
Measuring the phonon-assisted spectral function by using a nonequilibrium three-terminal
single-molecular device

Juntao Song,1 Qing-feng Sun,1,* Jinhua Gao,1 and X. C. Xie1,2

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences,
Beijing 100080, China

2Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
�Received 29 December 2006; published 17 May 2007�

The electron transport through a three-terminal single-molecular transistor �SMT� is theoretically studied.
We find that the differential conductance of the third and weakly coupled terminal versus its voltage matches
well with the spectral function versus the energy when certain conditions are met. Particularly, this excellent
matching is maintained even for the complicated structure of the phonon-assisted side peaks. Thus, this device
offers an experimental approach to explore the shape of the phonon-assisted spectral function in detail. In
addition, we discuss the conditions of a perfect matching. The results show that at low temperatures, the
matching survives regardless of the bias and the energy levels of the SMT. However, at high temperatures, the
matching is destroyed.
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I. INTRODUCTION

In the past decade, transport properties of single-
molecular transistors �SMTs� have attracted great attention
due to the potential application for the generation of electron
devices. Because of the intrinsic vibrational freedom in mol-
ecules, the molecular electronic transistor also provides an
opportunity for exploring the vibration-electronic �i.e.,
electron-phonon� interactions at single molecule level. The
electron-phonon interaction in a SMT leads to some interest-
ing effects, such as phonon-assisted tunneling, the redshift of
SMT energy levels, and generation of the thermal energy.
Such features are interesting and have been extensively in-
vestigated both experimentally and theoretically in recent
years. Park et al.1 experimentally studied the current-bias
�I-V� characteristic of an individual C60 molecule connected
to gold electrodes and have observed the obvious phonon-
assisted tunneling substeps in the I-V curves. Later, the cur-
rent of a suspended individual single-wall nanotube device is
measured and two phonon-assisted subpeaks on the two
sides of the main resonant peak are clearly visible in the
differential conductance versus the gate voltage, which is
due to the radial breathing phonon mode.2,3 Very recently,
also in the device of a suspended single-wall nanotube but
with much lower temperatures, the higher-order phonon-
assisted substeps on the I-V curves have been experimentally
demonstrated by Sapmaz et al.4

On the theoretical side, there have also been a large
amount of studies on the quantum transport behavior of a
SMT or a quantum dot �QD� coupled to local phonon
modes.5–11 About 15 years ago, Wingreen et al. studied the
electron transport through a QD coupled to the phonon
modes by combining the scattering theory and the Green’s-
function method, and the phonon-induced transmission side-
bands were found.5 Using the real-time renormalization-
group method, Keil and Schoeller6 have investigated the
quantum transport phenomena through coupled QDs with a
phonon bath, and a solution for stationary current is ob-
tained. In addition, the shot-noise spectroscopy of the current

of a SMT having a local phonon mode is reported by Zhu
and Balatsky.8 Since the current, the conductance, the shot
noise, etc., are all closely related to the local electronic spec-
tral functions A���, the spectral function has also been ex-
tensively studied. The spectral function is found to be
strongly dependent on the positions of the SMT �or QD�
energy levels and the tunneling strengths � between the leads
and the SMT �or QD�.9 On the other hand, by using a differ-
ent approximation, Chen et al. also investigated the spectral
function and the current through a SMT,10 and the spectral
function in their results exhibits intriguing features. At low
temperatures and under the condition that the energy level is
near the Fermi surface, the side peaks in the spectral function
are clearly non-Lorentzian in shape. The side peaks on one
side change gradually while the other side changes abruptly
with changing of energy. These are quite different compared
with the previous results. Due to the importance of the spec-
tral function A��� as well as that the spectral function of a
SMT coupled to a phonon mode is not well understood �i.e.,
the results of A��� are qualitatively different for using dif-
ferent approximations�, thus, it is quite beneficial to design
an experimental setup to directly measure the spectral func-
tion of a SMT.

Recently, some studies have investigated the Kondo effect
in QDs coupled to the three terminals, in which the third
terminal acts as an exploring tip to measure the Kondo peaks
in the spectral function.12,13 Can the intriguing characteristics
of the phonon-assisted side peaks in the spectral function
also be explored in a three-terminal setup? It is the purpose
of this work to theoretically analyze the feasibility of this
scheme. We consider the system of either SMT or QD
coupled to three leads and a local phonon mode. Here, the
third lead is introduced as an exploring tip. We find that the
spectral function quite often matches the differential conduc-
tance of the third lead. If the third lead is weakly coupled and
the temperature T is low �kBT���0, with �0 being the pho-
non frequency�, this matching is almost perfect �including
the abrupt changes associated with the phonon-assisted side
peaks�, so the spectral function, in particular, the phonon-
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assisted side peaks, can be directly detected using the differ-
ential conductance. On the other hand, if the coupling of the
third lead is large but still at low temperature, the matching is
in qualitative agreement. However, at high temperature, the
matching is destroyed even for weakly coupled third lead.

The rest of this paper is organized as follows. We intro-
duce the model in Sec. II and derive formulas of the spectral
function and the differential conductance in Sec. III. In Sec.
IV, we show the numerical results and present discussions of
those results. Finally, a brief summary is given in Sec. V.

II. MODEL HAMILTONIAN

The device under our consideration is illustrated in Fig. 1.
It consists of a SMT or QD connected to three metallic leads.
An electron in the SMT is also coupled to a single-phonon
mode. Due to the big energy gap between two quantum lev-
els in the SMT, only one relevant quantum level is consid-
ered. The Hamiltonian of the device is written as

H = Hleads + Hph + HD + HT. �1�

The first two terms are, respectively, the Hamiltonian for
electrons in the three leads and the Hamiltonian for the pho-
non part

Hleads = �
�,k

��kc�k
† c�k, �2�

Hph = �0b†b . �3�

Here �=L, R, and 3, respectively, represent the left, the right,
and the third leads, and c�k

† �c�k� creates �annihilates� an elec-
tron with the energy ��k in the lead �. Analogously, b†�b� is
the phonon creation �annihilation� operator and �0 is the vi-
brational frequency of the phonon. The third term in Eq. �1�
is

HD = ��0 + 	�b† + b��d†d , �4�

where d† �d� is the electron creation �annihilation� operator
in the SMT with the energy level �0, and 	 describes the

coupling strength between the SMT and the local phonon
mode. The last term in Eq. �1� descries the tunneling cou-
pling between the SMT and the three leads

HT = �
�,k

�V�kc�k
† d + H.c.� . �5�

It is often useful to take a canonical transformation with10,14

H̄=esHe−s and s= �	 /�0��b†−b�d†d. Under this canonical
transformation, Hamiltonian �1� varies into

H̄ = H̄el + H̄ph, �6�

where

H̄el = �
�,k

��kc�k
† c�k + �̄0d†d + �

�,k
�V̄�kc�k

† d + H.c.� , �7�

and

H̄ph = �0b†b . �8�

Obviously, due to the electron-phonon interaction, the energy
level �0 of the SMT is renormalized to �̄0=�0−g�0 with
g= �	 /�0�2, and the tunneling matrix element Vk is varied

into V̄k=VkX, where X=exp�−�	 /�0��b†+b��. Up until now,
no approximation has been made; Hamiltonian �6� is com-
pletely equivalent to Hamiltonian �1�.14

III. SPECTRAL FUNCTION AND THE DIFFERENTIAL
CONDUCTANCE

In this section, we calculate the spectral function A��� of
the SMT and the differential conductance of the third lead.
From the results by Meir and Wingreen, the spectral function
A��� and the current can be represented by the Green’s func-
tions of the SMT as15,16

A��� = i�G
��� − G����� = i�Gr��� − Ga���� . �9�

J� =
e

�
� d�

2�
Tr����iG���� + A���f������ . �10�

Here, f����=1/ �exp���−�� /kBT�+1� is the Fermi distribu-
tion function with the chemical potential �, �����
=2��k	V�k	2����k−�� describes the coupling strength be-
tween the lead � and the SMT, and G�,
r,a are the standard
lesser, greater, retarded, and advanced Green’s functions.16,17

Because of the existence of the electron-phonon interaction,
it is difficult to directly solve these Green’s functions from
the equation of motion technique or the Dyson equations.
As it is done in some previous papers,10 we take here the
same approximation to replace the operators X and X† in
Hamiltonian �6� with their expectation value 
X�= 
X†�
=exp�−g�Nph+1/2��, where Nph=1/ �exp���0�−1� is the
phonon population.18 This approximation is valid when the
tunneling strengths �� are smaller than the electron-phonon
interaction, i.e., ���	. After this approximation, Hamil-
tonian �6� is decoupled into two independent parts, electronic
part and phonon part. Next, we also need to decouple the
Green’s functions. In many previous papers,8 they decouple

FIG. 1. Schematic diagram of a SMT coupled to three leads with
tunneling strength �� and the electron in the SMT is also coupled to
a single-phonon mode. A gate electrode is capacitively attached to
the SMT to tune the energy level of SMT.
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the retarded �advanced� Green’s functions Gr,a directly.
However, such decoupling has some defects as pointed out in
a recent work by Chen et al.10 Here, we employ the decou-
pling method in Ref. 10 to directly decouple the lesser and
greater Green’s functions G�,
 instead of the retarded and
advanced Green’s functions Gr,a. After the decoupling, the
lesser and greater Green’s functions G�,
 are

G��t,t�� = Ḡ��t,t��e−��t�−t�, �11�

G
�t,t�� = Ḡ
�t,t��e−��t−t��, �12�

where Ḡ�,
�t , t�� are the Green’s functions of the Hamil-

tonian H̄el, and ��t� is

��t� = g�Nph�1 − ei�0t� + �Nph + 1��1 − e−i�0t�� . �13�

Using the identity14 ez cos �=�n=−�
n=+�In�z�ein�, the greater and

lesser Green’s functions can be expanded as

G���� = �
n=−�

+�

BnḠ��� + n�0� , �14�

G
��� = �
n=−�

+�

BnḠ
�� − n�0� , �15�

where the coefficients Bn

=e−g�2Nph+1�en�0/2kBTIn�2g�Nph�Nph+1�� and In�z� is the nth
Bessel function of complex argument. Thus, we can rewrite
the spectral function A��� as

A��� = i�G
��� − G�����

= �
n=−�

+�

iBn�Ḡ
�� − n�0� − Ḡ��� + n�0�� . �16�

Following the standard derivation,14,16,17 the self-energies �̄

of the coupling to the leads for the Hamiltonian H̄el can be
easily obtained as

�̄r�a���� = �
�,k

	V̄�k	2g�k
r�a���� = �

�
�̄���� �

i

2
�̄����� ,

�17�

�̄���� = �
�,k

	V̄�k	2g�k
� ��� = i�

�

�̄����f���� , �18�

�̄
��� = �
�,k

	V̄�k	2g�k

 ��� = − i�

�

�̄�����1 − f����� ,

�19�

where �̄�=�� exp�−g�2Nph+1�� since the tunneling elements
V�k have been amended by electron-phonon interaction. To

take the wideband limit,16,17 i.e., to assume that �� then �̄�

are independent of the energy �, the above self-energies re-
duce into

�̄r�a� = �
i

2
��̄L + �̄R + �̄3� , �20�

�̄���� = i�
�

�̄�f���� , �21�

�̄
��� = − i�
�

�̄��1 − f����� . �22�

By using these self-energies, the dressed retarded �advanced�
Green’s function Ḡr�a�, then the dressed lesser and greater

Green’s functions Ḡ�,
 can be readily obtained from Dyson
equations and Keldysh equations

Ḡr�a���� = �ḡr�a���� − �̄r�a�����−1, �23�

Ḡ���� = Ḡr����̄����Ḡa��� = i f̄���Ā��� , �24�

Ḡ
��� = Ḡr����̄
���Ḡa��� = − i�1 − f̄����Ā��� , �25�

where

Ā��� =
�̄L + �̄R + �̄3

�� − �̄0�2 + ��̄L + �̄R + �̄3�2/4
, �26�

and

f̄��� =
�̄LfL��� + �̄RfR��� + �̄3f3���

�̄L + �̄R + �̄3

. �27�

After solving Ḡ�,
, the lesser and greater Green’s functions
G�,
���, the electronic spectral function A��� of the SMT
and then the current can be calculated from the above equa-
tions �Eqs. �9�, �10�, �14�, and �15�� straightforwardly.

At last, the differential conductance G3 of the third termi-
nal can be acquired by performing G3=�J3 /�V3,

G3 = �
n=−�

+�
e2�3

�kT
Bn� d�

2�
„f3����1 − f3�����Ā��2� f̄��2�

+ Ā��1��1 − f̄��1��� − c�1 − f3����f3��2��1

− f3��2��Ā��2� − cf3���f3��1��1 − f3��1��Ā��1�… ,

�28�

where �1=�−n�0, �2=�+n�0, and c= �̄3 / ��̄L+ �̄R+ �̄3�.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we study numerically the spectral function
A��� and the differential conductance G3. In the numerical
calculation, the coupling strengths �L/R between the left/right
lead and the SMT is set to be unity ��L=�R��=1� as an
energy unit. The main purpose of the present work is to study
whether the curve of the spectral function A��� versus the
energy � can map into the curve G3−V3, i.e., whether the
intriguing phonon-assisted side peaks in the spectral function
A��� can be observed by measuring the conductance G3 of
the third lead. First, let us show the spectral function of the
two-terminal SMT with �3=0. Note that this spectral func-
tion A��� is the object of our study. When the SMT is
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coupled to the phonon mode, one main characteristic of A���
is the appearance of the phonon-assisted side peaks. At the
zero bias case �L=R=0� and the renormalized level �̄0
=0, the side peaks are non-Lorentzian in shape, in which one
side of the side peaks still looks like the Lorentzian form but
the other side drops abruptly �see Fig. 2�. When �̄0 �i.e.,
	�̄0 	 /��0� is far away from the chemical potentials L ,R,
the side peaks are asymmetry on the two sides of the main
peak, and the side peaks disappear on one side. Furthermore,
with a nonzero bias V �V=L−R� or raising temperature T,
these phonon-assisted side peaks exhibit more complex pro-
files. These characteristics of the spectral function A��� have
been found in a previous study.10 Our goal here is to propose
a scheme to measure the spectral function A��� by using an
extra third lead.

We first study the zero-bias case �L=R=0� with a
weakly coupled third lead ��3=0.01�. Figure 2 shows the
differential conductance G3 versus the voltage V3 of the third
lead for different renormalized level �̄0. For comparison, the
spectral function A��� versus the energy � for the two-
terminal SMT device with �3=0 is also shown in Fig. 2
when �̄0=0. Besides the main resonant tunneling peak, some
extra phonon-assisted side peaks emerge in the curve G3
−V3. The main peak is Lorentzian, but the side peaks exhibit
a non-Lorentzian characteristic. On the one side of the side
peaks, the conductance G3 falls abruptly from top to valley.
In particular, we find that the curve of the conductance G3
versus V3 is in an excellent agreement with the curve of the
spectral function A��� versus the energy �. Not only are
their side peaks located at the same positions but also they
have the same profiles. Even the abrupt drops overlap per-
fectly. Thus, in this case, by measuring the differential con-
ductance G3, one obtains all information on the spectral
function A���. Increasing �̄0 to 1, the side peaks in the curve

of G3−V3 are distributed asymmetrically on two sides of the
main resonant peak. The right side peak is higher than the
corresponding left side peak, as shown in Fig. 2. However,
the curve of G3−V3 is still in an excellent matching with the
spectral functions A��� versus �; even the complex structure
of the first right side peak �about at V3=6� matches quite
well. When �̄0 is furthermore enhanced from 1 to 3, all side
peaks are on the right of the main peak and all peaks are
Lorentzian. Similarly, the excellent agreement between the
differential conductance and the spectral function is still
maintained. Combining above results, we find that at the
zero-bias case, the curve G3−V3 is in excellent agreement
with the curve A���−� regardless of the value of the level �̄0

�i.e., �0�. The reason lies in the fact that for the weakly
coupled lead, the transmission probability of the incoming
electron with energy � is mainly determined by the local
spectral function A���.

Next, we study the case with a finite bias V �V=L−R�.
Figure 3 shows the differential conductance G3 and the spec-
tral function A��� for L=−R=3. In the finite bias V=6 and
the renormalized level �̄0=0, the phonon-assisted side peaks
in the conductance G3 are symmetrically distributed on the
two sides of the main resonant peak, and the form of the side
peaks is Lorentzian, which is in contrast to the zero-bias case
with non-Lorentzian side peaks �see Fig. 2�. However, the
characteristics of the spectral function are still reflected per-
fectly by the differential conductance, although the spectral
functions for the zero bias and the nonzero bias have a large
difference. When �̄0 is reduced to −3, the left phonon-
assisted side peak is obviously higher than the corresponding
right side peak, the first left side peak becomes sharp, and the
non-Lorenzian characteristic emerges again in the first right
side peak. Although the spectral function A��� is so complex
now, the curve of G3−V3 closely follows that of the spectral
function, including the detailed structure. With decreasing �̄0

FIG. 2. �Color online� The dimensionless spectral function
A��� /A0 vs the energy � at �3=0 and the dimensionless differential
conductance G3 /G0 of the third lead vs the voltage V3 at �3=0.01
for different �̄0. Other parameters are taken as uL=uR=0, �0=5,
T=0.02, and 	=3. The units A0 and G0 are equal to 2/� and
�2e2 /����3 /��, respectively. Notice that the three dotted curves al-
most overlap perfectly with the three solid curves so that they al-
most cannot be seen in the figure.

FIG. 3. �Color online� The dimensionless spectral function
A��� /A0 vs the energy � at �3=0 and the dimensionless differential
conductance G3 /G0 of the third lead vs the voltage V3 at �3=0.01
for different �̄0, with uL=−uR=3. The other parameters are the same
as Fig. 2. Notice that the three dotted curves almost overlap per-
fectly with the three solid curves so that they almost cannot be seen
in the figure.
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further, e.g., �̄0=−6, the conductance G3 has a large change.
In the present case, the side peaks of the right hand disappear
completely and the side peaks only exit on the left hand of
the main peak. We find that the curve G3−V3 completely
matches the curve A���−�. In fact, for any bias V and any
level �̄0 �i.e., �0�, the curves G3−V3 and A���−� overlap
perfectly regardless of the complexity of the curve A���−�.
This means that by measuring the differential conductance
G3 of the third lead, the spectral function A���, including the
intriguing characteristics due to coupled to the phonon mode,
can be directly observed.

In the above numerical investigation, the coupling �3 be-
tween the SMT and the third lead is set to be rather weak

��3=0.01�, and the temperature T is kept very low �kBT
=0.02�. For a strongly coupled third lead and at high tem-
perature, will the excellent agreement between the differen-
tial conductance G3 and the spectral function A��� still sur-
vive? In this paragraph, we study the effect of the coupling
strength �3. The temperature effect is addressed in the next
paragraph. Figures 4�a� and 4�b� show the conductance G3
and the spectral function A��� for different coupling
strengths �3. With increasing �3, the level in the SMT wid-
ens, and the conductance G3 /G0 �G0= �2e2 /����3 /��� is
overall reduced. To make a better comparison of the two
curves G3−V3 and A���−�, we replace the conductance unit
G0 by an integral weighting factor G0� and Figs. 4�c� and 4�d�

FIG. 4. �Color online� The dimensionless spectral function A��� /A0 vs the energy � and the dimensionless differential conductance G3

of the third lead vs the voltage V3 for different coupling strengths �3. The parameters are taken as �0=5, T=0.02, and 	=3. ��a� and �c�� and
��b� and �d�� correspond to uL=uR=0 and �̄0=0, and uL=−uR=3 and �̄0=6, respectively. The unit A0=2/�, G0= �2e2 /����3 /��, and G0� are

determined by the equation �
dV3

2�

G3�V3�

G0�
=� d�

2�

A���

A0
.
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show G3 /G0� versus V3; here, G0� is determined by the equa-

tion �
dV3

2�

G3

G0�
=� d�

2�

A���

A0
. The results are as follows. �i� When

the third lead is weakly coupled with a small �3 ��3=0.01�,
the differential conductance G3 and the spectral function
A��� map into each other perfectly, as discussed before. �ii�
With increasing coupling strength �3, the differential con-
ductance deviates from the spectral function gradually. When
�3 is in the same order of � �e.g., �3=0.4 or 1�, the peak of
the conductance G3 becomes lower and wider than that of the
spectral function �see Fig. 4�. However, overall, the conduc-
tance G3 still shows the similar profile of the spectral func-
tion, including the abrupt drop on the phonon-assisted side
peak. In other words, the curve G3−V3 is still qualitatively
the same as the curve A���−� when �3��. Therefore, the
probing lead does not necessarily need to be weakly coupled
to the SMT, and the device can still work at �3��. �iii�
When �3 is much larger than � �e.g., �3=4� or more�, the
side peaks in the conductance G3 fade away, and the curves
of G3−V3 and A���−� have a large discrepancy. Since the
properties �including the spectral function A���� of SMT are
remarkably influenced when the coupling between the third
lead �i.e., exploring terminal� and the SMT is very strong, the
differential conductance can no longer exhibit the character-
istics of the real spectral function. From Fig. 4, it can be
concluded that the qualitative agreement between the curves

of G3−V3 and A���−� is destroyed when �3
2��L+�R�.
Now, let us consider how temperature influences the rela-

tionship between the spectral function and the differential
conductance. As displayed in Fig. 5�a�, at low temperature
�T=0.05��, the curve of the spectral function overlaps per-
fectly with that of the differential conductance, as being dis-
cussed before. When temperature is raised to 0.1�, although
the peaks of the differential conductance are slightly lower
�about a few percent� and wider than those of the spectral
function, they still agree not only in their positions but also
in the shape of the peaks and the detailed structure of the
phonon-assisted side peaks �see Fig. 5�b��. With further in-
creasing temperature T, the deviation between the conduc-
tance G3 and the spectral function A��� is more noticeable.
When T=0.5�, the peak heights of the conductance decrease
to half of those of the spectral function. In particular, the
shapes of the side peaks in the conductance and in the spec-
tral function are clearly in disparity. The shapes of the side
peaks of the spectral function are still asymmetric and the
change is quite abrupt on one side of the side peak, but the
shapes of the side peaks of the differential conductance are
Lorentzian and symmetric �see Fig. 5�c��. While the tempera-
ture is equal to or larger than �, all side peaks of the differ-
ential conductance fade away, and the differential conduc-
tance is no longer providing any information on the spectral
function �see Fig. 5�d��. Therefore, it is feasible only at the

FIG. 5. �Color online� The dimensionless spectral function A��� /A0 vs the energy � at �3=0 and the dimensionless differential
conductance G3 /G0 of the third lead vs the voltage V3 at �3=0.01 for different temperatures. The other parameters are uL=uR=0, �0=5,
�̄0=0, and 	=3. The units A0=2/� and G0= �2e2 /����3 /��.
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low temperature to observe the spectral function by measur-
ing the differential conductance of the third terminal. In Fig.
5, we choose zero bias and the renormalized level �̄0 located
at zero. In fact, all conclusions remain for nonzero bias and
any value of �̄0.

Unlike the coupling strength �3, the temperature strongly
influences the comparability of the curves G3−V3 and A���
−�. When temperature is low enough �kBT�� ,��0�, there
is a well-defined boundary for the occupied states and empty
states in the exploring terminal. With a change of the termi-
nal voltage V3, the change of incident electrons concentrates
at a very small energy region; thus, the differential conduc-
tance gives an excellent mapping of the spectral function. On
the other hand, this well-defined boundary for the occupied
and empty states is destroyed when the temperature kBT
��, so that the conductance G3 and the spectral function
A��� have a large discrepancy. Naturally, if the third lead can
be individually fixed at low-temperature, then the spectral
function can still be obtained from the differential conduc-
tance of the third lead regardless of the temperature in other
parts of the system. In fact, the situation with low-
temperature for the third lead is always comparable with the
above discussed low temperature regime. Let us discussed
the realizability of the low-temperature condition kBT
�� ,��0 in the present technology. In an experiment, the
characteristic frequency of phonon is about from
5 to 50 meV,1–3 and the coupling strength � is usually in the
order of 100 eV. However, the temperature can reach
50 mK in the present technology. So, it should be achievable
for the condition kBT�� ,��0. In addition, in experiments,
the third weakly coupled lead can be a probing sceaning
tunning microscopy �STM� tip, and then the coupling
strength can be easily controlled by adjusting the distance
between the STM tip and the SMT.

To end, we make one more comment. Since we have used
the same approximation as in Ref. 10, the spectral function
A��� is completely the same as in their work. If to take a
different approximation �e.g., as in Ref. 9�, the spectral func-
tion A���, in particular, the shape of the phonon-assisted side
peaks, perhaps may vary somewhat. However, the perfect
matching for the curves G3−V3 and A���−� still maintains
as long as at low temperature, weak-coupling conditions are
met.

V. CONCLUSIONS

In summary, we study the transport behaviors of the three
terminal SMT device coupled to a phonon mode. It is found
that the intriguing characteristic of the phonon-assisted side
peaks in the spectral function versus the energy can be di-
rectly observed from the differential conductance versus the
voltage of the third weakly coupled lead. In particular, not
only the positions but also the shapes and the detailed struc-
ture of the side peaks of the spectral function can be per-
fectly mapped into the conductance if certain experimental
conditions are met. Moreover, we determine the conditions
for this perfect mapping. The results exhibit that this map-
ping is excellent at low temperature regardless of the bias
and the level of the SMT. The mapping is destroyed at high
temperature.
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