works
suggest that the phase decay rate can be written as x���0

+�0
2XSPM� /�0, where �0 is the noise due to pumping, �0 the

condensate density, and XSPM proportional to interaction
strength. We wish here to comment briefly on the origin of
the SPM term, and how it may be modified in the case of
many interacting modes, with respect to the case of phase
diffusion of a single mode.

The presence of a SPM term can be understood by con-
sidering the evolution of a coherent state, e��0�

†
�0�

=�n���n /n!��n�. For an interacting single-mode system, the
number states are eigenstates and have energies like En=an
+bn2; thus, different number states evolve at different fre-
quencies and mutually dephase, leading to a dephasing rate
xSPM�b�0. Thus, SPM occurs because number states, not
coherent states, are eigenstates of the single mode Hamil-
tonian. The eigenstates of the many mode system, including
coherent interactions between modes, such as �0

†�0
†�p�−p are

neither number states nor coherent states, but are instead
better described by Noizérres-Bogoliubov states.55 Such
states are superpositions of terms with different divisions of
particles between the condensate and noncondensed modes;
while they may be eigenstates of total number, they are not
eigenstates of the number of particles in a given mode, and
they lower energy because of the coherence between the dif-
ferent modes.56 As such, when considering systems with a
continuum of interacting modes, it is not clear that SPM
terms should exist, or if they exist, should have the same
form.

IX. CONCLUSIONS

In conclusion, we have studied steady-state spontaneous
quantum condensation in a nonequilibrium Bose-Fermi sys-
tem with pumping and decay and consequent flux of par-
ticles. In order to study the effect of large phase fluctuations
in the broken symmetry system, it was necessary to extend
the path-integral Keldysh formalism to deal with a reparam-
etrization in terms of phase and amplitude fluctuations, for
fields on the forward and backward time contours. We have
shown that the mean-field properties of a pumped and decay-
ing condensate can be described by a complex analogue of
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the Gross-Pitaevskii equation in the BEC regime �or equiva-
lently the gap equation in the BCS regime�. The real part of
this self-consistency equation relates the coherent field to the
system’s nonlinear susceptibility, as in the case of equilib-
rium condensation, while the imaginary part reflects how the
gain and decay are balanced, as in a laser. We further show
that it is crucial to satisfy this complex self-consistent equa-
tion in order to get the correct collective mode structure,
reflecting the broken symmetry.

We have analyzed the solutions of this complex gap equa-
tion and examined their stability. Surprisingly, despite non-
thermal distributions, the instability of the normal state is
analogous to that in thermal equilibrium, where the normal
state becomes unstable when the chemical potential, at which
the Bose-Einstein distribution diverges, reaches the bottom
of the system’s spectrum. In the nonequilibrium case, the
system’s distribution, although far from thermal, develops a
divergence at some energy. When, by tuning parameters of
the system, this energy is brought to coincide with an effec-
tive pole of the system’s Green’s function, then the normal
state becomes dynamically unstable and the condensation
transition takes place. We have also shown that whenever
there is a condensed solution, the normal state becomes dy-
namically unstable, and so there is no ambiguity as to which
state the system would choose. However, we have found a
range of parameters where both the normal and the uniform
harmonic condensed solutions are unstable, suggesting either
more exotic, perhaps chaotic, dynamics or spatial pattern for-
mation.

We have analyzed the nonequilibrium phase diagram as a
function of the decay and pump parameters, and have found
both the low-density-condensed solutions when pump and
decay strengths are relatively small, as well as the high den-
sity, inverted, laserlike solutions when pump and decay are
comparable to the interparticle interactions. When applied to
microcavity polaritons these regimes reflect the spontaneous
condensation of strongly coupled photon-exciton modes at
relatively small pump and decay powers, and the crossover
to the weak-coupling regime and the photon laser at large
pump powers. It is important to stress that even if the system
distribution is close to thermal, the presence of pump and
decay, i.e., particle flux, results in a higher critical density at
a given temperature than in a closed system, and there is a
nonzero minimum critical density even at zero temperature.

Having analyzed the fluctuation spectra and collective
modes, we have found an important difference between con-
densation in a dissipative environment and that in closed
systems: Although there is a real pole �undamped mode� at
zero frequency and momentum, indicating broken symmetry,
the usual linear dispersion of the sound mode �Bogoliubov,
Goldstone mode� at small momenta is now replaced by dif-
fusive behavior �i.e., a broadened but flat dispersion�; this
questions the possibility of superfluidity on large time and
distance scales. This qualitatively new structure of the col-
lective modes is visible in the luminescence and absorption
spectra, and it affects the field-field correlations, i.e., decay
of spatial and temporal coherence, and the condensate line
shape. For example, in the 2D system dissipation changes the
usual power-law decay of spatial and temporal coherence,
replacing it by one where the powers for temporal and spatial
decay do not match.

It is instructive to place our treatment of nonequilibrium
quantum condensation in the context of other works on dy-
namic effects in polariton systems. Much of the literature
concentrates on Boltzmann-like rate equations. Such an ap-
proach allows one to study the effect of pumping and decay
on the occupation of modes,34,57,58 but is not able to account
for the changes to the excitation spectrum and the density of
states �which are particularly dramatic as the system crosses
the phase transition� due to the pumping, decay, and presence
of the coherent field. In contrast, field theoretical studies pre-
sented here self-consistently account both for arbitrarily
large changes to the excitation spectrum as well as changes
to the occupation of this spectrum. Such approaches are thus
well placed to study the phase transition between the non-
condensed and condensed states and, in addition, the cross-
over between strong and weak coupling regimes. A closer
approach to the field-theoretical approach presented here
would be the evolution of the off diagonal parts of the full
density matrix.54,59 It was, however, only recently that quali-
tative changes to the spectrum have been calculated using the
density matrix approach �in the context of parametric emis-
sion from photonic wires� in Refs. 24 and 25. A further dis-
tinction is between single-mode models, in which one ex-
pects phase diffusion �e.g., Refs. 53 and 58� and exponential
decay of correlations as in lasers, and models with a con-
tinuum of modes, such as Refs. 18, 24, and 25 and this paper.

Finally, in this paper we have analyzed how the finite size
of the system affects the decay of temporal coherence. This
is particularly important for the understanding of recent
experiments,16 as well as for providing a connection to simi-
lar analysis for single mode photon lasers, which are still
used as the basis to describe the decay of coherence in atom
and polariton lasers. The key difference between the output
from the condensate and from a single mode laser is that in
the condensate there is a continuum of modes, and so spatial
fluctuations play an important role—in 2D they destroy the
long-range order and lead to a power-law decay of correla-
tions. Including such spatial fluctuations, the growth of phase
fluctuations as a function of time is logarithmic, which gives
power-law decay of temporal coherence, rather than the ex-
ponential decay expected for a single mode. In single mode
systems such as the laser, there are no spatial fluctuations,
and so the decay of coherence is determined entirely from
the phase diffusion of this single mode. However, if one
takes a continuum system, and reduces its size, the energy
spacing of modes becomes larger, and so the number of
modes whose energies are low enough to be relevant de-
creases, eventually recovering the single mode limit. We
have identified two regimes in the finite system: where the
level spacing is larger than temperature, and so spatial fluc-
tuations are essentially frozen out, resulting in an exponential
decay of correlations as in a single mode laser; and where the
level spacing is small with respect to temperature, so one
gets a power-law decay of temporal coherence at short times
as in the infinite system, crossing over to exponential decay
at larger times.

The qualitative implications of our results are general and
can apply to any BEC or BCS condensate which is subject to
dissipation. The immediate applications of this analysis are
for polariton BEC, which are naturally faced with significant
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pumping and decay processes. However, the techniques and
results developed here, can be of use in understanding a
wider class of broken symmetry dissipative systems; for ex-
ample, resonant parametric oscillators and atom lasers,
where coherence, dephasing, and the interaction of many
modes are all relevant.

ACKNOWLEDGMENTS

The authors are grateful to Ben Simons and Roland Zim-
mermann for suggestions and useful discussions. M.H.S.
would like to acknowledge stimulating visit to Physics De-
partment, Humboldt University, Berlin. The authors ac-
knowledge financial support from EPSRC �M.H.S.� and the
Lindemann Trust �J.K.�.

APPENDIX A: GAP EQUATION AT T=0

In the limit of T=0, the integrals in the gap equation, Eq.
�14�, can be evaluated in terms of elementary functions. This
makes numerical analysis of the equations much easier in
this limit. The results of this analysis are presented in Sec.
VI; for completeness, we show the explicit expressions at
T=0 here. At T=0, the bath distributions take a simple form
Fb���=sign��− �̃B� and Fa���=sign��+ �̃B� and so, using
�̃B=�B−�S /2, the real and the imaginary parts of the gap
equation become

�̃0 = −
g2��̃

2�2E�E2 + �2�
ln

�E + �̃B�2 + �2

�E − �̃B�2 + �2

+
g2

2�E
�arctan

E + �̃B

�
+ arctan

E − �̃B

�


−
g2�̃

2��E2 + �2�
�arctan

E + �̃B

�
− arctan

E − �̃B

�
 ,

and

�

�
=

g2�

2�2E�E2 + �2�
ln

�E + �̃B�2 + �2

�E − �̃B�2 + �2

+
g2

2��E2 + �2�
�arctan

E + �̃B

�
− arctan

E − �̃B

�
 .

The expression for fermion-pair �exciton� density �Eq. �15�	
at T=0 reduces to

1

2
�b†b − a†a� =

g2��� f�2

4�E�E2 + �2�
ln

�E − �̃B�2 + �2

�E + �̃B�2 + �2

−
�̃

2�E
�arctan

E − �̃B

�
+ arctan

E + �̃B

�


+ � g2�� f�2

2��E2 + �2�
−

1

2�


��arctan
E − �̃B

�
−arctan

E + �̃B

�
 .

APPENDIX B: EVALUATION OF FIELD CORRELATIONS
IN TERMS OF AMPLITUDE AND PHASE

FLUCTUATIONS

To illustrate the idea of using phase and amplitude fluc-

tuations, we will first present the simpler case of DT,T̃, for
which both fields are on the same branch, and so we may
drop all labels identifying which branch or Green’s function

�T or T̃� we are considering. Then, writing # for the time,
and coordinate indices �T± t /2 ,R±r /2�, one may write

iD�†� = 
�†�+ ���− ��

= 
���0 + ��+ ����0 + ��− ��e−i��+�−�−��� .

The square root may be expanded to second order in the
density fluctuations �as density fluctuations, unlike phase
fluctuations, have a restoring force�, thus

iD�†� � �0��1 + ���+ � + ��− �
2�0

� −
���+ � − ��− �	2

8�0
2 �

�exp�− i��+ � − �− �	�� .

Introducing a current J, one may write the correlators in
terms of a generating functional as

iD�†� = �0�1 + �
�,p

1

�0
cos��t

2
+

p · r

2
 �

�J�,p
+

1

2�0
2

���
�,p

sin��t

2
+

p · r

2
 �

�J�,p
�2�

���exp��
�,p

J�,p���,p�

+ 2 sin��t

2
+

p · r

2
��,p����

J=0

.

By integrating over the photon field, the generating func-
tional, Z�J	= 
exp�¯	�, can be expressed in terms of the
correlators of amplitude and phase fluctuations. Defining

J��,p� = � J�,p

2 sin���t + p · r�/2	
 ,

one may then write

Z�J	 = exp�1

2�
�,p

J�− �,p�TiD̃��,p�J��,p�� , �B1�

where

D̃ = �D�� D�

D� D
 .

Note that we use the standard definition of Green’s functions
so that iDab= 
ab�.

To determine these correlators one may either recalculate
the effective action by writing � in terms of � and  and
expanding to second order in � and derivatives of , or one
may use the fact that at second order, the amplitude-phase
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variables can be considered as a linear transform of �� and

��̄, i.e.,

��

 = L� ��

��† , L =
1

2��0

�2�0 2�0

− i i
 .

Note that this rotation relates the effective action expressed
in terms of these variables and is not to be used in finding the
final correlation functions D�†�. Thus, one can express the
amplitude-phase Green’s functions in terms of the �� ,��†

Green’s functions as

D̃R/A/K = LDR/A/KL†. �B2�

The T , T̃ Green’s functions can then be found from the re-
tarded, advanced, and Keldysh components by using Eq. �25�
and

DT,T̃ =
1

2
�DK ± �DR + DA	� . �B3�

Thus, one may write the T or T̃ field correlation function in
terms of the phase and amplitude Green’s functions,

iD�†� = �0�1 − �
�,p

sin��t + p · r�
iD���,p�

�0

− �
�,p

�1 − cos��t + p · r�	
iD����,p�

4�0
2

+
1

2���,p
�1 − cos��t + p · r�	

iD���,p�
�0

2�
�exp�− �

�,p
�1 − cos��t + p · r�	iD��,p�� .

We can now address how to generalize this calculation
when the two fields are on different branches. We will con-
sider the forward �luminescence� Green’s function; the back-
ward �absorption� will follow by swapping labels. Thus, re-
peating the above discussion, but keeping subscripts on the
fields, one has

iD�†�
� �t,r� = �0��1 + ��b�+ � + � f�− �

2�0
�

−
��b�+ � − � f�− �	2

8�0
2 �

�exp�− i�b�+ � −  f�− �	�� .

Then, as before, introducing a current, we may write this in
terms of a generating functional. However, to keep track of
labels, we shall need two currents, Jf and Jb; thus,

iD�†�
� �t,r� = �0�1 + �

�,p

1

2�0
� �

�Jb,��,p�
ei��t+p·r�/2

+
�

�Jf ,��,p�
e−i��t+p·r�/2�

−
1

8�0
2��

�,p
� �

�Jb,��,p�
ei��t+p·r�/2

−
�

�Jf ,��,p�
e−i��t+p·r�/2��2�

���exp��
�,p

JT��,p����,p����
J=0

.

The calculation proceeds as before, but now the generat-
ing functional is written in terms of

J��,p� =�
Jb,��,p�

− ie+i��t+p·r�/2

Jf ,��,p�

ie−i��t+p·r�/2
�, ���,p� =�

�b

b

� f

 f

�
�,p

.

There is thus an additional 2�2 structure of Green’s func-
tions associated with branch labels, i.e., in block notation,

D̃ = � D̃T̃ D̃�

D̃� D̃T
 .

With such an extended matrix structure, one can general-
ize Eq. �B1� and thus find the following result:

iD�†�
� �t,r� = �0�1 +

i

2�0
�
�,p

�iD�
T ��,p� − iD�

T̃ ��,p�

+ ei��t+p+r��iD�
� ��,p� − iD�

� ��,p�	�

−
1

4�0
2�
�,p

�1 − ei��t+p·r�	iD��
� ��,p�

+
1

8�0
2��

�,p
�1 − ei��t+p·r��

��iD�
� ��,p� + iD�

� ��,p�	�2�
�exp�− �

�,p
�1 − exp�i��t + p · r�	�iD

� ��,p�� .

�B4�

This expression can be slightly simplified, since as explained
in Appendix C below, one has

�
�,p

�iD�
T ��,p� − iD�

T̃ ��,p�	 = 0. �B5�

Using this result, and performing the Fourier transforms that
appear in Eq. �B4�, one then finds the final form for the
Green’s function, as given in Eq. �33�.
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APPENDIX C: ANALYTIC PROPERTIES OF
GREEN’S FUNCTIONS

Because the use of phase and amplitude variables forces
one to work in terms of the physical Green’s functions, iD�,

iD�, iDT, and iDT̃, it is necessary to consider the analytic
properties of these Green’s functions. As discussed in Ref.
45, these Green’s functions are not independent, but for t
�0 one has

DT + DT̃ = D� + D�. �C1�

This lack of independence is implicit in Eqs. �25� and �B3�,
repeated here for convenience,

D�,� =
1

2
�DK � �DR − DA	�

DT,T̃ =
1

2
�DK ± �DR + DA	� . �C2�

However, at t=0, Eq. �C1� does not hold. For the case of the
field-field correlations, as discussed in Ref. 45, the correct
regularization leads to

iD�†�
T �0� = iD�†�

T̃ �0� = iD�†�
� �0� = N/V ,

iD�†�
� �0� = �N + 1�/V , �C3�

where N is total particle number and V is volume. The dif-
ference of form here is expected, as it encodes important
information about the equal time commutation relations,

lim
t→0

�iD�†�
� �t,r� − iD�†�

� �t,r�	 = ��̂� r

2
,�̂†�−

r

2
� .

�C4�

Thus, as one expects in a path integral formulation, operator
ordering has been encoded via time ordering.60 Written in
terms of Green’s functions as functions of frequency and
momentum, the left hand side of Eq. �C4� would involve a
conditionally convergent sum of terms that go like 1/�.
Preservation of commutation relations thus requires correct
regularization of such conditionally convergent sums. The
relations for the amplitude-phase correlation functions can be
similarly found to correspond to the definition

��̂� r

2
,̂�−

r

2
� = i��r� .

The amplitude-phase Green’s functions are found in the
retarded, advanced, and Keldysh basis, but to derive the
field-field correlators, we must rotate them to the forward
and backward basis. Since this includes Green’s functions of
noncommuting operators evaluated at t=0, such as Eq. �B5�,
it is important to reconcile Eq. �C3� with Eq. �C2�. Naively,
such a reconciliation does not seem possible; however, the
resolution is that one must write

iD�†�
T �t → 0+� = iD�†�

T̃ �t → 0−� = iD�†�
� �t = 0� = N/V ,

iD�†�
� �t = 0� = �N + 1�/V . �C5�

With such a convention, the correct regularization of the sum
in Eq. �B5� is then clear,

�iD�
T �t → 0+,r = 0� − iD�

T̃ �t → 0−,r = 0�	 = 0. �C6�
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