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In a nonequilibrium system, quasiparticles are defined, consistently with the construction of quantum trans-
port equations, as one-electron excitations whose propagator possesses a time-local optical potential. This
potential is constructed as a solution of the phase equation, a self-consistency condition reducing the renor-
malized Dyson equation to a formerly proposed multiplicative composition rule for the propagators. The Dyson
equation for the particle correlation function is transformed to a renormalized quasiparticle reconstruction
equation, whose leading term represents the quasiparticle Kadanoff-Baym ansatz �Physica E 29, 196 �2005��,
an improvement over the standard generalized Kadanoff-Baym ansatz.
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I. INTRODUCTION

Quasiparticles enter in one form or another any treatment
of an electron system, in which the nonequilibrium dynamics
is represented as a transport problem. This has been postu-
lated for the first time by Landau, who realized that transport
in a Fermi liquid should be described in terms of the long-
lived resonant states of one-electron excitations, dubbed qua-
siparticles, rather than in terms of the fermions themselves.1,2

Linear transport, in particular, was described as a reshuffling
of equilibrium quasiparticles, and the whole Landau theory
could be rederived on the basis of equilibrium Green’s
functions.1–4 Notably, the quasiparticle energies and renor-
malization constants were identified as the poles and their
residuals the spectral representation of the one-electron
propagators. This approach was extended to truly nonequi-
librium situations by Kadanoff and Baym,5 who employed
the nonequilibrium Green’s functions �NGF� in the Wigner
representation to work with the time-dependent nonequilib-
rium spectral density functions and to eventually introduce
the so-called Kadanoff-Baym Ansatz, reducing the nonequi-
librium Green’s function equations of motion to a quantum
transport equation for the quasiparticle distribution
function.5–8 The sequel to this probably best-known method
of deriving transport equations included various ways to the
“extended quasiparticles” and is reviewed in Refs. 9–16.

The use of the Kadanoff-Baym Ansatz was restricted to
processes “quasiclassical in time.” An alternative Ansatz
called the generalized Kadanoff-Baym Ansatz �GKBA� has
been introduced in Refs. 17 and 18, refraining from the
Wigner representation and leading to a quantum transport
equation for the reduced density matrix of the true particles.
This Ansatz with a strictly causal structure was applicable to
rapid transients and seemed to circumvent the use of the
nonequilibrium quasiparticles ill defined in such circum-
stances. Later, however, an alternative derivation of the
GKBA �Refs. 14, 16, and 19� made apparent that the Ansatz
is closely related to a factorization of the nonequilibrium
propagator known as the semigroup rule �SGR�. This factor-
ization, in turn, was shown to be quantitatively unsatisfac-
tory in interacting systems if the renormalizations during the

particle correlation time after the injection of the excitation
were pronounced.20,21 This theoretical conclusion did not fit
with the wholesale practical success of the generalized
Kadanoff-Baym Ansatz, notably in the area of rapid optical
transients in semiconductors.6,7,22–24 For a reconciliation, it
was proposed16 that the renormalizations should be incorpo-
rated into the SGR factorization; the modified SGR appeared
to be characteristic of the formation of nonequilibrium qua-
siparticles. In fact, the true nonequilibrium propagators en-
tering the generalized Kadanoff-Baym Ansatz were, in prac-
tical computations, always replaced by suitable model
approximations, achieving thus the nonequilibrium quasipar-
ticle behavior6,7 �for original work, see Ref. 25; for recent
review, see Ref. 26�.

The practice of generating the quantum transport equation
from nonequilibrium Green’s function has been established
as follows: the Ansatz leads to a transport equation. This link
is made on a relatively rigorous level. The whole procedure,
however, stands on two legs. The transport equation leg is of
iron, while the propagator �actually, quasiparticle� leg is of
clay. At the same time, both aspects are interpenetrating and,
in a consistent theory, should be treated on the same level. A
corresponding program has been outlined in the review.14–16

This paper is the initial step toward its implementation. In
that, we will be guided by two considerations.

Firstly, any known reduction of the nonequilibrium
Green’s function �NGF� equations to a quantum transport
equation, be it for the particles or for the quasiparticles,
hinges upon the quasiparticle mode of the nonequilibrium
propagators. More precisely, the quasiparticle mode is a nec-
essary condition in line with the Bogolyubov principle,
which, however, requires more: a similar behavior also for
the particle correlation function G�.

This mode appears to take place even under conditions
beyond the adiabatic regime. Such nonstationary quasiparti-
cles have to be described entirely in terms of time-dependent
quantities because of the missing crutch of spectral represen-
tation. This is unusual, but not impossible. In fact, the time-
dependent approach to quasiparticles in the special case of
equilibrium has basically been worked out in the classical
work of Wigner and Weisskopf.
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Secondly, it should be stressed that in the preceding dis-
cussion, and in the whole paper, we use a formal definition of
a quasiparticle, whose only indication is a specific time
structure of its propagator. In equilibrium, in particular, the
quasiparticles are slowly exponentially decaying resonances.
On a phenomenological level, this behavior depends entirely
on the properties of the retarded self-energy ΣR. A detailed
microscopic structure of the quasiparticles plays no role here.
This is consistent with their specific use in developing the
quantum transport equations. The quasiparticle behavior
stems, of course, from the microscopic structure of the el-
ementary excitations of the system. However, all these mi-
croscopic details are distilled into the self-energy kernel,
which then is finally the quantity decisive for the existence
of the quasiparticles.27

We start from equilibrium, for which the phenomenologi-
cal characteristic in the time domain is well known: an equi-
librium propagator GR�t , t�� describes a quasiparticle if it has
the form3,16

GR�t,t�� = �QP formation process, t � t� + �Q

ZGW
R �t,t�� , t � t� + �Q,

�
GW

R �t,t�� = − i exp�− izW�t − t��� . �1�

There are several parameters of the resonance: the quasi-
particle energy zW=EW− i�2��−1, the renormalization con-
stant Z, and the time of formation �Q. The quasiparticle con-
dition, �Q�2�, between the quasiparticle time of formation
and its lifetime is necessary to guarantee that the excitation
will remain in the quasiparticle �Weisskopf-Wigner, hence
the subscript W� mode GW

R for a protracted period �we omit
the long-time decoherence for simplicity�.

These parameters are given by the self-energy ΣR. In the
spectral representation, zW is the solution of the pole equa-
tion �GR�zW��−1=zW−�MF−ΣR�zW�=0, where �MF is the
mean-field �free-particle� energy. Z is the related residuum. It
will be important to write the condition for the pole in the
time formalism, following Refs. 28 and 29 and, notably, Ref.
30:

zW = �MF + �
0

�

dt̄ΣR�t̄�eizWt̄. �2�

This integral is formally divergent, in agreement with the
fact that the pole is located at the nonphysical sheet in the
energy representation. This problem does not arise in the
lowest-order iteration of Eq. �2�,

zW = �MF + �
0

�

dt̄ΣR�t̄�ei�MFt̄ = �MF + Σ�εMF � i0�, �3�

which represents the original Weisskopf-Wigner weak scat-
tering result.28,29

It is less easy to formalize the definition of �Q, which
measures in some sense the time spread of the self-energy.
The inequality �Q�2� thus compares the time spread and the
reciprocal strength of the retarded self-energy ΣR, in parallel

with the Bogolyubov time hierarchy for the particle correla-
tion time and the transport relaxation time, �c��r, which is
related to 	�.

The descriptive quasiparticle picture Eq. �1�, peculiar for
equilibrium, can be turned into a few functional relations
which are suited for generalization to nonequilibrium. First,
there hold two multiplicative composition rules resulting
from the functional equation of an exponential function: The
quasiparticle propagator obeys the exact SGR:

GW
R �t,t�� = iGW

R �t, t̆�GW
R �t̆,t��, t � t̆ � t�. �4�

For the full propagator GR, the SGR is not correct. Instead,
the multiplication rule which we will call the quasiparticle
composition rule �QCR�

GR�t,t�� = iGW
R �t, t̆�GR�t̆,t�� �5�

is seen to hold for any intermediate time t̆ obeying

t � t̆ � t� + �Q � t�. �6�

Another defining property of the exponential function is that
its logarithmic derivative is constant. Thus, i�tGW

R /GW
R =zW.

For GR, we have, in the ideal case,

i�tG
R/GR = zW, t � t� + �Q. �7�

The logarithmic derivative of GR need not be constant, in
general, so that it provides a sensitive test of the time range
where this quasiparticle property is valid.

While a phenomenological view of quasiparticles is com-
monplace in equilibrium, its truly broad generalization to
nonequilibrium seems to be missing in the literature, and, in
fact, a universally conceived definition of the nonequilibrium
quasiparticle which can be found concerns slowly varying
systems with small damping, in which a spectral function
peaked at the quasiparticle resonance forms as a function of
time, position, and momentum. An intuitive use of the con-
cept has been connected with some simple particular
situations.6,7 In view of the importance ascribed to deriving
quantum transport equations under the conditions departing
from those limiting cases, a properly introduced concept of
the nonequilibrium quasiparticle appears as a basic prerequi-
site.

The basic goal of the paper is to generalize the phenom-
enological view of quasiparticles to nonequilibrium by inves-
tigating under which conditions a construct GW

R �t , t�� obeying
an extended rule �4� can be associated with the true propa-
gator GR�t , t�� such that the composition rule �5� holds to a
good approximation, at least in a certain time region.16,31

Notice the very reserved formulation of the aims of the
whole task appropriate out of equilibrium. These weak prop-
erties of GR are sufficient, however, to set the stage for ob-
taining the related reduction of G�, called quasiparticle
Kadanoff-Baym Ansatz �QKBA�, which in turn opens the
path to a quantum transport equation.

A brief outline of the paper follows. In Sec. II, our attempt
of building up the quasiparticle counterpart GW

R to GR, pro-
ceeds in two stages. In the first stage, Sec. II A, we define the
class of quasiparticle propagators as those obeying the SGR,
or, equivalently, having a time-local optical potential 
W�t�.
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In the second stage, we impose the conditions attributing a
specific GW

R to the full propagator in question. In contrast to
equilibrium, the result depends on the time range selected.
We proceed in steps. First, in Sec. II B, an extended “quasi-
particle” composition rule is postulated as the basic defining
property of the quasiparticle mode and this is reformulated in
terms of the optical potential.

In Sec. II C, the existence of a finite formation time is
assumed and the fundamental phase equation �24� for 
W�t�
is derived for long times. This equation has to be modified so
as to account for the influence of the past on the optical
potential. In general, this is only possible as a compromise
based on an average over initial times. This leads to the
complete phase equation �26�. The discussion of the phase
equation in Sec. III A concentrates on the importance of its
time semilocality for the properties of the optical potential.
Section III B is devoted to deriving an integral equation �29�
representing the renormalized counterpart of the intuitively
postulated quasiparticle composition rule �13�. The complete
phase equation is rederived in Sec. III C in a systematic way:
it is interpreted as a self-consistency condition leading to the
vanishing of the vertex part of Eq. �29�, which thus reduces
to the QCR �13�. The final brief Sec. IV compares the deri-
vation of the standard GKBA Eq. �37� starting from an as-
sumed SGR for propagators with the modified QKBA �Eq.
�39�� resulting from a similar use of the QCR. The Ansatz
may be judged by comparison with the exact renormalized
reconstruction equation �41�.

II. NONEQUILIBRIUM QUASIPARTICLES

Under nonstationary conditions, the Green’s functions and
other quantities will depend on two independent time argu-
ments, as the nonequilibrium system will not be homoge-
neous in time. No privileged representation will be assumed,
so that all Green functions and self-energies will be operators
or matrices. The nonequilibrium propagator GR�t , t�� will be
assumed as known in a triangular time range,

tM � t � t� � tm. �8�

The propagator specifies uniquely the self-energy in the
range �8�

�GR�t,t���−1 = �i�t − HMF�t�	��t − t�� − ΣR�t,t�� . �9�

In HMF, we lump together the free-particle Hamiltonian, the
external fields, and the mean field, that is, the time-local
�“singular”� part of the self-energy. What remains is the true
double-time self-energy kernel ΣR. It contains precisely the
information about the system needed for our study and rep-
resents the basic input for the construction of the quasiparti-
cles.

We assume very little about ΣR, but it is natural to restrict
our study to the case when a nonequilibrium extension of the
quasiparticle formation time entering Eq. �1� exists, at least
in the time range �8� we consider. Specifically, we assume
the existence of a characteristic time �Q�t� such that the self-
energy is zero outside a double-time region, which has the
general shape of a �uneven� strip adjoining the time diagonal
t= t� within the triangle �8�,

ΣR�t,t�� � 0 only for t � t� � t − �Q�t� . �10�

A. Nonequilibrium quasiparticle propagators

The nonequilibrium quasiparticle propagators are speci-
fied and will be needed only in the region �8�. It will be
convenient to rewrite the quasiparticle propagator similarly
to Eq. �9�:

�GW
R �t,t���−1 = �i�t − HMF�t�	��t − t�� − ΣW

R �t,t�� . �11�

The class of quasiparticle propagators is formed by those
obeying the SGR, a generalization of Eq. �4�. This is equiva-
lent with the requirement that the quasiparticle propagator be
specified by a time-local optical potential 
W�t�. The two
definitions are bridged by the logarithmic derivative of the
QCR. It is easy to see that the following four statements are
equivalent:

GW
R �t,t�� = iGW

R �t, t̆�GW
R �t̆,t��, t � t̆ � t�, �12a�

�tGW
R �t,t��

1

GW
R �t,t��

independent of t�, �12b�

ΣW
R time diagonal:ΣW

R �t,t�� = 
W�t���t − t� + i0� ,

�12c�

GW
R �t,t�� = − iT exp
− i�

t�

t

du�HMF�u� + 
W�u�	� .

�12d�

By the fraction symbol in Eq. �12b�, we denote a plain op-
erator inversion with time arguments fixed, the self-energy in
Eq. �12c� is infinitesimally retarded, T appearing in Eq. �12d�
is the time-ordering operator.

The present definition of the nonequilibrium quasiparticle
propagator has the desired physical meaning. It is formally
similar to the mean-field propagator, which describes a uni-
tary evolution of independent effective particles moving in
the average external and inner fields. In GW

R , the optical po-
tential 
W enters in addition. The evolution is not unitary
anymore, but it still is governed by an effective single-
particle Hamiltonian, albeit typically non-Hermitian. Hence,
it may correspond to a flight of independent quasiparticles.
Equations. �12a�–�12d� or the Dyson Eq. �11� express this in
various formal ways.

Any of the properties Eqs. �12a�–�12d� can be used inter-
changeably. In particular, because the quasiparticle self-
energy is time diagonal, the task of finding GW

R is reduced to
specifying 
W�t�. This will lead us to the nonequilibrium
generalization of Eq. �2�, which we will call the phase equa-
tion.

B. From the quasiparticle composition rule to the optical
potential

Now, we proceed to the second stage outlined at the be-
ginning of this section. We have to select among all GW

R
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obeying Eqs. �12a�–�12d� that one which will come closest
to satisfying also the quasiparticle composition rule, which is
specific for a given GR. In this section, we start from an ideal
case, extending the simple equilibrium Eq. �5�. We postulate
the functional equation expressing the quasiparticle compo-
sition rule

GR�t,t�� = iGW
R �t, t̆�GR�t̆,t�� . �13�

Visually, both Eqs. �5� and �13� look the same. The Green’s
functions are operators/matrices now, however, and they are
true double-time quantities out of equilibrium. Thirdly, we
cannot expect the rule �13� to be true for all times under
nonstationary conditions.

Without a specific model, we simply assume that, to a
fixed initial time t�, at least one intermediate time exists such
that Eq. �13� holds. Then, the validity of the same rule fol-
lows for a whole range of the two time variables t, t̆:

�14�

While the QCR has a fundamental character, it is prefer-
able to use once more its logarithmic derivative. Using re-
peatedly the QCR �13� and the definition �12c�, we have

i�tG
R�t,t��

1

GR�t,t��
= �i�2�tGW

R �t, t̆�GR�t̆,t��
1

GR�t,t��

= �HMF�t� + 
W�t�	iGW
R �t, t̆�GR�t̆,t��

�
1

GR�t,t��

= HMF�t� + 
W�t� . �15�

The QCR �13� itself, combined with Eq. �12d�, assumes the
form

�16�

The quasiparticles thus exist in the time range t� t̊ if the
optical potential exists in the same interval.

The procedure leading to Eq. �16� may be paraphrased
without an a priori quasiparticle assumption. A number of
relations may be written which have the outward look of the
Weisskopf-Wigner results, but whose meaning is purely for-
mal. A direct evaluation of the logarithmic derivative from
the Dyson eq. �9� yields a generally valid identity defining an
effective “time-local self-energy:”

i�tG
R�t,t��

1

GR�t,t��
= HMF�t� + 
t��t� , �17�


t��t� = �
t�

t

dt̄ΣR�t, t̄�GR�t̄,t��
1

GR�t,t��
. �18�

This might suggest an obvious identification 
W=
t�. How-
ever, as explicitly indicated, and as is apparent from Eq. �18�,
the latter quantity depends on t�, in contrast to the
Weisskopf-Wigner self-energy, whose independence of the
initial time t� is its basic constitutive property.

The definition �18� of 
t� can be viewed as a differential
equation i�tG

R�t , t��= �HMF�t�+
t��t��G
R�t , t��, whose solu-

tion can be written in the form resembling Eq. �12d�, but
with 
t��t� replacing 
W�t�:

GR�t,t�� = − iT exp
− i�
t�

t

du�HMF�u� + 
t��u�	� . �19�

Because we aim at a Weisskopf-Wigner propagator, which
should be free of t�, it is important to fix a splitting time t̊,
common to many t�, such that the times t̆
 t̊ may be tested as
promising intermediate times for the QCR. For an arbitrary
intermediate t̆ whose choice is given by purely formal con-
siderations, the above differential equation has a solution
representing a formal parallel to the QCR �16�:

GR�t,t�� = i · �− i�T exp
− i�
t̆

t

du�HMF�u� + 
t��u�	�GR�t̆,t�� .

�20�

The quasiparticle scheme will then hold in the time do-
main in which it will be possible to neglect the t� dependence
of 
t�. For a fixed dividing time t̊, this domain will be a
subset of the whole range �t̊ , tM� � �tm , t̊�. Typically, the lower
time t� will not be allowed to come close to t̊. In other words,
to a given t̊, some tmax� will exist such that the quasiparticles
will exist for times t, t� given by

tM � t � t̊ ,

t̊ � tmax� �t̊� � t� � tm. �21�
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C. Phase equation for the optical potential

Introducing Eq. �19� into Eq. �18�, we get the “basic tau-
tology”


t��t� = �
t�

t

dt̄ΣR�t, t̄�T̃ exp
− i�
t

t̄

du�HMF�u� + 
t��u�	� .

�22�

Note the time ordering from t to t̄, which is anticausal, as

indicated by the T̃ chronological operator. This relation could
serve as an equation for the determination of 
t� from a
known self-energy ΣR, as it incorporates the initial condition

t��t��=0. More importantly, it is the departure point toward
the phase equation for 
W, if the self-energy possesses the
“formation” time according to Eq. �10�. Equation �22� then
becomes t� independent in form for t large enough, t−�Q�t�
� tm and t−�Q�t�� t�. Namely,


t��t� = �
t−�Q�t�

t

dt̄ΣR�t, t̄�T̃ exp
− i�
t

t̄

du�HMF�u� + 
t��u�	� .

�23�

The solution 
t� depends on t�, however. This results from
the fact that Eq. �23� may be viewed as an equation with a
delayed time argument. For a t range bounded from below,
say t� t̊, it is not closed. Indeed, it is solved by any 
t�, and
we have to specify the values of the solution in the lowest
interval, t̊+�Q�t̊�� t� t̊, as an initial condition.

A simple step leads to an equation for 
W: if the identifi-
cation 
t�→
W is justified, the optical potential also satisfies
Eq. �23�, which will be called the phase equation in this case:


W�t� = �
t−�Q�t�

t

dt̄ΣR�t, t̄�T̃ exp
− i�
t

t̄

du�HMF�u�

+ 
w�u�	�, t − �Q�t� � t̊ . �24�

It expresses the unknown Weisskopf-Wigner self-energy 
W
in terms of the full self-energy ΣR and the mean-field propa-
gator. This large t relation is a necessary condition for any
use of the quasiparticle picture, and in this sense, it has a
fundamental nature. We return to the detailed meaning of the
phase equation below. This equation alone is not sufficient,
however, as the initial condition for the phase equation has to
be known in the interval t̊+�Q�t̊�� t� t̊. Unfortunately, there
is no natural choice for this initial condition in selecting the
correct optical potential 
W. In fact, it may be necessary to
accept a compromise for its approximation.

To study this question, it is convenient to start from Eq.
�20� rather than from Eq. �19�. Suppose we want to construct

W for times t� t̊� tm. The whole integral Eq. �18� can be
split into two: �t�

t =�t̊
t+�t�

t̊ . The identity �20� is applied to the

propagators with time arguments separated by t̊:


t��t� = �
t̊

t

dt̄ΣR�t, t̄�T̃ exp
− i�
t

t̄

du�HMF�u� + 
t��u�	�
+ �

t�

t̊

dt̄ΣR�t, t̄�GR�t̄,t��
1

GR�t̊,t��

�T̃ exp
− i�
t

t̊

du�HMF�u� + 
t��u�	� . �25�

The formation time assumption �Eq. �10�� is naturally
made again. Equation �25� reduces to Eq. �23� for t−�Q�t�
� t̊. The initial condition 
t��t� with t−�Q�t�� t̊ missing in
Eq. �23� can be obtained from the full Eq. �25�. The lower
time t� enters this equation implicitly through the expected t�
dependence of the solution 
t��t� and explicitly. The sole
source of all explicit t� dependence in Eq. �25� is the second
integral. It is reasonable to restrict the initial times to those
preceding the splitting time by more than the formation time,
that is, t̊−�Q�t̊�� t�. Then the lower integration limit is given
by ΣR and equals to t−�Q�t�
 t̊−�Q�t̊�� t�. The dependence
on t� is then contained in the operator ratio
GR�t̄ , t�� · �1/GR�t̊ , t���. This ratio, if known in a limited range
of times t̊� t̄
 t̊−�Q�t̊�� t�, determines the same ratio in the
whole time interval t� t̊, as follows from Eq. �20�.

If the quasiparticle composition rule �13� were valid, this
quantity would reduce to 1/GW

R �t̊ , t̄�, entirely independent of
t�. The solution 
t� would then coincide with the optical
potential 
W. In general, we cannot expect this to be exactly
true. If, however, the t� dependence of 
t� will not be overly
strong in an interval I of the t� times, a solution 
W of the
phase equation �24� may be constructed with optimized ini-
tial conditions based on the whole bundle �
t��t� , t��I	 of
the 
t� functions. The optimization may be an average, or a
selection of some special �median, extremal, etc.� member of
the bundle. We will denote this operation by �¯��t�	. With
this definition, Eq. �25� can be transformed: 
t��t� with t� t̊
is replaced by 
W�t� everywhere. There remains a single av-
erage of the initial condition. The resulting complete phase
equation is


W�t� = �
t̊

t

dt̄ΣR�t, t̄�T̃ exp
− i�
t

t̄

du�HMF�u� + 
w�u�	�
+ �

t̊−�Q�t̊�

t̊

dt̄ΣR�t, t̄�
GR�t̄,t��
1

GR�t̊,t��
�

�t�	

�T̃ exp
− i�
t

t̊

du�HMF�u� + 
w�u�	�, t � t̊ .

�26�

The averaged expression can be written in two equivalent
forms,


GR�t̄,t��
1

GR�t̊,t��
�

�t�	

= 
T̃ exp
− i�
t̊

t̄

du�HMF�u� + 
t��u�	��
�t�	

. �27�

QUASIPARTICLE STATES OF ELECTRON SYSTEMS OUT… PHYSICAL REVIEW B 75, 195125 �2007�

195125-5



The first form derives from the use of Eq. �20�, while the
other one would replace it if Eq. �19� were used instead.

III. PHYSICAL PROPERTIES OF NONEQUILIBRIUM
QUASIPARTICLES

A. Discussion of the phase equation

We gave the name of phase equation to Eq. �24� with
reference to Eq. �12d�, in which the single-time effective
self-energy 
W clearly plays the role of a generalized phase
shift. The idea to construct and solve the equations for the
phase shifts directly is similar to the Calogero equations in
the scattering theory,32 or to the linked cluster expansion for
Green’s functions1,33—quite close to the present approach.
Representing the Green’s function in terms of its logarithm
has the primary advantage of going over from a rapidly os-
cillating quantity to its slowly changing phase. It also makes
full use of the robust nature of the quasiparticle mode, which
is entirely described by the effective Hamiltonian HMF+
W.
This is clearer and more straightforward than the formulation
in terms of GW

R and GR governed by the functional relations
�12a� and �13�. We will relate both languages in the next two
sections.

The essential physical ingredient in deriving Eq. �24� was
the assumption that a quasiparticle formation time �Q existed
and the self-energy had a correspondingly restricted “sup-
port,” the range �10� of nonzero values. Similar assumptions
of a “dominant strip” for 	� are well known from the trans-
port theory.14,16,31 Physically, they are equivalent to the
Bogolyubov postulate of the existence of the particle corre-
lation �collision duration� time �c, which is supposed to
bound the time needed for a decay of initial correlations and
establish the kinetic regime. Similarly, in our case, for times
at least �Q beyond the boundary time t̊, the phase equation
does not depend on t�, the initial time of the underlying GF,
and not even on t̊. In fact, the integration limits in Eq. �24�
are floating with t and have the width �Q restricting the range
of relevant times. In consequence, the phase equation turns
out to be semilocal in time. The time locality of the “quasi-
particle Hamiltonian” HMF�t�+
W�t� is then but effective,
valid in the holistic context of the evolution over the full
time range of the quasiparticle mode.

The effective nature of the time locality of the quasipar-
ticle picture is connected with two points deserving a com-
ment. One is the appearance of the anticausal time ordering
in Eq. �24� concerning the retarded quantities. In contradic-
tion to the unidirectional character of the quasiparticle evo-
lution expressed by Eqs. �12�, notably by Eq. �12a� we en-
counter an “upstream” evolution here, from the future to the
past. This is possible because of the existence of the quasi-
particle trajectories permitting this inverse mapping, at least
over the restricted time ��Q. At the same time, it is enforced
by the same reason: to obtain the local self-energy 
W at t,
we have to extrapolate somewhat to the future along the
trajectories, from t̄ to t, and then compensate for it. This is
another instance of such “violation” of causality well known
in similar circumstances.10,14,15

The other point, where the semilocality of the equations
for 
W is essential, concerns the unavoidable influence of the

past transmitted into the quasiparticle domain; in contrast to
the phase equation, there is no general argument that the
phase 
W itself is t� independent. The corresponding initial
conditions are incorporated in the complete phase equation
�26�. While they are restricted to one �Q layer adjoining the
splitting time t̊, they are decisive for all later times t� t̊. The
basic concept of the quasiparticle composition rule �13� thus
may have an approximate nature at best.

B. Integral equation relating GR and GW
R

The point of departure for deriving the phase equation
�24� in Sec. II C was an assumed exact validity of the qua-
siparticle composition rule. That is, for many initial times t�,
a single GW

R should have existed obeying Eq. �13�. This ap-
peared as not possible, because of the individual
t�-dependent initial conditions. An optimized approximation
for the optical potential 
W was proposed in Eq. �26�. To
judge the properties of this approximation, we will now de-
velop an integral equation relating GW

R with GR. By subtract-
ing the full Dyson Eqs. �9� and �11� from each other, a renor-
malized �“relative”� Dyson equation is obtained as

GR�t,t�� = GW
R �t,t�� + �

t�

t

dt̄�
t�

t̄

dt�GW
R �t, t̄��ΣR − ΣW

R 	�t̄,t��

�GR�t�,t�� . �28�

The definition range of GW
R is easily extended in a formal

fashion to that of GR.
For any intermediate time t̆, this Dyson equation can be

rearranged �Appendix A� to the renormalized QCR

GR�t,t�� = iGW
R �t, t̆�GR�t̆,t�� + �

t̆

t

dt̄�
t�

t̄

dt�GW
R �t, t̄�

��ΣR − ΣW
R 	�t̄,t��GR�t�,t�� , �29�

which will be central for our considerations in refining the
nonequilibrium quasiparticle concept. There occur two im-
portant changes in Eq. �29�. The free term GW

R is replaced by
the operator product iGW

R GR coinciding with the desired form
Eq. �13�. In the second term, which is, in fact, a vertex cor-
rection to the simple product, the outer integration range is
narrowed upward to t̆� t̄� t. Such integration limits guaran-
tee that only 
W�t� for t� t̆ enters Eq. �29�.

The double integral can be reduced to a simple one if the
definition �18� of 
t��t̄� is recalled. Introducing this into Eq.
�29�, we have

GR�t,t�� = iGW
R �t, t̆�GR�t̆,t�� + �

t̆

t

dt̄GW
R �t, t̄��
t��t̄�

− 
W�t̄�	GR�t̄,t�� . �30�

This integral relation confirms the discussion following Eq.
�18� and makes it quantitative. The QCR �13� will be more
precise the smaller the difference 
t�−
W. It can trivially be
made zero for one initial time t�, but, as we saw, the real task
is to search for an optimized choice of 
W minimizing the
correction uniformly in t�.
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C. Complete phase equation vs the renormalized QCR

The renormalized quasiparticle composition rule �29� can
be linked with the complete phase equation �26�, giving it a
deeper interpretation. In a preparatory step, Eq. �29� is trans-
formed �Appendix B� to an equation valid for each value of
t�,

T exp
− i�
t̆

t

du�HMF�u� + 
t��u�	�
= iGW

R �t, t̆� + GW
R �t, t̆��

t̆

t

dt̄

�T̃ exp
− i�
t̄

t̆

du�HMF�u� + 
W�u�	�
�
�

t̆

t̄

dt�ΣR�t̄,t��T exp
− i�
t̆

t�

du�HMF�u� + 
t��u�	�
+ �

t̄−�Q�t̄�

t̆

dt�ΣR�t̄,t��GR�t�,t��
1

GR�t̆,t��

− 
W�t̄� · T exp
− i�
t̆

t̄

du�HMF�u� + 
t��u�	�� . �31�

Now comes the first basic step, to perform the “averaging”
over t�. Its meaning is the same as in Sec. II C and we use
the same symbol �¯��t�	. The average of the last equation is
simply


T exp
− i�
t̆

t

du�HMF�u� + 
t��u�	��
�t�	

= iGW
R �t, t̆� + GW

R �t, t̆��
t̆

t

dt̄T̃ exp
− i�
t̄

t̆

du�HMF�u�

+ 
W�u�	���
t̆

t̄

dt�ΣR�t̄,t��
T exp
− i�
t̆

t�

du�HMF�u�

+ 
t��u�	��
�t�	

+ �
t̄−�Q�t̄�

t̆

dt�ΣR�t̄,t��

�
GR�t�,t��
1

GR�t̆,t��
�

�t�	

− 
W�t̄� · 
T exp
− i�
t̆

t̄

du�HMF�u� + 
t��u�	��
�t�	
� .

�32�

Two closely related objects are averaged. First, the mean-
ing of the average of the input quantity, the operator ratio
GR�t̄ , t��. �1/GR�t̆ , t��� with a limited range of times t̆� t̄
 t̆
−�Q�t̆�� t�, has to be specified, in agreement with the discus-
sion of Sec. II C. This defines a particular approximation for
the quasiparticle picture. Second, the average extends over
several phase factors. This average must be consistent with
the averaged input, but here it will not be specified or per-
formed separately.

Instead, we proceed to the second step and make the iden-
tification


T exp
− i�
t̄

t

du�HMF�u� + 
t��u�	��
�t�	

= iGW
R �t, t̄� = T exp
− i�

t̄

t

du�HMF�u� + 
w�u�	�
�33�

be satisfied for any pair of times t� t̄� t̆. This implies that
the integral term in Eq. �32� must be zero. For that, the
expression in the brackets must vanish:

ˆ¯‰ = 0 in Eq. �32� . �34�

This self-consistency condition becomes an explicit equation
for 
W whose solution satisfies the compatibility requirement
Eq. �33�, if all averaged phase factors are replaced accord-
ingly. The resulting form of Eq. �34� is identical with the
complete phase equation �26�. This equation is thus derived
in a systematic manner and it appears to guarantee that the
vertex correcting the QCR in Eq. �29� vanishes on average.
One advantage of this derivation is that it starts from a rela-
tion linear in the averaged expressions, while in the original
method of Sec. II C, we made a hidden decoupling when
averaging the third term of Eq. �25�


GR�t̄,t��
1

GR�t̊,t��
T̃ exp
− i�

t

t̊

du�HMF�u� + 
t��u�	��
�t�	

� 
GR�t̄,t��
1

GR�t̊,t��
�

�t�	
T̃ exp
− i�

t

t̊

du�HMF�u�

+ 
w�u�	� . �35�

Finally, we should comment on Eq. �33�, which is a defini-
tion of 
W, in fact. The present argument demonstrates that
this nonlinear average is equivalent to the basic notion of the
quasiparticle composition rule. This corroborates our com-
ment at the beginning of Sec. III A, namely, that the optical
potential plays the role of a generalized phase shift in the
quasiparticle propagator and is related to its linked cluster
form.

IV. QCR AND THE GKBA

The purpose of this brief section is to substantiate the
claim made in Sec. I, namely, that the nonequilibrium quasi-
particles are a necessary prerequisite for deriving a quantum
transport equation, be it for the quasiparticle or for the par-
ticle distribution. More specifically, we will indicate, follow-
ing Refs. 16, 19, and 31, how the QCR relates to the renor-
malized version of the GKBA called the quasiparticle
Kadanoff-Baym Ansatz, which is the bridge between the full
NGF formalism and its form reduced to a quantum transport
equation. This will be done on two different levels. First, a
heuristic motivation of both Ansatze will be compared. Sec-
ond, a quasiparticle counterpart of the so-called reconstruc-
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tion equations for G� will be derived. These equations are
exact and the comparison will concern the conditions under
which an approximation leading to one or the other Ansatz
can be made.

To arrive at the GKBA, we follow the heuristic argument
of Ref. 19 and start from the Dyson equation for the particle
correlation function in the Keldysh form suitable for uncor-
related initial conditions8,14

G��t1,t2� = − iGR�t1,t0���t0�GA�t0,t2�

+ �
t0

t1

dt3�
t0

t2

dt4GR�t1,t3�	��t3,t4�GA�t4,t2� .

�36�

Let t1� t2� t0. The formal integration region is a rectangle
R= �t0 , t1� � �t0 , t2�. It can be split into two parts: R=R1

� R2= �t0 , t2� � �t0 , t2� � �t2 , t1� � �t0 , t2�. It is assumed that
the actual integration involves only a strip S of the width 2�c
along the time diagonal t1= t2, where the self-energy 	� is
significantly different from zero. This is the natural counter-
part of a finite �Q assumed by Eq. �10�.

If the “small” overlap area R2�S is neglected, the inte-
gral extends only over the square R1. If, then, the semigroup
multiplication rule is assumed to hold for the full propaga-
tors, GR�t1 , t3�= iGR�t1 , t2�GR�t2 , t3�, then Eq. �36� is reduced
to the form of the GKBA

G��t1,t2� = − GR�t1,t2���t2�, t1 � t2, �37�

where

��t2� = iG��t2,t2� = GR�t2,t0���t0�GA�t0,t2�

+ i�
t0

t2

dt3�
t0

t2

dt4GR�t2,t3�	��t3,t4�GA�t4,t2�

�38�

as a special case of Eq. �36�. �The other case, t2� t1� t0, is
treated in an analogous way and leads to G��t1 , t2�
=��t1�GA�t1 , t2�.�

In this derivation of the generalized Kadanoff-Baym An-
satz, three assumptions were made. Two have a general char-
acter: an uncorrelated initial condition and a uniformly small
particle correlation time. The third one, the semigroup rule,
is specific for this argument, demonstrating the link between
the GKBA and the semigroup property of propagators. In
interacting systems, the validity of this semigroup property is
doubtful: at t2, a spurious kink appears because of a repeated
quasiparticle formation.19–21 Instead, a modified multiplica-
tion rule and a related modification of the Ansatz can be
attempted, however. In particular, the QCR �13� is valid any-
time the quasiparticle picture works. Introducing Eq. �13�,
GR�t1 , t3�= iGW

R �t1 , t2�GR�t2 , t3�, into Eq. �36� and slightly
modifying the considerations leading to Eq. �37�, the so-
called quasiparticle Kadanoff-Baym Ansatz is obtained in the
form

G��t1,t2� = − GW
R �t1,t2���t2�, t1 � t2, �39�

where � is given by the exact expression �38�, just as before.
This procedure was proposed in Ref. 19 at the time when the

QKBA �39� still had not been proven. The present discussion
indicates that the QKBA can be better justified than the
GKBA proper once the quasiparticle behavior of the system
is guaranteed.

A thorough study of the equations for G� renormalized in
the way corresponding to one Ansatz of another, and the
related possibility of a perturbation expansion, still has to be
undertaken. Here, we confine ourselves to a basic compari-
son of the so-called reconstruction equation for G� �Refs.
14, 16–18, and 31� with its quasiparticle counterpart. The
reconstruction equation, written for t� t�,

G��t,t�� = − GR�t,t����t��

+ �
t�

t

dt1�
t0

t�
dt2GR�t,t1�	��t1,t2�GA�t2,t��

+ �
t�

t

dt1�
t0

t�
dt2GR�t,t1�ΣR�t1,t2�G��t2,t��

�40�

is an integral equation whose source term coincides with the
GKBA expression �37�, while the integral terms link the past
and the future with respect to t� and represent two different
vertex corrections. The second one describes the single-
particle �“polaron”� renormalization on the out channel. The
first one has an irreducible character and captures the two-
particle correlations which surpass the Ansatz level.

The alternative rearrangement of Eq. �36� is obtained,
again for t� t�, if the retarded propagator is rewritten with
the use of Eqs. �28� and �29�. After minor manipulations, the
“quasiparticle reconstruction equation” results:

G��t,t�� = − GW
R �t,t����t��

+ �
t�

t

dt̄�
t0

t�
dt�GR�t, t̄�Σ��t̄,t��GA�t�,t��

+ �
t�

t

dt̄�
t0

t�
dt�GW

R �t, t̄�ΣR�t̄,t��G��t�,t��

+ �
t�

t

dt̄�
t�

t̄

dt�GW
R �t, t̄��ΣR�t̄,t�� − ΣW

R �t̄,t���G��t�,t�� .

�41�

The true propagator GR is replaced by the quasiparticle one
in the source term, which is identical with the QKBA �39�.
Naturally, GW

R also appears in the polaron terms in the last
two lines. By contrast, the irreducible vertex correction is the
same in Eq. �41� and in Eq. �40�. This was the small integral
over R2 neglected in the derivation of Eqs. �37� and �39�
above. Its form will be preserved and its proper inclusion
will be necessary under any renormalization of the propaga-
tors. The advantage of the quasiparticle renormalization �41�
concerns the polaron part of the vertex, that is, the last two
lines. Just as in deriving the complete phase equation �26� in
Sec. III C, the self-consistency requirement �34� may be
shown to make these terms largely vanish. A refinement of
this brief argument would require a closer look at the two

VELICKÝ, KALVOVÁ, AND ŠPIČKA PHYSICAL REVIEW B 75, 195125 �2007�

195125-8



terms, the second of which violates the simple structure of
integrals with ranges off-diagonal in the two times.

V. CONCLUSIONS

The results of this paper may be summarized in two parts.
Most of the work deals with the existence, nature, and

properties of nonequilibrium quasiparticles as a specific
mode of single-particle propagators:

�1� A consistent definition of single electron quasiparti-
cles has been introduced for general nonequilibrium systems.
It is purely phenomenological in that it is given in terms of
properties of the one-electron propagators.

�2� The quasiparticle mode has two equivalent defining
properties. Either it is required that the propagator satisfy the
quasiparticle composition rule, or it should possess an optical
potential dependent on a single time variable.

�3� The validity range of this definition depends on the
retarded self-energy; in particular, it is contained in the time
range for which the retarded self-energy exhibits a suffi-
ciently short formation time.

�4� The full nonequilibrium retarded self-energy and the
optical potential are linked by an integral relation—the phase
equation. It can be solved for the optical potential if the
initial conditions reflecting the period preceding the quasi-
particle time range are incorporated, leading to the so-called
complete phase equation.

�5� The QCR factorization of the propagator can be made
the “free” term by a suitable transformation of its Dyson
equation; the remaining integral term has the structure of a
vertex correction. The condition for vanishing of this vertex
is equivalent to the validity of the phase equation.

The quasiparticle properties of the propagator find their
most important use in deriving the quantum transport equa-
tions by the technique of the Kadanoff-Baym Ansatz and its
causal modifications, in particular, the causal version of the
KBA called the generalized Kadanoff-Baym Ansatz. �Causal
Ansatzes consist in a factorization of the particle correlation
function G� into a propagator and the one-particle density
matrix.� In this paper, we aimed at a derivation and justifi-
cation of the physically well motivated variant, the quasipar-
ticle Kadanoff-Baym Ansatz. The present results include the
following:

�1� The QKBA has been derived from the Dyson equa-
tion for G� on the level of accuracy previously used to de-
rive the standard GKBA.

�2� The Dyson equation for G� has been transformed to a
coupled set of quasiparticle reconstruction equations, whose
source term is G� factorized according to the QKBA. The
validity of the Ansatz is thus shown to hinge on the possibil-
ity of neglecting the remaining three vertex correction terms.
Two of the corrections depend entirely on the quasiparticle
behavior of the propagators involved and can be suppressed
similarly to the QCR. The task of deriving the QKBA comes
down to a well controlled step, handling the irreducible ver-
tex term. This cannot be done on the general level adopted
here and a specific physical situation decisive for the prop-

erties of the vertex has to be invoked3 The advantage of the
present approach to the Ansatz concept is its incorporation
into the systematic field theory permitting, for example, a
properly renormalized perturbative treatment.

The outlook for a future work can again be divided into a
possible further development of the nonequilibrium quasipar-
ticle concept and into the implications for the quantum trans-
port theory.

The work on the nonequilibrium quasiparticles should go
beyond two limiting features of this paper: a wholly abstract
look on the quasiparticles and the assumptions all too favor-
able for their formation. This leaves a number of topics for a
more realistic treatment:

�1� To analyze conditions, under which the quasiparticle
picture of this paper applies. Two general areas suggest
themselves: �i� the weak scattering regime, when the Born
approximation for the self-energy is valid, and �ii� the adia-
batic region, when the external fields vary slowly on the
scale of the formation time. This latter limit is much less
restrictive than the true Kadanoff-Baym approach devised
for a slow variation on the scale of the relaxation time.

�2� To single out some of the important cases when the
straightforward quasiparticle picture of this paper is known
to fail in advance but some of its extension still may be
applicable: coherence induced by an external field, level
crossovers due to the external fields �… laser pulses�.

�3� To overcome the restrictive basic assumption of a
cleanly defined formation time along several directions: a
distinct formation period may occur even when the forma-
tion time is defined but vaguely; the formation and relaxation
times may be comparable with one another and/or with the
characteristic times of the external fields, like a pulse dura-
tion or Rabi period; the formation time may be nonuniform
in the phase space.

In the direction toward the quantum transport equations it
remains in particular:

�1� To use the quasiparticle Kadanoff-Baym Ansatz in the
construction of a quantum transport equation and to explore
its conserving properties.

�2� To put this transport equation to a numerical test simi-
lar to the extensive tests done for the GKBA related
equations34 and to compare the QKBA, the GKBA, and the
direct solutions by the nonequilibrium Green’s functions, all
for the same task.
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APPENDIX A: DERIVATION OF EQUATION (29)

The integral in Eq. �28� is split into two:

GR�t,t�� = GW
R �t,t�� + �

t�

t̆

dt̄�
t�

t̄

dt�GW
R �t, t̄��ΣR − ΣW

R 	�t̄,t��

�GR�t�,t�� + �
t̆

t

dt̄�
t�

t̄

dt�GW
R �t, t̄��ΣR − ΣW

R 	�t̄,t��

�GR�t�,t�� . �A1�

In the first two lines, the times are ordered as

t � t̆ � t*, t* = t� or t̄ ,

so that the composition rule

GW
R �t,t*� = iGW

R �t, t̆�GW
R �t̆,t*� �A2�

can be applied. Reusing Eq. �28�, the resulting two expres-
sions can be joined to iGW

R �t , t̆�GR�t̆ , t��. Equation �A1� then
becomes identical to the relation �29� of the main text.

APPENDIX B: DERIVATION OF EQUATION (31)

Starting from the exact Eq. �29�, a few rearrangements are
made in steps. First, use is made of the properties �12a� and
�12d� of GW

R :

GR�t,t��
1

GR�t̆,t��
= iGW

R �t, t̆� + GW
R �t, t̆�

��
t̆

t

dt̄T̃ exp
− i�
t̄

t̆

du�HMF�u� + 
W�u�	�
��

t�

t̄

dt��ΣR − ΣW
R 	�t̄,t��GR�t�,t��

1

GR�t̆,t��
.

�B1�

Next, the inner integral is split as in Eq. �23�, the existence of
�Q �Eq. �10�� is taken into account, and the identity �20� is
used:

T exp
− i�
t̆

t

du�HMF�u� + 
t��u�	�
= iGW

R �t, t̆� + GW
R �t, t̆��

t̆

t

dt̄T̃ exp
− i�
t̄

t̆

du�HMF�u�

+ 
W�u�	�
�
t̆

t̄

dt��ΣR − ΣW
R 	�t̄,t��

�T exp
− i�
t̆

t�

du�HMF�u� + 
t��u�	�
+ �

t̄−�Q�t̄�

t̆

dt�ΣR�t̄,t��GR�t�,t��
1

GR�t̆,t��
� . �B2�

Finally, the time diagonality of 	W
R �Eq. �12c�� is employed.

This yields Eq. �31� of the main text.
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