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With our proof of the holographic electron density theorem for time-dependent systems, a first-principles
method for any open electronic system is established. By introducing the self-energy density functionals for the
dissipative interactions between the reduced system and its environment, we develop a time-dependent density-
functional theory formalism based on an equation of motion for the Kohn-Sham reduced single-electron
density matrix of the reduced system. Two approximate schemes are proposed for the dissipative interactions,
the complete second-order approximation and the wide-band limit approximation. A numerical method based
on the wide-band limit approximation is subsequently developed and implemented to simulate the steady and
transient current through various realistic molecular devices. Simulation results are presented and discussed.
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I. INTRODUCTION

Density-functional theory �DFT� has been widely used as
a research tool in condensed matter physics, chemistry, ma-
terials science, and nanoscience. The Hohenberg-Kohn
theorem1 lays the foundation of DFT. The Kohn-Sham �KS�
formalism2 provides a practical solution to calculate the
ground-state properties of electronic systems. Runge and
Gross extended DFT further to calculate the time-dependent
properties and hence the excited state properties of any elec-
tronic systems.3 The accuracy of DFT or time-dependent
DFT �TDDFT� is determined by the exchange-correlation
�XC� functional. If the exact XC functional were known, the
KS formalism would have provided the exact ground-state
properties, and the Runge-Gross extension, TDDFT, would
have yielded the exact time-dependent and excited-states
properties. Despite their wide range of applications, DFT and
TDDFT have been mostly limited to isolated systems.

Many systems of current research interest are open sys-
tems. A molecular electronic device is one such system.
Simulations based on DFT have been carried out on such
devices.4–13 These simulations focus on steady-state currents
under bias voltages. Two types of approaches have been
adopted. One is the Lippmann-Schwinger formalism by
Lang and co-workers.7 The other is the first-principles non-
equilibrium Green’s function �NEGF� technique.8–13 In both
approaches the KS Fock operator is taken as the effective
single-electron model Hamiltonian, and the transmission co-
efficients are calculated within the noninteracting electron
model. The investigated systems are not in their ground
states, and applying ground-state DFT formalism for such
systems is only an approximation.14 DFT formalisms adapted
for current-carrying systems have also been proposed re-
cently, such as Kosov’s KS equations with direct current,15

Kurth et al.’s16 and Zheng et al.’s17 TDDFT formulations,
Cui et al.’s complete second-order quantum dissipation
theory �CS-QDT� formalism18 and Burke et al.’s KS master
equation including dissipation to phonons.19 In this paper, we
present a DFT formalism for open electronic systems, and
use it to simulate the steady and transient currents through
molecular electronic devices. The first-principles formalism

depends only on the electron density function of the reduced
system.

This paper is organized as follows. In Sec. II the existence
of a first-principles method for any open electronic system is
established with the proof of the holographic electron density
theorem for time-dependent real physical systems. In Sec. III
we describe a TDDFT formalism for open electronic systems
based on an equation of motion �EOM� for the reduced
single-electron density matrix. By utilizing the holographic
electron density theorem, the self-energy functionals with ex-
plicit functional dependence on the electron density of the
reduced system are introduced, and thus a rigorous and effi-
cient first-principles formalism for the transient dynamics of
any open electronic system is established. Two approximate
schemes, the complete second-order �CSO� approximation
for the dissipative interaction and the wide-band limit
�WBL� approximation for the electrodes, are proposed in
Sec. III. To demonstrate the applicability of our first-
principles formalism, TDDFT calculations are carried out to
simulate the transient and steady current through realistic
molecular devices. The detailed numerical procedures and
results are described in Sec. V. Discussion and summary are
given in Sec. VI.

II. HOLOGRAPHIC ELECTRON DENSITY THEOREM

As early as in 1981, Riess and Münch20 discovered the
holographic electron density theorem which states that any
nonzero volume piece of the ground-state electron density
determines the electron density of a molecular system. This
is based on the fact that the electron density functions of
atomic and molecular eigenfunctions are real analytic away
from nuclei. In 1999 Mezey extended the holographic elec-
tron density theorem.21 And in 2004, Fournais et al. proved
again the real analyticity of the electron density functions of
any atomic or molecular eigenstates.22 Therefore, for a time-
independent real physical system made of atoms and mol-
ecules, its electron density function is real analytic �except at
nuclei� when the system is in its ground state, any of its
excited eigenstates, or any state which is a linear combina-
tion of a finite number of its eigenstates; and the ground-state
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electron density on any finite subsystem determines com-
pletely the electronic properties of the entire system.

As for time-dependent systems, the issue was less clear.
Although it seems intuitive that its electron density function
is real analytic �except for isolated points in space-time�, it
becomes quite difficult to prove the analyticity rigorously.
Fortunately, we are able to establish a one-to-one correspon-
dence between the electron density function of any finite
subsystem and the external potential field which is real ana-
lytic in both t space and r space.23

Theorem. If the electron density function of a real finite
physical system at t0, ��r , t0�, is real analytic in r space, the
corresponding wave function is ��t0�, and the system is sub-
jected to a real analytic �in both t space and r space� external
potential field v�r , t�, the time-dependent electron density
function on any finite subspace D, �D�r , t�, has a one-to-one
correspondence with v�r , t� and determines uniquely all elec-
tronic properties of the entire time-dependent system.

Proof. Let v�r , t� and v��r , t� be two real analytic poten-
tials in both t space and r space which differ by more than a
constant at any time t� t0, and their corresponding electron
density functions are ��r , t� and ���r , t�, respectively. There-
fore, there exists a minimal nonnegative integer k such that
the kth order derivative differentiates these two potentials at
t0:

� �k

�tk �v�r,t� − v��r,t���
t=t0

� const. �1�

Following exactly Eqs. �3�–�6� of Ref. 3, we have

� �k+2

�tk+2 ���r,t� − ���r,t���
t=t0

= − � · u�r� , �2�

where

u�r� = ��r,t0� � �� �k

�tk �v�r,t� − v��r,t���
t=t0
� . �3�

Due to the analyticity of ��r , t0�, v�r , t�, and v��r , t�, � ·u�r�
is also real analytic in r space. It has been proven in Ref. 3
that it is impossible to have � ·u�r�=0 on the entire r space.
Therefore it is also impossible that � ·u�r�=0 everywhere in
D because of analytical continuation of � ·u�r�. Note that
�D�r , t�=��r , t� for r�D. We have thus

� �k+2

�tk+2 ��D�r,t� − �D� �r,t���
t=t0

� 0 �4�

for r�D. This confirms the existence of a one-to-one corre-
spondence between v�r , t� and �D�r , t�. �D�r , t� thus deter-

mines uniquely all electronic properties of the entire system.
This completes the proof of the theorem.

Note that if ��t0� is the ground state, any excited eigen-
state, or any state being a linear combination of a finite num-
ber of eigenstates of a time-independent Hamiltonian, the
prerequisite condition in the theorem that the electron den-
sity function ��r , t0� be real analytic is automatically satis-
fied, as proven in Ref. 22. In particular, if the electron den-
sity function at t= t0, ��r , t0�, corresponds to a ground state, it
is guaranteed that �D�r , t� of the subsystem D determines all
physical properties of the entire system at any time t, other-
wise based on the Runge-Gross theorem,3 the system prop-
erties also have a functional dependence on the initial state
��t0�. In our works, we usually start from a ground state, and
then switch on external potentials to investigate the dynamic
response of the reduced system. Therefore, �D�r , t� deter-
mines uniquely all physical properties of the open electronic
systems.

According to the theorem, the electron density function of
any subsystem determines all the electronic properties of the
entire time-dependent physical system. This proves in prin-
ciple the existence of a TDDFT formalism for open elec-
tronic systems. All one needs to know is the electron density
function of the reduced system.

III. FIRST-PRINCIPLES FORMALISM

A. Equation of motion

Figure 1 depicts an open electronic system. Region D is
the reduced system of our interests, and the electrodes L and
R are the environment. Altogether D, L, and R form the
entire system. Taking Fig. 1 as an example, we develop a
practical DFT formalism for the open systems. Within the
TDDFT formalism, a closed EOM has been derived for the
reduced single-electron density matrix ��t� of the entire
system:24

i�̇�t� = �h�t�,��t�� , �5�

where h�t� is the KS Fock matrix of the entire system, and
the square bracket on the right-hand side �RHS� denotes a
commutator. The matrix element of � is defined as �ij�t�
= �aj

†�t�ai�t�	, where ai�t� and aj
†�t� are the annihilation and

creation operators for atomic orbitals i and j at time t, re-
spectively. Fourier transformed into frequency domain while
considering linear response only, Eq. �5� leads to the conven-
tional Casida’s equation.25 Expanded in the atomic orbital
basis set, the matrix representation of � can be partitioned as

FIG. 1. Schematic representation of the ex-
perimental setup for quantum transport through a
molecular device.
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� = 
 �L �LD �LR

�DL �D �DR

�RL �RD �R
� , �6�

where �L, �R, and �D represent the diagonal blocks corre-
sponding to the left lead L, the right lead R, and the device
region D, respectively; �LD is the off-diagonal block between
L and D; and �RD, �LR, �DL, �DR, and �RL are similarly
defined. The KS Fock matrix h can be partitioned in the
same way with � replaced by h in Eq. �6�. Thus, the EOM
for �D can be written as

i�̇D = �hD,�D� + �
�=L,R

�hD���D − �D�h�D�

= �hD,�D� − i �
�=L,R

Q�, �7�

where QL �QR� is the dissipation term due to L �R�. With the
reduced system D and the leads L /R spanned respectively by
atomic orbitals 
l� and single-electron states 
k��, Eq. �7� is
equivalent to

i�̇nm = �
l�D

�hnl�lm − �nlhlm� − i �
�=L,R

Q�,nm, �8�

Q�,nm = i �
k���

�hnk�
�k�m − �nk�

hk�m� , �9�

where m and n correspond to the atomic orbitals in region D;
k� corresponds to an electronic state in the electrode � ��
=L or R�. hnk�

is the coupling matrix element between the
atomic orbital n and the electronic state k�. The transient
current through the interfaces SL or SR �see Fig. 1� can be
evaluated as follows:

J��t� = − �
�

dr
�

�t
��r,t� = − �

k���

d

dt
�k�k�

�t�

= i�
l�D

�
k���

�hk�l�lk�
− �k�lhlk�

�

= − �
l�D

Q�,ll = − tr�Q��t�� . �10�

Since the dissipation term Q��t� is not known a priori, Eq.
�7� is not self-closed. Therefore, at this stage EOM �7� can-
not be solved straightforwardly to obtain the transient dy-
namics of the reduced system D.

According to the holographic electron density theorem of
time-dependent physical systems, all physical quantities are
explicit or implicit functionals of the electron density in the
reduced system D, �D�r , t�. Q� of Eq. �7� is thus also a func-
tional of �D�r , t�. Therefore, Eq. �7� can be recast into a
formally closed form,

i�̇D = �hD�t;�D�r,t��,�D� − i �
�=L,R

Q��t;�D�r,t�� . �11�

It would thus be much more efficient integrating Eq. �11�
than solving Eq. �8�, provided that Q��t ;�D�r , t�� or its ap-
proximation is known. We therefore have a practical formal-
ism for any open electronic systems. Neglecting

Q��t ;�D�r , t�� from Eq. �11� leads to the conventional TD-
DFT formulation24 for the isolated reduced system, while
Q��t ;�D�r , t�� accounts for the dissipative interactions be-
tween D and L or R. Equation �11� is the TDDFT EOM for
open electronic systems, and is formally analogous to the
master equations derived for the system reduced density ma-
trix in conventional QDT.26

Our formalism is similar in its form to one of our early
works, in which a dynamic mean-field theory for dissipative
interacting many-electron systems was developed.27,28 An
EOM for the reduced single-electron density matrix was de-
rived to simulate the excitation and nonradiative relaxation
of a molecule embedded in a thermal bath. This is in analogy
to our case although our environment is actually a fermion
bath instead of a boson bath. More importantly, the number
of electrons in the reduced system is conserved in Refs. 27
and 28 while in our case it is not.

Burke et al. extended TDDFT to include electronic sys-
tems interacting with phonon baths,19 they proved the exis-
tence of a one-to-one correspondence between v�r , t� and
��r , t� under the condition that the dissipative interactions
�denoted by a superoperator C in Ref. 19� between electrons
and phonons are fixed. In our case since the electrons can
move in and out of the reduced system, the number of the
electrons in the reduced system is not conserved. In addition,
the dissipative interactions can be determined in principle by
the electron density of the reduced system. We do not need to
stipulate that the dissipative interactions with the environ-
ment are fixed as Burke et al. And the only information we
need is the electron density of the reduced system. In the
frozen DFT approach29 an additional kinetic energy func-
tional term caused by the environment was introduced to
account for the interaction between the system and the envi-
ronment. This additional term is included in Q��t ;�D�r , t�� of
Eq. �11�.

B. The dissipation term Q�

The challenge now is to express Q��t ;�D�r , t��. Based on
the Keldysh nonequilibrium Green’s function �NEGF�
formalism,30,31 we have �Appendix A, cf. Eq. �9��

Q�,nm�t� = − �
l�D

�
−�

�

d	�Gnl

�t,	���,lm

a �	,t�

+ Gnl
r �t,	���,lm


 �	,t� + H.c.� , �12�

where GD
r and GD


 are the retarded and lesser Green’s func-
tions of the reduced system, and ��

a and ��

 are the advanced

and lesser self-energies due to the lead � �L or R�, respec-
tively. It is important to emphasize that Eq. �12� is derived
from the initial ground state at t=−� when the device and
leads are completely isolated, denoted by �0. This corre-
sponds to the partitioned scheme developed by Caroli et al.32

The dissipation term Q� can also be derived from the ground
state of the fully connected system at t= t0, denoted by �0, as
follows �see Appendix B for details�,
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Q�,nm�t� = �Q�,nm
0 �t� − �

l�D
�

t0
+

t

d	�Gnl
r �t,	���,lm


 �	,t�

+ Gnl

�t,	���,lm

a �	,t��� + H.c., �13�

where t0
+ is the time immediately after t0, and the first term

on the RHS, Q�,nm
0 �t�, arises due to the initial couplings be-

tween the reduced system and the environment. Equation
�13� thus conforms with the partition-free scheme proposed
by Cini,33 and the relevant Green’s functions and self-
energies are defined differently from those in Eq. �12�, since
they are associated with different reference ground states.

Based on Gell-Mann and Low theorem,34 in most cases
�0 can be reached from �0 by adiabatically turning on the
couplings between the device and the leads from t=−� to t0.
In these circumstances, the partitioned and partition-free
schemes are formally equivalent, since the history of the

couplings between D and L or R only determines �0 and its
corresponding electron density function ��r , t0�, and does not
influence the time evolution of the reduced system after-
wards. Of course, there might be few exceptional cases
where the turn on of the couplings between D and L or R
results in only an excited eigenstate at t0. In these cases, in
principle we need to resort to Eq. �13�, while in practice Eq.
�12� can be viewed as an approximation to Eq. �13� since it is
much more convenient for numerical implementations.

C. Solution for steady-state current

In cases where steady states can be reached, the system-
bath coupling, 
nm

k� �t ,	��hnk�
�t�hk�m�	�, becomes asymptoti-

cally time independent as t ,	→ +�. The Green’s functions
and self-energies for the reduced system D rely simply on
the difference of the two time variables,35 i.e., GD�t ,	�
�GD�t−	� and ��t ,	����t−	�, and thus we have

Gnm

 �t,	� = �

p,q�D
�

−�

�

dt1�
−�

�

dt2Gnp
r �t,t1��pq


 �t1,t2�Gqm
a �t2,	� = i �

p,q�D
�

�=L,R
�

l���

f l
���

−�

�

dt1e−i�l
�t1Gnp

r �t − t1��
pq
l�

� ��
−�

�

dt2ei�l
�t2Gqm

a �t2 − 	�� = i �
p,q�D

�
�=L,R

�
l���

f l
�e−i�l

��t−	�Gnp
r ��l

��
pq
l� Gqm

a ��l
�� , �14�

GD
r,a��� = ��I − hD��� − �r,a����−1, �15�

�nm
r,a��� = �

�=L,R
�
l��


nm
l� �� − �l

� ± i��−1, �16�

where I is an identity matrix, � is an infinitesimal positive
number, and f l

� is the occupation number of the single-
electron state l� of the isolated lead � �L or R�. The steady-
state current can thus be explicitly expressed by combining
Eqs. �14�–�16�,

JL��� = − JR��� = − �
n�D

QL,nn���

= 2���
k�L

fk
L�

l�R

���l
R − �k

L�tr�GD
r ��k

L�
lRGD
a ��k

L�
kL�

− �
l�R

fl
R �

k�L

���k
L − �l

R�tr�GD
r ��l

R�
lRGD
a ��l

R�
kL��
=� �fL��� − fR����T���d� , �17�

T��� = 2��L�Rtr�GD
r ���
R���GD

a ���
L���� . �18�

Here T��� is the KS transmission coefficient, f���� is the
Fermi distribution function, and �������k�����−�k

�� is the
density of states �DOS� for the lead � �L or R�. Equation �17�
appears formally analogous to the Landauer formula36,37

adopted in the conventional DFT-NEGF formalism.9,11 How-
ever, to obtain the correct steady current, the nonequilibrium
effects need to be properly accounted for. This may be ac-
complished by substituting the asymptotic values of the TD-
DFT XC potential for the ground-state DFT counterpart in
Eq. �17�.

D. Self-energy functionals

Due to its convenience for practical implementation, Eq.
�12� is adopted in our formalism. The Green’s functions GD

r

and GD

 in Eq. �12� can be calculated via the following

EOMs if ��
a and ��


 are known,

i
�Gnm

r �t,	�
�t

= ��t − 	��nm + �
l�D

hnl�t�Glm
r �t,	�

+ �
l�D

�
−�

�

dt̄�nl
r �t, t̄�Glm

r �t̄,	� , �19�

i
�Gnm


 �t,	�
�t

= �
l�D

�
−�

�

dt̄��nl

�t, t̄�Glm

a �t̄,	� + �nl
r �t, t̄�

� Glm

 �t̄,	�� + �

l�D

hnl�t�Glm

 �t,	� , �20�

where �r=��=L,R���
a�†, �
=��=L,R��


, and GD
a = �GD

r �†. The
key quantities for the evaluation of Q��t ;�D�r , t�� are thus
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the self-energies ��
a and ��


. According to our theorem, ��
a

and ��

 are in principle functionals of �D�r , t�. Therefore,

instead of finding Q��t ;�D�r , t�� directly, we need now find
the density functionals ��

a�	 , t ;�D�r , t�� and
��


�	 , t ;�D�r , t��. By definition the self-energies are function-
als of the electron density function of the entire system, �
= ��D ,���:

��
a�	,t;�� � i��t − 	�h�	;��exp�i�

	

t

h��t̄;���dt̄�h�t;�� ,

�21�

��

�	,t;�� � ih�	;��f��h��− �;����

� exp�i�
	

t

h��t̄;���dt̄�h�t;�� , �22�

where ��t−	� is the Heaviside step function, �� is the elec-
tron density function in lead �, h� is the Kohn-Sham Fock
matrix of the isolated lead �, and f� is the Fermi distribution
function for � �L or R�. Based on our theorem, �� are deter-
mined uniquely by �D via certain continuation �CT� opera-
tion, i.e.,

�D�r,t� ——→
CT

���r,t� , �23�

���r,t� = ��
CT�r,t;�D�r,t�� . �24�

We obtain thus the following functionals,

��
a�	,t� = ��

a�	,t;�D,��
CT��D�� , �25�

��

�	,t� = ��


�	,t;�D,��
CT��D�� . �26�

Note that the CT operation is case dependent, and often ap-
proximate in practice. For the system depicted in Fig. 1, the
CT operation from �D to �� may be approximated by a trans-
lation over repeating unit cells if the bulk electrodes are pe-
riodic, i.e.,

���r,t� = ��
CT��D� � �D�r + NR,t� , �27�

where t=0 refers to the initial time when the entire con-
nected system is in its ground state, R is the base vector
perpendicular to the interface S� for the lead �, and N de-
notes an integer which makes the translated vector r+NR to
be inside the reduced system D as well as near the interfaces
S�. To ensure the accuracy of such an approximate CT op-
eration, it is vital to include enough portions of electrodes
into the region D, so that the electron density function near
the interfaces S� takes correctly the bulk values.

Of course, there could be cases that the approximate
��

CT��D� may deviate drastically from their exact values some
distance away from the boundary. Usually ��

a and ��

 de-

pend mostly on the electron density near the boundary where
the approximate ��

CT��D� agree best with the correct ��. The
resulting ��

a��D ,��
CT��D�� and ��


��D ,��
CT��D�� thus provide

reasonable approximations for their exact counterparts. For

cases where the self-energies happen to rely heavily on �� far
away from D, the approximated CT breaks down, and our
method fails to be applicable.

Given ��
a��D� and ��


��D� how do we solve the EOM �11�
in practice? Again take the molecular device shown in Fig. 1
as an example. We focus on the reduced system D as de-
picted in Fig. 2, and integrate the EOM �11� directly by
satisfying the boundary conditions at SL and SR. �VL�t� and
�VR�t� are the bias voltages applied on L and R, respectively,
and serve as the boundary conditions at SL and SR, respec-
tively. At t→−�, �VL=�VR=0, and �VL�t� and �VR�t� are
turned on near t=0. We need thus integrate Eq. �11� together
with a Poisson equation for the Coulomb potential inside the
device region D subject to the boundary condition deter-
mined by the potentials at SL and SR. It is important to point
out that Q��t ;�D�r , t�� is actually a nearly local quantity of
the reduced system through the local coupling matrix terms
hD� ��=L or R�. In this sense, our formalism for open elec-
tronic systems is not in conflict with the “nearsightedness”
concept of Kohn.38

IV. TWO APPROXIMATE SCHEMES FOR SELF-ENERGY
DENSITY FUNCTIONALS

A. Complete second-order approximation for dissipative
functional

Equations �12� and �13� appear quite complicated. To
have an unambiguous interpretation of the dissipation term
Q�, we further assume the KS Fock matrix hD is time-
independent and treat GD


�t ,	� by means of CS QDT.26 Equa-
tion �12� is thus simplified to be �see Appendix C for details�

Q��t� = i
��̃�
��hD�,�D�† + ��̃�


�hD�,�̄D�†� , �28�

where �̄D� I−�D is the reduced single-hole density matrix
of the reduced system. On the RHS of Eq. �28� a new com-
mutator has been introduced for arbitrary operators A and B:

�A,B�† � AB − B†A†. �29�

�̃�

,� are the causality-transformed counterparts of ��


,�,
with ��


,��t ,	�=��

,��t−	� presumed, i.e.,

FIG. 2. The molecular device region D is subject to the bound-
ary conditions �VL�t� and �VR�t� at the interfaces SL and SR. The
interactions between the region D and the lead L and R are ac-
counted for by the self-energy functionals �L and �R, respectively.
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�̃�

,��hD� � �

0

�

dteihDt��

,��t� = � 
�

�±��hD� ± i��
�±��hD� ,

�30�

where 
�
�±��hD� and ��

�±��hD� are real symmetric matrices, and
associated with each other via the Kramers-Kronig relation.26

Therefore, Eq. �28� can be expanded as

Q��t� = i�
�
�−��hD�,�D� + 
��

�−��hD�,�D� − i�
�
�+��hD�,�̄D�

− 
��
�+��hD�,�̄D� . �31�

The physical meaning of Eq. �31� is clear and intuitive: the
first and third terms on its RHS account for the energy shift-
ing of occupied and virtual orbitals of the reduced system
due to the couplings with the lead �, respectively; and the
second and fourth terms on its RHS are responsible for the
level broadening of occupied and virtual orbitals in D due to
the lead � while contributing to the transient current, respec-
tively. The second term accounts for the electrons leaving the
device region, and the fourth term describes that the holes
hop onto the electrodes or the electrons enter the device re-
gion from the electrodes.

B. Solution for transient current with WBL approximation
and test on a model system

To simplify the solutions of Eqs. �19� and �20�, the WBL
approximation39,40 may be adopted besides the approximate
CT operation �cf. Eq. �27��, which involves the following
assumptions for the leads: �i� their bandwidths are assumed
to be infinitely large, such that the summation over all the
single-electron states in the leads can be replaced by an in-
tegration over the entire energy range, i.e., �k��

→�−�
� d������, �ii� their linewidths, �k

��t ,	�, defined by the
DOS at SL or SR times the system-bath couplings, i.e.,
�k

��t ,	�������k
��
k��t ,	�, are treated as energy indepen-

dent, i.e., �k
��t ,	�����t ,	����, and �iii� the level shifts of

L or R are taken as a constant for all energy levels, i.e.,
��k

��t������t�=−�V��t�, where �V��t� are the bias volt-
ages applied on L or R at time t.

Within the WBL approximation, the self-energy function-
als can be expressed by23

��,nm
a �	,t� = i��t − 	��nm

� ��D� , �32�

��,nm

 �	,t� =

2i

�
exp�i�

t

	

�V��t̄�dt̄��nm
� ��D�

� ��
−�

+�

f����ei��t−	�d�� . �33�

Here �V��t̄� is the bias voltage applied on the lead �, and
����D� is the linewidth matrix due to lead �,23

�nm
� ��D� = ����� f��hnkf

��D,�D�r + NR��

� hkfm
��D,�D�r + NR��	 , �34�

where ���� f� is the density of states for � at its Fermi energy

� f, kf is a surface state of � at � f, and �¯	 denotes the
average over all surface states at � f. Equations �32�–�34� pro-
vide thus the explicit dependence of ��

a and ��

 on �D�r , t�.

Note that ��

��D� depends on the applied voltage �V��t�

explicitly. In principle �V��t� is a functional of �D�r , t� as
well. �D�r , t� is unknown and needs to be solved. The poten-
tial v�r� in DFT formalism, which includes the potentials
from nuclei and external sources, is a functional of electron
density ��r�. In any practical implementation of DFT, v�r� is
given and used to solve for ��r�, instead of determining v�r�
from ��r�. In our formalism �V��t� is given as a known
function and used to determine �D�r , t� in the same fashion.

Based on Eqs. �32�–�34�, the dissipation term within the
WBL approximation, Q�

WBL, can be obtained readily as fol-
lows �see Appendix D for detailed derivations�,

Q�
WBL�t� = K��t� + 
����D�,�D� . �35�

Here the curly bracket on the RHS denotes an anticommuta-
tor, and K��t� is a Hermitian matrix,

K��t� = −
2i

��U��t��
−�

�0 d�ei�t

� − hD�0� + i�
+ �

−�

�0

�I − U��t�ei�t�

�
d�

� − hD�t� + i� + ����t���� + H.c., �36�

where �0 is the chemical potential of the entire system, the
overall linewidth �=����, and the effective propagator of
the reduced system U��t� is

U��t� = e−i�0
t �hD�	�−i�−����	��d	. �37�

C. Numerical test of wide-band limit approximation

The WBL approximated self-energy functionals are then
tested by calculations on a model system which has previ-
ously been investigated by Maciejko, Wang, and Guo.40 In
this model system the device region D consists of a single
site spanned by only one atomic orbital �see Fig. 3�. Exact
transient current driven by a step voltage pulse has been
obtained from NEGF simulations,40 and the authors con-
cluded that the WBL approximation yields reasonable results
provided that the bandwidths of the leads are five times or
larger than the coupling strength between D and L or R. The

FIG. 3. Model system for the test of the WBL self-energy func-
tionals where a single site spans the device region D. Transient
currents through leads L and R, JL�t� and JR�t�, are simulated. The
inset shows the time-dependent level shift of lead R.
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computational details are as follows. The entire system �L
+R+D� is initially in its ground state with the chemical po-
tential �0. External bias voltages are switched on from the
time t=0, which results in transient current flows through the
leads L and R. �hD�t��hD�t�−hD�0�, ��L�t�, and ��R�t� are
the level shifts of D, L, and R at time t, respectively. In our
works we take �hD�t�= 1

2 ���L�t�+��R�t��, ��L�t�=0, and
��R�t�=��R�1−e−t/a�, where a is a positive constant. The
real analytic level shift ��R�t� resembles perfectly a step
pulse as a→0+ �see the inset of Fig. 3�. The calculation
results are demonstrated in Fig. 4. We choose exactly the
same parameter set as that adopted for Fig. 2 in Ref. 40, and
the resulting transient current, represented by Fig. 4�a�, ex-
cellently reproduces the WBL result in Ref. 40, although the
numerical procedures employed are distinctively different.
The comparison confirms evidently the accuracy of our for-
malism. From Figs. 4�a�–4�c�, it is observed that with the
same linewidths ��, a larger level shift ��R results in a more
fluctuating current, whereas by comparing Figs. 4�a� and
4�d� we see that under the same ��R, the current decays more
rapidly to the steady-state value with the larger ��.

By transforming its integrand into a diagonal representa-
tion, the integration over energy in Eq. �36� can be carried
out readily. Therefore, Q�

WBL are evaluated straightforwardly,
which makes the above solution procedures for transient dy-
namics within the WBL approximation a practical routine for
subsequent TDDFT calculations.

V. TDDFT CALCULATIONS OF TRANSIENT CURRENT
THROUGH MOLECULAR DEVICES

A. Numerical procedures

With the EOM �11� and the WBL approximation for the
self-energy functionals ��

a��D� and ��

��D�, it is now

straightforward to investigate the transient dynamics of open
electronic systems. All our first-principles calculations are
carried out with our software package LODESTAR.41

The ground-state properties of the reduced system at t
=0 are determined by following the partitioned scheme ap-

proach adopted in conventional DFT-NEGF method.8–10,13

Different from the popular periodic-boundary-condition-
based approach,10,13,42 what we employ is a molecular-
cluster-based technique.41 The ground-state KS Fock matrix
of an extended cluster, covering not only the device region D
but also portions of leads L and R, is calculated self-
consistently by conventional DFT method with local density
approximation �LDA� for the XC functional.2 Its diagonal
blocks corresponding to the leads L and R are then extracted
and utilized to evaluate the surface Green’s function of iso-
lated lead � �L or R�, g�

r =g�
r ��0 ;��

CT��D��, by applying the
translational invariance43 �cf. Eq. �27��. In this way the pos-
sible misalignment for the chemical potentials of the isolated
leads L and R, especially when they are made of different
materials, can be avoided so long as the extended cluster is
chosen large enough. In an orthogonal atomic orbital basis
set, the linewidths ����D� within the WBL approximation
are obtained from g�

r via

����D� = − Im
hD�g�
r ��0;��

CT��D��h�D� . �38�

At t=0 the left-hand side �LHS� of the Eq. �11� vanishes. The
EOM �11� reduces thus to a nonlinear equation for �D�0�,
and can be solved readily by employing the NEGF approach
as follows:

�D�0� =
2

�
�

−�

�0

d�GD
r,0����GD

a,0��� , �39�

where

GD
r,0��� = �GD

a,0����† = �� − hD�0� + i��−1. �40�

Equation �39� provides the initial condition for the EOM
�11�.

The molecular device is switched on by a steplike voltage
�VR�t�=−��R�t�=�VR�1−e−t/a� applied on the right lead
with a→0+ �see the inset of Fig. 3�, while �VL�t�=0. The
self-energy functionals ��

a��D� and ��

��D� can be evaluated

through Eqs. �32�, �33�, and �38�. The dynamic response of
the reduced system is obtained by solving the EOM �11� in

FIG. 4. The calculated transient current
through SR within the WBL scheme. We set �0

=hD�0�=0 for the ground state; and ��L�t�=0
and ��R�t�=��R�1−e−t/a� after switch on. The
four panels show different cases where �a� ��R

=2 eV, �L=�R=0.1 eV; �b� ��R=0.2 eV, �L

=�R=0.1 eV; �c� ��R=10 eV, �L=�R=0.1 eV;
and �d� ��R=2 eV, �L=�R=0.04 eV, respec-
tively.
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time domain within the adiabatic local-density approxima-
tion �ALDA�25 for the XC functional. The induced KS Fock
matrix of the reduced system, �hD�t��hD�t�−hD�0�, is com-
prised of Hartree and XC components,24 i.e.,

�hD�t� = �hD
H�t� + �hD

XC�t� , �41�

where

�hij
H�t� = �

D

dr�i
*�r��vH�r,t�� j�r� . �42�

Here the Hartree potential �vH�r , t� satisfies the following
Poisson equation for the device region D subject to boundary
conditions �V��t� at every time t:

�2�vH�r,t� = − 4���D�r,t� ,

��vH�r,t��SL
= �VL�t� ,

��vH�r,t��SR
= �VR�t� . �43�

To save computational resources we calculate �hD
XC�t� to its

first-order change due to the switch-on potential:

�hij
XC�t� = �

mn�D

Vijmn
XC ��mn�t� − �mn�0�� , �44�

Vijmn
XC = �

D

dr�m
* �r��n�r�

�vXC�r,t;�D�
��D�r,t�

��i
*�r�� j�r� , �45�

where vXC�r , t ;�D� is the XC potential. The reduced system
is propagated from t=0 following the EOM �11� by the
fourth-order Runge-Kutta algorithm44 with the time step
0.02 fs. Virtually the same results are yielded by adopting a
much smaller time step, which justifies the accuracy of our
time-evolution scheme.

B. Calculation on a graphene-alkene-graphene system

A realistic molecular device depicted in Fig. 5 is taken as
the open system under investigation. The device region D
containing 24 carbon and 12 hydrogen atoms is spanned by
the 6-31 Gaussian basis set, i.e., altogether 240 basis func-
tions for the reduced system. The leads are quasi-one-
dimensional graphene ribbons with dangling bonds saturated
by hydrogen atoms, and the entire system is on a same plane.
The extended cluster contains totally 134 atoms.

In Fig. 6 we plot the calculated transient currents through
the interfaces SL and SR, JL�t� and JR�t�, under various
turn-on voltages. As depicted in Fig. 6, JL�t� and JR�t� in-
crease rapidly during the first few fs and then approach
gradually towards their steady-state values. This agrees with
previous investigations on model systems.16,40 The steady
currents through SL and SR are �a� −5.9 �A and 5.9 �A, �b�
−14.2 �A and 14.2 �A, �c� −18.0 �A and 18.0 �A, and �d�
−21.3 �A and 21.3 �A, respectively, and thus cancel each
other out exactly, as they should. By comparison of Figs.

FIG. 5. A graphene-alkene-graphene system adopted in TDDFT
calculations.

FIG. 6. The solid �dashed�
curve represents the transient cur-
rent through the interface SR �SL�
of the graphene-alkene-graphene
system driven by a steplike volt-
age applied on the lead R with the
amplitude �a� �VR=−0.1 V, �b�
�VR=−0.3 V, �c� �VR=−0.5 V,
and �d� �VR=−1.0 V.
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6�a�–6�d� it is obvious that a larger turn-on voltage results in
a more conspicuous overshooting for the transient current.
Complex fluctuations are also observed for the time-
dependent currents, which are due to the various eigenvalues
possessed by the nonnegative definite linewidths �� with
their magnitudes ranging from 0 to 4.1 eV, corresponding to
various dissipative channels between D and L or R. From
Fig. 6, the characteristic switch-on time for the graphene-
alkene-graphene system is estimated as about 10–15 fs for
applied bias voltages ranging from 0.1 V to 1.0 V. For much
higher turn-on voltages the linearized form of �hD

XC�t� �Eq.
�44�� becomes inadequate, which makes such a TDDFT cal-
culation computationally demanding with our present cod-
ing.

It is noted that the reduced system remains in its ground
state in absence of an applied bias voltage. This is confirmed
by a free propagation for the reduced system. During the
course the transient current JL�t� or JR�t� vanishes correctly
at every time t�0. This thus validates that the WBL approxi-
mated self-energy functionals derived from the partitioned

scheme �cf. Eq. �12�� is well adapted to a TDDFT formalism.

C. Calculation on a carbon-nanotubes-alkene-carbon-
nanotubes system

The second molecular device we calculate is sketched in
Fig. 7, where a linear alkene is connected to semi-infinite
single-walled carbon nanotubes �CNT� �5, 5� at its both ends.
The device region D consists of 88 carbon and 22 hydrogen
atoms, i.e., altogether 836 basis functions for the reduced
system. The extended cluster for the ground-state calculation
contains 290 atoms in total. The calculated transient currents
driven by steplike turn-on voltages �VR�t� �see the inset of
Fig. 3� are plotted in Fig. 8. Here we have set �VL=0. The
switch-on time for the CNT-alkene-CNT system is about
10 fs for applied voltages ranging from 0.1 V to 1.0 V.

D. Calculation on an Al-C7-Al system

Another open system adopted in our first-principles cal-
culations is depicted in Fig. 9, where a linear chain of seven
carbon atoms is embedded between two semi-infinite Al
leads in the �001� direction of bulk Al. The current-voltage
characteristics of this Al-C7-Al system with the same geo-

FIG. 7. A CNT-alkene-CNT system adopted in TDDFT
calculations.

FIG. 8. The solid �dashed�
curve represents the transient cur-
rent through the interface SR �SL�
of the CNT-alkene-CNT system
driven by a steplike voltage ap-
plied on the lead R with the am-
plitude �a� �VR=−0.1 V, �b�
�VR=−0.3 V, �c� �VR=−0.5 V,
and �d� �VR=−1.0 V.

FIG. 9. A linear carbon chain is sandwiched between two Al
leads in the �001� direction of bulk Al.
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metric configuration has been investigated extensively.10,13 In
our calculation, the device region D consists of 7 carbon and
18 Al atoms, i.e., altogether 297 basis functions for the re-
duced system, and the extended cluster for ground state cal-
culation contains 115 atoms in total.

The calculated non-WBL transmission coefficient,
T�� ;�VR=0 V�, is plotted in Fig. 10. The main features of
our result agree reasonably with those exhibited in
literature.10,13 The quantitative discrepancies may be due to
the different techniques employed. For instance, a finite mo-
lecular cluster is explicitly treated in our calculation, whereas
an infinite periodic system is considered in Refs. 10 and 13,
and also the basis set and XC functional adopted are distinc-
tively different. The calculated transient currents driven by
steplike turn-on voltages �VR�t� �see the inset of Fig. 3� are
plotted in Fig. 11. The switch-on time for the Al-C7-Al sys-
tem is about 3–5 fs for applied voltages ranging from
0.1 V to 0.5 V.

VI. DISCUSSION AND SUMMARY

Kurth et al. have proposed a practical TDDFT approach
combined with the partition-free scheme.16 A number of rel-
evant technical issues have been addressed, for instance, how
the intractable propagation of the KS orbitals of an infinitely
large system is transformed into the time evolution of KS
orbitals in a finite open system subject to correct boundary
conditions, how the time-dependent KS equation for the en-
tire system is discretized in both r and t spaces, etc. The
performance of their approach has been illustrated by calcu-
lations for one-dimensional model systems. Our first-

principles formalism for open electronic systems is funda-
mentally different: �i� In our method the KS reduced single-
electron density matrix is used as the basic variable while in
Ref. 16 the occupied KS single-electron orbitals are propa-
gated. �ii� The concept of self-energy functional is introduced
in our formalism. In principle the self-energy functional de-
pends only on the electron density function of the reduced
system, and hence we need only focus on the reduced system
of interest without treating explicitly the environment. The
influence of the environment enters via boundary conditions
and the self-energy functionals. This is not only for quantum
transport phenomena, but also for any dynamic process in
any open electronic system. In this sense we expect the EOM
�11� to be a general recipe for open system problems. �iii�
Our EOM is formally analogous to the master equations de-
rived from the conventional QDT.26 From this perspective,
well-established methods and techniques of QDT may be
employed to improve the evaluations of self-energy function-
als and the dissipation term Q��t ;�D�r , t�� systematically.
For instance, another EOM has recently been proposed by
Cui et al. based on the CS-QDT with a self-consistent Born
approximation �SCBA�.18

In conventional QDT26 the key quantity is the reduced
system density matrix, whereas in Eq. �11� the basic variable
is the reduced single-electron density matrix, which leads to
the drastic reduction of the degrees of freedom in numerical
simulation. Linear-scaling methods such as the localized-
density-matrix �LDM� method24,45 may thus be adopted to
further speed up the solution process of Eq. �11�. Therefore,
Eq. �11� provides an accurate and convenient formalism to
investigate the dynamic properties of open systems.

It is worth mentioning that our first-principles method for
open systems applies to the same phenomena, properties, or
systems as those intended by Hohenberg and Kohn,1 Kohn
and Sham,2 and Runge and Gross,3 i.e., where the exchange-
correlation energy is a functional of electron density only,
EXC=EXC���r��. This is true when the interaction between
the electric current and magnetic field is negligible. How-
ever, in the presence of a strong magnetic field, EXC
=EXC���r� , jp�r�� or EXC=EXC���r� ,B�r��, where jp�r� is the
paramagnetic current density and B�r� is the magnetic
field.46 In such a case, our first-principles formalism needs to
be generalized to include jp�r� or B�r�. Of course, jp�r� or
B�r� should be an analytical function in space.

To summarize, we have proven the existence of a first-
principles method for time-dependent open electronic sys-
tems, and developed a formally closed TDDFT formalism. In
principle the functionals depend only on the electron density
function of the reduced system. With an efficient WBL ap-
proximation for self-energy functionals, we have applied the
first-principles formalism to carry out TDDFT calculations
for transient current through realistic molecular devices. This

FIG. 10. Non-WBL transmission coefficient T�� ;�VR=0 V� of
the Al-C7-Al system.

FIG. 11. The solid �dashed� curve represents the transient cur-
rent through the interface SR �SL� of the Al-C7-Al system driven by
a steplike voltage applied on the lead R with the amplitude �a�
�VR=−0.1 V and �b� �VR=−0.5 V.

FIG. 12. The Keldysh time contour on which nonequilibrium
Green’s function theory is constructed. On the contour, the time 	1

is earlier than 	2 even though its real-time projection appears larger.
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work greatly extends the realm of density-functional theory.
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APPENDIX A: DERIVATION OF EQ. (12) WITH THE
KELDYSH FORMALISM

In the Keldysh formalism,30 the nonequilibrium single-
electron Green’s function Gk�,m�t , t�� is defined by

Gk�m�t,t�� � − i�TC
ak�
�t�am

† �t���	 , �A1�

where TC is the contour-ordering operator along the Keldysh
contour30,39 �see Fig. 12�. Its lesser component, Gk�,m


 �t , t��, is
defined by

Gk�m

 �t,t�� � i�am

† �t��ak�
�t�	 . �A2�

The formal NEGF theory has exactly the same structure as
that of the time-ordered Green’s function at zero
temperature.39,47 Thus, the Dyson equation for Gk�m�t , t�� can
be written as

Gk�m�t,t�� = �
l�D

�
C

d	gk�
�t,	�hk�l�	�Glm�	,t�� , �A3�

where Glm�	 , t�� and gk�
�t ,	� are the contour-ordered Green’s

functions for the reduced system D and the isolated semi-
infinite lead � �L or R�, respectively, and the integration over
	 on the RHS is performed along the entire Keldysh contour
�see Fig. 12�.

Glm
r �	 , t��, Glm

a �	 , t��, and Glm

 �	 , t�� denote the retarded,

advanced, and lesser components of Glm�	 , t��, respectively.
Their definitions are as follows:

Glm
r �	,t�� � − i��	 − t���
al�	�,am

† �t���	 , �A4�

Glm
a �	,t�� � i��t� − 	��
al�	�,am

† �t���	 , �A5�

Glm

 �	,t�� � i�am

† �t��al�	�	 , �A6�

where ��	− t�� is the Heaviside step function, and the expec-
tation values �¯	 are taken at the ground state of the entire
system at t=−�, i.e., when the reduced system and the envi-
ronment are completely decoupled. Glm

r �	 , t�� and Glm

 �	 , t��

are to be calculated via their EOMs �19� and �20�. The re-
lated self-energies ��

a�t ,	� and ��

�t ,	� are evaluated

through

��,ln
a �t,	� = �

k���

hlk�
�t�gk�

a �t,	�hk�n�	� , �A7�

��,ln

 �t,	� = �

k���

hlk�
�t�gk�


 �t,	�hk�n�	� , �A8�

for �=L or R. Here gk�

a �t ,	� and gk�


 �t ,	� are the advanced
and lesser surface Green’s functions for the isolated lead
� �L or R�.39

Applying the analytical continuation rules of Langreth,31

we have

Gmk�


 �t�,t� � i�ak�

† �t�am�t��	

= − �Gk�m

 �t,t���* = �

l�D
�

−�

�

d	hlk�
�	�

��gk�


 �	,t�Gml
r �t�,	� + gk�

a �	,t�Gml

 �t�,	��

�A9�

by adopting the following equalities:

Gml
r �t�,	� = �Glm

a �	,t���*,

Gml

 �t�,	� = − �Glm


 �	,t���*,

gk�

a �	,t� = �gk�

r �t,	��*,

gk�


 �	,t� = − �gk�


 �t,	��*. �A10�

Note that �mk�
�t� is precisely the lesser Green’s function of

identical time variables, i.e.,

�mk�
�t� = − i�Gmk�


 �t,t���t�=t. �A11�

By inserting Eqs. �A9� and �A11� into Eq. �9�, Eq. �12� can
be recovered straightforwardly.

APPENDIX B: THE DISSIPATION TERM Q� IN
PARTITION-FREE SCHEME AND PARTITIONED

SCHEME

For brevity, ��=L,R�k�� will be shortened to �k�
. The

Hamiltonian of the entire noninteracting KS system is

H�t� = �
mn�D

hmn�t�am
† an + �

k�

�k�
�t�ak�

† ak�

+ �
m�D

�
k�

�hmk�
�t�am

† ak�
+ H.c.� . �B1�

Initially �at t= t0� the entire KS system is in its ground state
��t0� �denoted by �0	 hereafter�, i.e., H�t0���t0�=E0��t0�.
We define the following Heisenberg creation and annihilation
operators ���1�:

am
† �t� � ei�t0

t H�	�d	am
† e−i�t0

t H�	�d	,

am�t� � ei�t0
t H�	�d	ame−i�t0

t H�	�d	,

ak�

† �t� � ei�t0
t H�	�d	ak�

† e−i�t0
t H�	�d	,

ak�
�t� � ei�t0

t H�	�d	ak�
e−i�t0

t H�	�d	, �B2�

which satisfy their respective EOMs ��t�
�
�t

�:
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�tam
† �t� = i�

i�D

ai
†�t�him�t� + i�

k�

ak�

† �t�hk�m�t� ,

�tam�t� = − i�
i�D

hmi�t�ai�t� − i�
k�

hmk�
�t�ak�

�t� ,

�tak�

† �t� = i�
i�D

ai
†�t�hik�

�t� + i�k�
�t�ak�

† �t� ,

�tak�
�t� = − i�

i�D

hk�i�t�ai�t� − i�k�
�t�ak�

�t� , �B3�

with the initial conditions: am
† �t0�=am

† , am�t0�=am, ak�

† �t0�
=ak�

† , and ak�
�t0�=ak�

.
The retarded, advanced, and lesser surface Green’s func-

tions for the isolated lead � �L or R� are defined as follows:

gk�

r,a�t,	� � � i��±t � 	����
bk�
�t�,bk�

† �	����	 , �B4�

gk�


 �t,	� � i���bk�

† �	�bk�
�t���	 , �B5�

where the curly bracket on the RHS of Eq. �B4� denotes an
anticommutator, and ��	 is the ground state wave function
corresponding to the initial lead Hamiltonian H��t0�,

H��t� = �
k��

�k�
�t�ak�

† ak�
. �B6�

The Heisenberg operators in Eqs. �B4� and �B5� are defined
by

bk�

† �t� � ei�t0
t H��	�d	ak�

† e−i�t0
t H��	�d	,

bk�
�t� � ei�t0

t H��	�d	ak�
e−i�t0

t H��	�d	. �B7�

We then define the retarded, advanced, and lesser Green’s
functions of the entire KS system via their matrix elements
as

Gij
r,a�t,	� � � i��±t � 	��0�
ai�t�,aj

†�	���0	 , �B8�

Gk�j

 �t,	� � i�0�aj

†�	�ak�
�t��0	 , �B9�

Gk�p�


 �t,	� � i�0�ap�

† �	�ak�
�t��0	 , �B10�

Gij

�t,	� � i�0�aj

†�	�ai�t��0	 , �B11�

where �=L or R, and p� denotes a single-electron state in the
lead �. Hereafter we only solve the Green’s functions for
time variables t and 	 ranging from t0

+ to +�. Taking the
first-order time derivatives of gk�

r �t ,	� and gk�

a �t ,	� leads to

�i�t − �k�
�t��gk�

r �t,	� = ��t − 	� , �B12�

− �i�	 + �k�
�	��gk�

a �t,	� = ��t − 	� , �B13�

with the initial conditions for Eq. �B12�: �gk�

r �t ,	��t=	+ =−i,

�gk�

r �t ,	��t=	=− i
2 , and �gk�

r �t ,	��t=	− =0; and for Eq. �B13�:
�gk�

a �t ,	��	=t− =0, �gk�

a �t ,	��	=t=
i
2 , and �gk�

a �t ,	��	=t+ = i, re-

spectively. gk�

r �t ,	� and gk�

a �t ,	� can thus be utilized to solve
partial differential and integrodifferential equations. For in-
stance, we have the EOM for Gk�j


 �t ,	� as

�i�t − �k�
�t��Gk�j


 �t,	� = �
m�D

hk�m�t�Gmj

 �t,	� . �B14�

Combining Eqs. �B12� and �B14�, we obtain

Gk�j

 �t,	� = �

m�D
�

t0
+

t

dt̄gk�

r �t, t̄�hk�m�t̄�Gmj

 �t̄,	�

+ igk�

r �t,t0�Gk�j

 �t0

+,	� . �B15�

With a similar but slightly more tedious treatment for the
time variable 	, we arrive at

Gk�j

 �t,	� = − i �

m�D

Gk�m

 �t,t0

+�Gmj
a �t0,	�

− i�
p�

�
m�D

�
t0
+

	

dt̄Gk�p�


 �t,t0
+�

� gp�

a �t0, t̄�hp�m�t̄�Gmj
a �t̄,	� , �B16�

where �p�
is short for ��=L,R�p��. By taking t= t0

+ in Eq.
�B16� and then inserting it into Eq. �B15�, we have

Gk�j

 �t,	� = �

m�D
�

t0
+

t

dt̄gk�

r �t, t̄�hk�m�t̄�Gmj

 �t̄,	�

+ i �
m�D

gk�

r �t,t0��k�m�t0
+�Gmj

a �t0,	�

+ i�
p�

�
m�D

�
t0
+

	

dt̄gk�

r �t,t0��k�p�
�t0

+�

� gp�

a �t0, t̄�hp�m�t̄�Gmj
a �t̄,	� , �B17�

where the following equalities have been adopted:

�k�m�t� = � − iGk�m

 �t,	��	=t, �B18�

�k�p�
�t� = � − iGk�p�


 �t,	��	=t. �B19�

From Eq. �9� the dissipative term Q��t� is expressed by

Q�,ij�t� = i �
k��

hik�
�t��k�j�t� + H.c.

= �
k��

hik�
��t�Gk�j


 �t,	��	=t + H.c. �B20�

Combining Eqs. �B17� and �B20�, we have thus

Q�,ij�t� = �Q�,ij
0 �t� + �

m�D
�

t0
+

t

dt̄��,im

 �t, t̄�Gmj

a �t̄,t�

+ �
m�D

�
t0
+

t

dt̄��,im
r �t, t̄�Gmj


 �t̄,t�� + H.c.,

�B21�

where
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Q�,ij
0 �t� � i �

k��
�

m�D

hik�
�t�gk�

r �t,t0��k�m�t0
+�Gmj

a �t0,t� ,

�B22�

��,im

 �t, t̄� � i �

k��
�
p�

hik�
�t�gk�

r �t,t0��k�p�
�t0

+�

� gp�

a �t0, t̄�hp�m�t̄� , �B23�

��,im
r �t, t̄� � �

k��

hik�
�t�gk�

r �t, t̄�hk�m�t̄� , �B24�

where ��

 and ��

r are the lesser and retarded self-energies of
the device region, respectively. Note that by definitions GD

r

= �GD
a �†, GD


=−�GD

�†, ��

a = ���
r �†, and ��


=−���

�†. There-

fore, it is trivial to validate Eq. �B21� is equivalent to Eq.
�13�.

It is important to emphasize that ��t0
+� may be different

from ��t0�, so that the corresponding reduced single-electron
density matrix ��t0

+� may also differ from ��t0�. This would

happen if �t0

t0
+
H�	�d	�0, for instance, in the cases where the

external field involves a delta function switched on at t0.
However, for real physical systems, the applied external field

is real analytic in time. In this circumstance, �t0

t0
+
H�	�d	=0,

��t0
+�=��t0�, and ��t0

+�=��t0�.
The above derivations follow rigorously the partition-free

scheme, since the initial state ��t0� can be the ground state
of the fully connected entire system including the device
region and the leads. As for the partitioned scheme, we need
to introduce another reference state �0, which is the ground

state of Hamiltonian H̃,

H̃ � �
mn�D

hmn�t0�am
† an + �

k�

�k�
�t0�ak�

† ak�
. �B25�

Since H̃ does not contain any coupling terms between D and
L or R, �0 depicts the scenario that the device region and the
leads are isolated from each other. Hence there is no electron
populated across the boundary SL and SR, i.e., �̃D�=0 and
�̃LR=0. We now assume ��t0� can be reached by a time
propagation of the entire system starting from the state �0,
i.e.,

��t0� = e−i�−�
t0 H�	�d	�0. �B26�

At t=−�, H�−��= H̃ and ��−��= �̃. In this sense, the initial
time for the Heisenberg creation and annihilation operators
defined in Eq. �B2� becomes −� instead of t0, and the above
derivations for the various Green’s functions remain valid.
Note that for the decoupled ground state �0, we have

�ij�− �� = �ij
0 , �B27�

�k�j�− �� = 0, �B28�

�k�p�
�− �� = ����kpfk�

0 , �B29�

where fk�

0 is the initial occupation number of the single-
electron state k�. Thus the Green’s functions and self-

energies previously derived can be simplified as follows:

��,im

 �t, t̄� = i �

k��

fk�

0 hik�
�t�gk�

r �t,t0�gp�

a �t0, t̄�hp�m�t̄�,

= �
k��

hik�
�t�gk�


 �t, t̄�hk�m�t̄� , �B30�

Gk�j

 �t,	� = �

m�D
��

−�

	

dt̄gk�


 �t, t̄�hk�m�t̄�Gmj
a �t̄,	�

+ �
−�

t

dt̄gk�

r �t, t̄�hk�m�t̄�Gmj

 �t̄,	�� , �B31�

Gij

�t,	� = i �

mn�D

Gim
r �t,− ���mn

0 Gnj
a �− �,	�

+ �
mn�D

�
−�

t

dt1�
−�

	

dt2Gim
r �t,t1�

� �mn

 �t1,t2�Gnj

a �t2,	� . �B32�

The dissipative term Q� is thus expressed as

Q�,ij�t� = �
m�D

�
−�

t

dt̄���,im

 �t, t̄�Gmj

a �t̄,t�

+ ��,im
r �t, t̄�Gmj


 �t̄,t� + H.c.� . �B33�

Equations �B30�–�B33� recover exactly Eq. �12� derived
from the Keldysh NEGF formalism.30 Therefore, we con-
clude that as long as the relation �B26� holds, the partition-
free and the partitioned schemes of NEGF yield exactly the
same dissipation term Q��t� for t� t0.

In fact, Eq. �B26� is proved by Gell-Mann and Low theo-
rem �1951�,34 which basically states that ��t0� can be
reached from �0 by adiabatically turning on the coupling
terms between D and L or R from t=−� to t0. The resulting
��t0� is an eigenstate of the Hamiltonian H�t0� and in most
cases is the ground state.

APPENDIX C: DERIVATION OF EQ. (28)

The greater Green’s function for the reduced system,
Gij

��t ,	�, is defined as

Gij
��t,	� � − i�ai�t�aj

†�	�	 . �C1�

The advanced Green’s function of the reduced system can
thus be expressed as

GD
a �t,	� = − ��	 − t��GD

��t,	� − GD

�t,	�� . �C2�

Similarly the retarded and advanced self-energies can be as-
sociated with the greater and lesser self-energies as

��
r,a�t,	� = ± ��±t � 	����

��t,	� − ��

�t,	�� , �C3�

where the greater self-energy ��
��t ,	� is defined as
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��,ij
� �t,	� � �

k��

hik�
�t�gk�

� �t,	�hk�j�	�

= − i �
k��

hik�
�t�hk�j�	� � ���bk�

�	�bk�

† �t���	 .

�C4�

Equation �12� is thus equivalent to

Q��t� = �
−�

t

d	���
��t,	�GD


�	,t� − ��

�t,	�GD

��	,t�� + H.c.

�C5�

In cases where the KS Fock matrix of the reduced system,
hD, is time-independent, the greater and lesser Green’s func-
tions can be approximated by QDT perturbatively to com-
plete second order,26 i.e.,

GD
��	,t� � eihD�t−	�GD

��t,t� = �− i�eihD�t−	��̄D,

GD

�	,t� � eihD�t−	�GD


�t,t� = ieihD�t−	��D, �C6�

where �̄D� I−�D is the reduced single-hole density matrix
of the reduced system. Assuming the lead Hamiltonian to be
time independent, we have ��


,��t ,	�=��

,��t−	�. Hence,

Eq. �C5� can be recast into

Q��t� = �
0

�

d	��

�	�eihD	GD

��t,t� + �
0

�

d	��
��	�eihD	GD


�t,t�

+ H.c. �C7�

To evaluate the causality transforms involved in Eq. �C7�, we
define

��
�±��hD� � ±

1

2i
�

0

�

d	���

,��	�eihD	 + e−ihD	��


,��− 	�� ,

�C8�


�
�±��hD� � �

1

2
�

0

�

d	���

,��	�eihD	 − e−ihD	��


,��− 	�� .

�C9�

Here the equality ���

,��	��†=−��


,��−	� has been adopted.
With Eqs. �C7�–�C9�, Eqs. �28�–�31� are readily recovered.
Generally ��

�±��hD� and 
�
�±��hD� are Hermitian matrices, and

associated with each other via the Kramers-Kronig relation.26

In particular, when the KS Fock matrix h is real, ��
�±��hD�

and 
�
�±��hD� become real symmetric matrices. With Q� ex-

pressed by Eq. �28�, the EOM for �D is reformulated as

i�̇D = �hD,�D� + �
�=L,R

��̃�
��hD�,�D�† + �

�=L,R
��̃�


�hD�,�̄D�†.

�C10�

Equation �C10� resembles closely Eq. �8� in Ref. 18, which
is developed from CS-QDT with the Markovian approxima-
tion. The correlation functions of the leads used in Ref. 18,
C�

�±��t ,	�, are related to the self-energies adopted in our work
as follows,

��

,��t,	� = ± iC�

�±��t,	� . �C11�

Following the SCBA scheme proposed in Ref. 18, higher-
order effects due to interactions between the reduced system
and the environment can be partially accounted for by sub-
stituting in Eq. �C6� an effective propagator of the reduced

system, eihD
ef f�t−	�, for the propagator of the isolated reduced

system, eihD�t−	�, where hD
ef f is some effective KS Fock matrix

of the reduced system. This results in self-energy terms

�̃�

,��hD

ef f� instead of �̃�

,��hD� in Eq. �C10�.

APPENDIX D: WIDE-BAND LIMIT SCHEME FOR THE
DISSIPATION TERM Q�

With the WBL approximation, the advanced self-energy
becomes local in time,39

��,nm
a �	,t� = �

k���

hnk�
�	�hk�m�t�gk�

a �	,t� = �
k�

hnk�
�	�hk�m�t�

� �i��t − 	�ei�k
��t−	�ei�	

t ����t̄�dt̄� =
i

�
��t

− 	�ei�	
t ����t̄�dt̄ � ��

−�

+�

ei��t−	�d���nm
�

= i��t − 	��nm
� . �D1�

Here the Dirac delta function on the RHS effectively re-
moves the tricky off-diagonal elements of GD


�t ,	� from the
NEGF formulation for Q� �cf. Eq. �12��. The third equality
of Eq. �D1� involves the following approximation for the
linewidths within the WBL approximation,

�k,nm
� �t,	� � �����k

��hnk�
�t�hk�m�	� � �nm

� �t,	� � �nm
� .

�D2�

At time t=0 the entire fully connected system �D+L+R� is
in its ground state with the chemical potential �0. Afterwards
the external potential is switched on, resulting in homoge-
neous time-dependent level shifts ����t� for the lead � �L or
R�. Hence, for t ,	�0 we have

��,nm

 �	,t� = �

k���

hnk�
�	�hk�m�t�gk�


 �	,t� = �
k���

hnk�
�	�hk�m�t�

� �if���k
��ei�k

��t−	�ei�	
t ����t̄�dt̄� =

2i

�
ei�	

t ����t̄�dt̄�nm
�

� ��
−�

+�

f����ei��t−	�d�� , �D3�

Gnm
r �t,	� = − i��t − 	��

l�D

Unl
�−��t�Ulm

�+��	� , �D4�

while for 	
0 and t�0, the counterparts of Eqs. �D3� and
�D4� are as follows,
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��,nm

 �	,t� = �

k���

hnk�
�	�hk�m�t�gk�


 �	,t� = �
k���

hnk�
�	�hk�m�t�

� �if���k
��ei�k

��t−	�ei�0
t ����t̄�dt̄� =

2i

�
ei�0

t ����t̄�dt̄�nm
�

� ��
−�

+�

f����ei��t−	�d�� , �D5�

Gnm
r �t,	� = �

l�D

Unl
�−��t�Glm

r �0,	� . �D6�

Here the effective propagators for the reduced system,
U�±��t�, are defined as

U�±��t� = exp�±i�
0

t

hD�	�d	 ± �t� , �D7�

where �=��=L,R��. By inserting Eqs. �D1�–�D6� into Eq.
�12�, the dissipation term Q� is simplified to be

Q�
WBL�t� = K��t� + 
��,�D�t�� , �D8�

where the curly bracket on the RHS denotes an anticommu-
tator and K��t� is a Hermitian matrix,

K��t� = P��t� + �P��t��†. �D9�

Here P��t� involves an integration over the entire real t axis,
which is then decomposed into positive and negative parts,
denoted by P�

�+��t� and P�
�−��t�, respectively. We thus have

P��t� � − �
−�

+�

d	GD
r �t,	���


�	,t� = P�
�−��t� + P�

�+��t� .

�D10�

P�
�−��t� and P�

�+��t� are evaluated via

P�
�−��t� � − �

−�

0

d	GD
r �t,	���


�	,t� =

−
2i

�
exp�i�

0

t

����	�d	�U�−��t�

� ��
−�

�0 d�ei�t

� − hD�0� + i����, �D11�

and

P�
�+��t� � −

2

�
�

−�

�0

d�W�
�−���,t��

0

t

d	W�
�+���,	���,

�D12�

respectively, where

W�
±��,t� = e±i�0

t d	�hD�	�−i�−����	�−��. �D13�

However, the evaluations of Eqs. �D12� and �D13� are found
extremely time consuming since at every time t one needs to
propagate W�

±�� , t� for every individual � inside the lead en-

ergy spectrum. It is thus inevitable to have a simpler approxi-
mate form for P�

�+��t� with satisfactory accuracy retained.
Note that Eq. �D12� can be reformulated as

P�
�+��t� = −

2

�
�

−�

�0

d��
0

t

d	e−i�	
t �hD�t̄�−i�−����t̄�−��dt̄��.

�D14�

For cases where steady states can be ultimately reached,
����t� and hD�t� become asymptotically constant as time t
→ +�, i.e., ����t�→������ and hD�t�→hD���. Therefore,
the steady state P�

�+���� can be approximated by substituting
������ and hD��� for ����t� and hD�t� in Eq. �D14�, respec-
tively.

P�
�+���� � −

2

�
�

−�

�0

d��
0

t

d	e−i�hD���−i�−������−���t−	���

= −
2i

�
�

−�

�0


I − e−i�hD���−i�−������−��t�

�
d�

� − hD��� + i� + ������
��. �D15�

It is obvious from Eq. �D14� that

P�
�+��0� = 0. �D16�

Thus P�
�+��t� for any time t between 0 and +� can be approxi-

mately expressed by adiabatically connecting Eq. �D15� with
Eq. �D16� as follows,

P�
�+��t� � −

2i

�
�

−�

�0


I − e−i�0
t �hD�	�−i�−����	�−��d	�

�
d�

� − hD�t� + i� + ����t�
��. �D17�

Both Eqs. �D14� and �D17� lead to the correct P���� for
steady states,

P���� = −
2i

�
�

−�

�0

d�
1

� − hD��� + i� + ������
��.

�D18�

If the external applied voltage assumes a steplike form, for
instance, �V��t�=−����t�=�V��1−e−t/a� with a→0+, and
hD�t� is not affected by the fluctuation of �D�t�, Eq. �D17�
would recover exactly Eq. �D14�. In other cases, Eq. �D17�
provides an accurate and efficient approximation for Eq.
�D14�, so long as �V��t� do not vary dramatically in time.
Since the integration over energy in Eq. �D17� can be per-
formed readily by transforming the integrand into a diagonal
representation, Eq. �D17� is evaluated much faster than Eq.
�D14�. Due to its efficiency and accuracy, Eq. �D17� is then
combined with Eqs. �D8�–�D11� to calculate the dissipation
term Q�

WBL, and thus recovers Eq. �36� of Sec. IV B.

TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY FOR… PHYSICAL REVIEW B 75, 195127 �2007�

195127-15



*Electronic address: ghc@everest.hku.hk
1 P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 �1964�.
2 W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 �1965�.
3 E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 �1984�.
4 N. D. Lang and Ph. Avouris, Phys. Rev. Lett. 84, 358 �2000�.
5 J. Heurich, J. C. Cuevas, W. Wenzel, and G. Schön, Phys. Rev.

Lett. 88, 256803 �2002�.
6 C.-K. Wang and Y. Luo, J. Chem. Phys. 119, 4923 �2003�.
7 N. D. Lang, Phys. Rev. B 52, 5335 �1995�.
8 Y. Xue, S. Datta, and M. A. Ratner, J. Chem. Phys. 115, 4292

�2001�.
9 J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 �2001�.

10 S.-H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B 70, 085410
�2004�.

11 S.-H. Ke, H. U. Baranger, and W. Yang, J. Am. Chem. Soc. 126,
15897 �2004�.

12 W.-Q. Deng, R. P. Muller, and W. A. Goddard III, J. Am. Chem.
Soc. 126, 13563 �2004�.

13 M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stok-
bro, Phys. Rev. B 65, 165401 �2002�.

14 Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys. 281, 151
�2002�; S. Kurth, G. Stefanucci, C. O. Almbladh, A. Rubio, and
E. K. U. Gross, Phys. Rev. B 72, 035308 �2005�.

15 D. S. Kosov, J. Chem. Phys. 119, 1 �2003�.
16 S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, and E. K. U.

Gross, Phys. Rev. B 72, 035308 �2005�.
17 X. Zheng and G. H. Chen, arXiv:physics/0502021 �unpublished�.
18 P. Cui, X. Li, J. Shao, and Y. Yan, Phys. Lett. A 357, 449 �2006�;

X. Li and Y. Yan, Phys. Rev. B 75, 075114 �2007�.
19 K. Burke, R. Car, and R. Gebauer, Phys. Rev. Lett. 94, 146803

�2005�.
20 J. Riess and W. Münch, Theor. Chim. Acta 58, 295 �1981�.
21 P. G. Mezey, Mol. Phys. 96, 169 �1999�.
22 S. Fournais, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof,

Commun. Math. Phys. 228, 401 �2002�; S. Fournais, M.
Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ø. Sø-
rensen, Ark. Mat. 42, 87 �2004�.

23 X. Zheng, F. Wang, and G. H. Chen, arXiv:quant-ph/0606169
�unpublished�; C.-Y. Yam, X. Zheng, and G. H. Chen, J. Com-
put. Theor. Nanosci. 3, 857 �2006�; G. H. Chen, in Recent
Progress in Computational Sciences and Engineering, edited by
T. Simos and G. Maroulis, Lecture Series on Computer and
Computational Sciences Vol. 7 �Brill, Leiden, 2006�, p. 803.

24 C. Y. Yam, S. Yokojima, and G. H. Chen, J. Chem. Phys. 119,
8794 �2003�; Phys. Rev. B 68, 153105 �2003�.

25 M. E. Casida, Recent Developments and Applications in Density
Functional Theory �Elsevier, Amsterdam, 1996�.

26 Y. J. Yan, Phys. Rev. A 58, 2721 �1998�; R. Xu and Y. Yan, J.
Chem. Phys. 116, 9196 �2002�.

27 S. Yokojima and G. H. Chen, Chem. Phys. Lett. 355, 400 �2002�.
28 S. Yokojima, G. H. Chen, R. Xu, and Y. Yan, Chem. Phys. Lett.

369, 495 �2003�; J. Comput. Chem. 24, 2083 �2003�.
29 T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050

�1993�.
30 L. V. Keldysh, Sov. Phys. JETP 20, 1018 �1965�.
31 D. C. Langreth and P. Nordlander, Phys. Rev. B 43, 2541 �1991�.
32 C. Caroli, R. Combescot, P. Nozìeres, and D. Saint-James, J.

Phys. C 4, 916 �1971�; C. Caroli, R. Combescot, D. Lederer, P.
Nozìeres, and D. Saint-James, ibid. 4, 2598 �1971�.

33 M. Cini, Phys. Rev. B 22, 5887 �1980�.
34 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 �1951�.
35 G. Stefanucci and C.-O. Almbladh, Europhys. Lett. 67, 14

�2004�.
36 S. Datta, Electronic Transport in Mesoscopic Systems �Cambridge

University Press, Cambridge, 1995�.
37 R. Landauer, Philos. Mag. 21, 863 �1970�.
38 W. Kohn, Phys. Rev. Lett. 76, 3168 �1996�.
39 A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528

�1994�.
40 J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 74, 085324

�2006�.
41 G. H. Chen, C. Y. Yam, S. Yokojima, W. Z. Liang, X. J. Wang, F.

Wang, and X. Zheng, http://yangtze.hku.hk/LODESTAR/
lodestar.php

42 Y.-H. Kim, J. Tahir-Kheli, P. A. Schultz, and William A. Goddard
III, Phys. Rev. B 73, 235419 �2006�.

43 M. P. López Sancho, J. M. López Sancho, and J. Rubio, J. Phys.
F: Met. Phys. 15, 851 �1985�.

44 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C �Cambridge University Press, Cam-
bridge, 1988�.

45 S. Yokojima and G. H. Chen, Chem. Phys. Lett. 292, 379 �1998�;
Phys. Rev. B 59, 7259 �1999�; S. Yokojima and G. H. Chen,
Chem. Phys. Lett. 300, 540 �1999�; S. Yokojima, D. H. Zhou,
and G. H. Chen, ibid. 302, 495 �1999�; W. Z. Liang, S.
Yokojima, D. H. Zhou, and G. H. Chen, J. Phys. Chem. A 104,
2445 �2000�; W. Z. Liang, S. Yokojima, and G. H. Chen, J.
Chem. Phys. 110, 1844 �1999�; W. Z. Liang, S. Yokojima, M. F.
Ng, G. H. Chen, and G. He, J. Am. Chem. Soc. 123, 9830
�2001�.

46 G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 �1987�; C. J.
Grayce and R. A. Harris, Phys. Rev. A 50, 3089 �1994�.

47 G. D. Mahan, Many-Particle Physics �Kluwer Academic/Plenum
Publishers, New York, 2000�.

ZHENG et al. PHYSICAL REVIEW B 75, 195127 �2007�

195127-16


