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We investigate the Hall effect in a quasi-one-dimensional system made of weakly coupled Luttinger liquids
at half filling. Using a memory function approach, we compute the Hall coefficient as a function of temperature
and frequency in the presence of umklapp scattering. We find a power-law correction to the free-fermion value
�band value�, with an exponent depending on the Luttinger parameter K�. At sufficiently high temperature or
frequency, the Hall coefficient approaches the band value.
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I. INTRODUCTION

The Hall effect has been continuously playing an impor-
tant role in experimental condensed-matter research, mostly
because the interpretation of Hall measurements is rather
simple in classical Fermi systems.1 In such materials, the
Hall coefficient is a remarkably robust property, which is
unaffected by interactions and only depends upon the shape
of the Fermi surface and the sign of the charge carriers.
Deviations from this simple behavior are generally taken as
evidence for the onset of strong correlations and a failure of
the Fermi-liquid �FL� paradigm.2 Several authors have inves-
tigated the Hall effect in three- and two-dimensional FLs,3–5

but the question of the role of correlations in the Hall effect
for low-dimensional systems remains largely unexplored.

In most three-dimensional systems, the interactions play a
secondary role and the FL picture is appropriate.6 However,
the prominence of interactions increases as the dimensional-
ity of the systems decreases, and the FL theory is believed to
break down for many two-dimensional systems such as, e.g.,
the high-Tc cuprate superconductors.7 In one-dimensional
�1D� systems, interactions are dominant, and the FL descrip-
tion must be replaced by the Luttinger liquid �LL� theory.8,9

This theory predicts a rich variety of physical phenomena,
such as spin-charge separation or nonuniversal temperature
dependence of the transport properties,10 many of which
have been observed experimentally. Therefore, large devia-
tions from the classical Hall effect are expected to occur in
quasi-one-dimensional systems.

Among the various experimental realizations of low-
dimensional systems �organic conductors,11 carbon
nanotubes,12 ultracold atomic gases,13 etc.�, the organic con-
ductors are good realizations of quasi-1D materials. Studies
of the longitudinal transport have successfully revealed sig-
natures of LL properties.11,14,15 Transport transverse to the
chains has given access to the dimensional crossover be-
tween a pure 1D behavior and a more conventional high-
dimensional one.10,11,16,17 To probe further the consequences
of correlations in these compounds, several groups have un-
dertaken the challenging measurement of the Hall coefficient
RH�T�.18–21 The results, different depending on the direction
of the applied magnetic field, proved difficult to interpret due
to a lack of theoretical understanding of this problem. This
prompted for a detailed theoretical analysis of the Hall effect
in quasi-1D systems. A first move in this direction was re-

ported in Ref. 22, where the Hall coefficient of dissipation-
less weakly coupled 1D interacting chains was computed and
found to be T independent and equal to the band value. This
surprising result shows that in this case, RH, unlike other
transport properties, is insensitive to interactions. However,
the assumption of dissipationless chains is clearly too crude
to be compared with realistic systems for which a finite re-
sistivity is induced by the umklapp interactions.23

In this work, we examine the effect of umklapp scattering
on the T dependence of the Hall coefficient in quasi-1D con-
ductors. We consider 1 /2-filled 1D chains and compute
RH�T� to leading order in the umklapp scattering using the
memory function approach.24,25 We find that the umklapp
processes induce a T-dependent correction to the free-
fermion value, and this correction decreases with increasing
temperature as a power law with an exponent depending on
interactions �Fig. 2�. We discuss the implications for
quasi-1D compounds.

II. MODEL AND METHOD

Our model is sketched in Fig. 1. We consider 1D chains
coupled by a hopping amplitude t� supposedly small com-
pared to the in-chain kinetic energy. The usual LL model of
the 1D chains assumes that the electrons have a linear dis-
persion with a velocity vF. For a strictly linear band, how-
ever, the Hall coefficient vanishes identically, owing to
particle-hole symmetry. A band curvature close to the Fermi
momenta ±kF is thus necessary to get a finite RH. We there-
fore take for the 1D chains of Fig. 1 the dispersion

�±�k� = ± vF�k � kF� + ��k � kF�2. �1�

The upper �lower� sign corresponds to right- �left-� moving
electrons. Equation �1� can be regarded as the minimal

FIG. 1. Schematics of the model. The chains and the current I
go along the x axis, the magnetic field H is applied along the z axis,
and the Hall voltage is measured along the y axis.
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model which gives rise to a Hall effect, while retaining most
of the formal simplicity of the original LL theory, and its
wide domain of validity. In particular, this model is clearly
sufficient at low temperatures �compared to the electron
bandwidth� since then only electrons close to the Fermi
points contribute to the conductivities.

Our purpose is to treat the umklapp term perturbatively.
We express the Hamiltonian as H0+Hu, where Hu is the
umklapp scattering term and H0 reads

H0 =� dx�
j�

�vF� j�
† �3�− i�x�� j� − �� j�

† �x
2� j�

+ g2� j�R
† � j�R� j�L

† � j�L − t��� j�
† � j+1,�e−ieAj,j+1 + H.c.�� .

�2�

In Eq. �2�, j is the chain index, �3 is a Pauli matrix, and

Aj,j�=� j
j�A ·dl. We choose the Landau gauge Ay =Hx, such

that Aj,j+1=Hxay, with ay the interchain spacing. �†

= ��R
†�L

†� is a two-component vector composed of right- and
left-moving electrons. The second term in Eq. �2� is the band
curvature, the third term is the forward scattering, and the
last term corresponds to the coupling between the chains. In
Eq. �2�, we have omitted the backscattering terms �g1 pro-
cesses� which are, for spin rotationally invariant systems,
marginally irrelevant.9 We therefore take g1�=g1� =0. At 1/2
filling, the umklapp term reads

Hu =
g3

2
� dx�

j�

�� j�R
† � j,−�R

† � j�L� j,−�L + H.c.� . �3�

It corresponds to a process where two electrons with oppo-
site spins change direction by absorbing a momentum 4kF
from the lattice.

The Hall resistivity �yx relates to the conductivity tensor
�	
 through

�yx =
�xy

�xx�yy + �xy
2 . �4�

Here, we calculate �yx using a memory function approach.24

One rewrites the conductivity tensor in terms of a memory
matrix M��� as

�T��� = i	�1 + ��0��� + iM�����−1�0�
−1��0� , �5�

where �T denotes the transpose of �. The advantage pro-
vided by the memory function is the possibility to make
finite-order perturbation expansions which are singular for
the conductivities due to their resonance structure.24 This for-
malism is especially useful for LL �Ref. 23� and was also
used to estimate the Hall coefficient in the two-dimensional
Hubbard model.5 ��0� is a diagonal matrix composed of the
diamagnetic susceptibilities in each direction,

��0� = ��x�0� 0

0 �y�0�
� ,

with

�	�0� = −� dx�
j
� �2H

�A	
2 �x��0


Ael=0

. �6�

The thermodynamic average �¯�0 is taken with respect to
H0 and H is the Hamiltonian of Eq. �2� in the presence of
electric and magnetic fields, A=Ael+Amag. The frequency
matrix � in Eq. �5� is defined in terms of the equal-time
current-current correlators as5

	
 =
1

�	�0�
��J	,J
�� . �7�

From Eq. �5�, one can directly express the memory matrix M
in terms of the conductivity tensor. In the following, we will
only need the off-diagonal term Mxy given by

iMxy��� =
i�y�0��xy���

�xx����yy��� + �xy
2 ���

− xy . �8�

It is then straightforward to rewrite the Hall coefficient RH
=�yx /H as

RH��� =
1

i�y�0�
lim
H→0

xy + iMxy���
H

. �9�

III. RESULTS

From Eqs. �2� and �6�, we obtain the longitudinal and
transverse diamagnetic terms as

�x�0� = −
2e2vF

�ay
, �10a�

�y�0� = − 2e2t�ay
2� dx��0↑

† �x��1↑�x�e−ieHayx + H.c.�

�10b�

For evaluating the frequency matrix, we write down the cur-
rent operators

Jx = e� dx�
j�

� j�
† �x��vF�3 + 2��− i�x��1�� j��x� ,

�11a�

Jy = − iet�ay� dx�
j�

�� j�
† � j+1,�e−ieAj,j+1 − H.c.� .

�11b�

The expression resulting from Eq. �7� for the frequency ma-
trix is then

xy = − i
2�e�t�ay

3H

vF
� dx��0↑

† �x��1↑�x�e−ieHayx + H.c.� .

�12�

At this stage, we can already evaluate the high-frequency
limit of RH because the memory matrix vanishes as 1/�2

�Refs. 5 and 24� and thus Mxy drops from Eq. �9� if �→�.

LEÓN, BERTHOD, AND GIAMARCHI PHYSICAL REVIEW B 75, 195123 �2007�

195123-2



The effects of the umklapp disappear at high frequency, and
in this limit one recovers from Eqs. �9�–�12� the result ob-
tained for dissipationless chains,22 namely, that the Hall co-
efficient equals the band value RH

0 ,

RH��� = RH
0 =

��ay

evF
. �13�

In the definition of the memory matrix, Eq. �8�, we can ig-
nore the terms of order H2 which do not contribute to RH in
Eq. �9�. Furthermore we express the conductivities in terms
of current susceptibilities as �	
= i

� ��	
−�	
�	�0��, which
leads to

iMxy��� =
��y�0��xy���

��x�0� − �xx������y�0� − �yy����
− xy .

�14�

We rewrite this formula at intermediate frequencies, such
that ��		��� /�	�0�� is small. In this expansion we use the
equation of motion of the susceptibilitites24 as well as the
relation �H0 ,J	�=−
	J
. For 	=x, the latter equation is
exactly satisfied in our model, while for 	=y, it is only veri-
fied in the continuum limit ay→0. The resulting expression
of the memory matrix is

iMxy��� � −
1

�x�0�
�Kx;Ky� − �Kx;Ky��=0

�
, �15�

where K	 are the residual force operators defined as the part
of the Hamiltonian which in the absence of magnetic field
does not commute with the currents, i.e., K	= �Hu ,J	�, and
�Kx ;Ky� stands for the retarded correlation function of the
operators K	. The terms omitted in Eq. �15� are either of
second order in ��		��� /�	�0��, of second order in H, or
vanish in the continuum limit ay→0. Using Eqs. �3� and
�11�, we find

Kx = 2evFg3� dx�
j�

�� j�R
† � j,−�R

† � j,−�L� j�L − H.c.� ,

�16a�

Ky = iet�g3ay� dx�
j�

�
b=L,R

�e−ieAj,j+1�� j�b
† � j,−�b

† � j,−�,−b

�� j+1,�,−b − � j−1,�b
† � j,−�b

† � j,−�,−b� j�,−b� + H.c.� .

�16b�

Note that each of the K’s is of first order in g3; hence, Mxy is
of order g3

2. The quantity �Kx ;Ky� entering Eq. �15� is the
real-frequency, long-wavelength limit of the correlator,
which we evaluate as

�Kx;Ky� =  − �
0

�

d�ei��T�Kx���Ky�0��
i→�+i0+

. �17�

It is easy to prove that �Kx ;Ky� vanishes for H=0 or �=0 by
applying spatial inversion and particle-hole symmetry, re-
spectively. Retaining only leading-order terms in t� and �,
the first nonvanishing contribution in Eq. �17� is of order

�t�
2 g3

2H and involves three spatial and three time integra-
tions, which we were not able to perform analytically. Based
on a scaling analysis, we can nevertheless extract the tem-
perature �or frequency� dependence of this contribution �see
Appendix A�, which yields

1

i�x�0��y�0�
�Kx;Ky�

�H
� �g3

2 max ��,T�3K�−3, �18�

where K� is the LL parameter in the charge sector. In the
absence of interactions, we have K�=1, while K��1 �K�

�1� for repulsive �attractive� interactions. If the interactions
are strong and repulsive �K��1�, the exponent in Eq. �18�
changes due to the contraction9 of the operators in Kx and Ky,
which gives the relevant power law in this case.

Together with Eqs. �15� and �9�, Eq. �18� leads to our final
expression for the Hall coefficient,

RH = RH
0 �1 + A� g3

�vF
�2� T

W
�3K�−3� , �19�

with W the electron bandwidth. Equation �19� shows that in
1/2-filled quasi-1D systems, the umklapp scattering changes
the absolute value of the Hall coefficient with respect to the
band value, which is only recovered at high temperature or
frequency. Note that Eq. �19� also describes the frequency
dependence of RH, provided that T is replaced by �. The
backscattering term g1 �neglected here� could possibly give
rise to multiplicative logarithmic corrections to the power
law in Eq. �19�.9 The sign of the dimensionless prefactor A
can only be determined through a complete evaluation of
�Kx ;Ky� in Eq. �17� and is for the time being unknown. The
available experimental data are consistent with Eq. �19� if
one assumes that A is negative �see below�, as illustrated in
Fig. 2.

Equation �19� would imply that in the noninteracting limit
K�→1 �g2→0�, the correction to the Hall coefficient be-
haves as log�T /W�. In order to check this prediction, we

FIG. 2. Correction of the high-temperature/high-frequency Hall
coefficient RH by the umklapp scattering in weakly coupled Lut-
tinger liquids. RH

0 is the value of the Hall coefficient in the absence
of umklapp scattering, Eq. �13�, and W is the electron bandwidth.
Our approach breaks down below some crossover scale �dashed
line, see text�. In this figure, we have assumed that A in Eq. �19� is
negative.
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have evaluated the correlator in Eq. �17� for g2=0. The cor-
responding diagram sketched in Fig. 3 involves three
frequency-momentum integrations, which in this case can be
fully worked out analytically �see Appendix B�. The result-
ing expression of RH at zero frequency is �T�W�

RH = RH
0 �1 +

1

8
� g3

�vF
�2

log� T

W
�� , �20�

consistently with Eq. �19�. For noninteracting electrons,
though, we see that the relative correction induced by the
1/2-filling umklapp is positive at T�W. Since all properties
are analytic in K�, we can also deduce from Eqs. �19� and
�20� that A tends to �24�1−K���−1 in the limit K�→1. Note
that Eq. �20� would also apply to models in which g2�g3,
such as the Hubbard model, while Eq. �19� is valid only
when g3�g2.

IV. DISCUSSION AND CONCLUSION

The result of Eq. �19� shows that in 1/2-filled quasi-1D
systems, the umklapp processes induce a correction to the
free-fermion value �band value� of the Hall coefficient RH,
which depends on temperature as a power law with an expo-
nent depending on interactions. At high temperatures or fre-
quencies, RH approaches the band value, as shown in Fig. 2,
implying that any fitting of experimental data must be done
with respect to the value of RH at high temperature or fre-
quency.

To study the range of validity of our result, one must
consider that at low temperature the quasi-1D systems gen-
erally enter either an insulating state characterized by a Mott
gap � or a coherent two-or three-dimensional phase below a
temperature T* controlled by t� �Ref. 10�; in either case, our
model of weakly coupled LL is no longer valid, as illustrated
in Fig. 2. The variations of RH below max�T* ,�� can be very
pronounced and depend strongly on the details of the mate-
rials. When the ground state is insulating, for instance, RH�T�
is expected to go through a minimum and diverge like e�/T as
T→0, reflecting the exponentially small carrier density.
Other behaviors, such as a change of sign due to the forma-
tion of an ordered state or nesting in the FL regime,4 can also

occur. The validity of Eq. �19� is therefore limited to the LL
domain: max�T* ,���max�T ,���W.

For the case ��T*, we can estimate the change of RH
with respect to RH

0 at the crossover scale �, for a system with
g3�U, where U is the Coulomb repulsion. The umklapp-
induced Mott gap in 1/2-filled systems is given9 by � /W
��g3 / ��vF��x with x= �2�1−K���−1. We thus find that the
largest correction is ��g3 / ��vF��1/2 and has a universal ex-
ponent. On the other hand, RH approaches the asymptotic
value RH

0 quite slowly, and according to Eq. �19� a correction
of ��g3 / ��vF��2 still exists at temperatures comparable to
the bandwidth.

The available Hall data in the TM family and in the ge-
ometry of the present analysis18,20 show a weak correction to
the free-fermion value which depends on temperature. Some
attempts to fit this behavior to a power law have been
reported.18 However, the analysis was performed by fitting
RH�T� to a power law starting at zero temperature. As ex-
plained above, the proper way to analyze the Hall effect in
such quasi-1D systems is to fit the deviations from the band
value starting from the high-temperature limit. It would be
interesting to check whether a new analysis of the data
would provide good agreement with our results. However, in
these compounds both 1/4-filling and 1/2-filling umklapp
processes are present. For the longitudinal transport, the
1/4-filling contribution dominates.10 For the Hall effect, the
analysis in the presence of 1 /4-filling umklapp is consider-
ably more involved, but a crude evaluation of the scaling
properties of the corresponding memory matrix gives also a
weak power-law correction with an exponent of 2−16K�

+ �K�+K�
−1� /2, and thus similar effects, regardless of the

dominant umklapp. The observed data are thus consistent
with the expected corrections coming from LL behavior.
However, more work, both experimental and theoretical, is
needed for the TM family because of this additional compli-
cation and to understand the data in a different geometry
where no temperature dependence is observed.19

Our result �Eq. �19�� is, however, directly relevant for
1 /2-filled organic conductors such as �TTM-TTP�I3 and
�DMTSA�BF4.26 Hall measurements for these compounds
still remain to be performed. Comparison of the Hall effect
in these compounds with the one in 1/4-filled nondimerized
systems11,27 for which only 1/4-filling umklapp is present
could also help in understanding the dominant processes for
the TM family.
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APPENDIX A: SCALING ANALYSIS

In order to establish Eq. �18�, we evaluate the correlator
�Kx ;Ky� to first order in � and t�. Let us denote by H� the
curvature �second term in Eq. �2��, by H� the interchain
hopping �fourth term in Eq. �2��, and by H1D the remaining
part of the Hamiltonian, H1D=H0−H�−H�. Standard per-
turbation theory yields

FIG. 3. Example of a diagram appearing in Eq. �17� at first order
in t� and for g2=0. The full �dashed� lines correspond to free right-
�left-� moving fermions, j is the chain index, and the arrows repre-
sent up and down spins. The magnetic field increases the momen-
tum of the electron by �k=eHay.
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�Kx;Ky� = −� d�ei�� d�1d�2�T�Kx���Ky�0�

�H���1�H���2�� , �A1�

where the average has to be taken with respect to H1D. The
latter corresponds to a 1D chain and can be easily
bosonized,9

H1D = H� + H�, �A2�

H
 =� dx

2�
�u
K
���
�x��2 +

u


K


���
�x��2� , �A3�

where 
=���� denotes the charge �spin� degrees of freedom,
u
 is a velocity, K
 a dimensionless parameter, and �
 and �


are bosonic fields. In our case, we have K��1 and K�=1.
The fields �
 and �
 and the fermionic fields � are related by

��b�x� =
eibkFx

�2�a
e−�i/�2�	b���x�−���x�+��b���x�−���x��
 �A4�

with b= +1�−1� corresponding to right-�left-� moving fermi-
ons, and a a cutoff of the order of the in-chain lattice spac-
ing. With the help of Eq. �A4�, we bosonize each operator in
Eq. �A1�,

Kx =
4ievFg3

�2�a�2 � dx�
j�

sin��8���x�� j , �A5�

Ky =
iet�g3ay

�2�a�2 �
�j,j��

�
�b
� dx� j j�

�„e−ieHayxe�i/�2�	3b���x� − �j j����x� − ��b���x� + �j j����x��
j

�e�i/�2�	b���x� + �j j����x� + ��b���x� + �j j����x��
j� + H.c.… ,

�A6�

where j and j� are neighboring chains and � j j�= �−1� j�−j. For
the hopping term, we have

H� = −
t�

2�a
�
j�b
� dx

�„e−ieHayxe�i/�2�	b���x� − ���x� + ��b���x� − ���x��
j

�e−�i/�2�	b���x� − ���x� + ��b���x� − ���x��
j+1 + H.c.… ,

�A7�

and for the band curvature term, we take28

H� =
�

2�a
� dx

�����3

2
. �A8�

Next, we use the identity9

��
n

ei�An��rn�+Bn��rn��� = exp�−
1

2 �
n�m

� − �AnAmK

+ BnBmK−1�F1�rn − rm�

+ �AnBm + BnAm�F2�rn − rm�� ,

�A9�

where r��x ,u��, the notation �� means that the sum is re-
stricted to those terms for which �nAn=�nBn=0, and F1,2 are
universal functions. The resulting expression for the cor-
relator in Eq. �A1� is

�Kx;Ky� � H� d2rd2r1d2r2e−3K�F1�r�

��r�e−K�F1�r−r1�e�1/2��K�−K�
−1−2�F1�r1� 1

�r2�3
.

�A10�

The factor �r� results from the linearization in H, and we have
discarded all factors involving the F2 function, since they
correspond to angular integrals of the r variables and there-
fore do not contribute to the scaling dimension. At distances
much larger than the cutoff a, we have e−AF1�r���a / �r��A, and
therefore we find the high temperature, high-frequency be-
havior as

�Kx;Ky� � H max��,T�−3+4K�−�1/2��K�−K�
−1�. �A11�

We follow the same procedure for the diamagnetic term
�y�0�—however, at zeroth order in � and H—and find

�y�0� � max��,T�−1+�1/2��K�+K�
−1�. �A12�

Combining these expressions and collecting the relevant
prefactors, we deduce Eq. �18�.

APPENDIX B: HALL COEFFICIENT WITHOUT
FORWARD SCATTERING

Here, we provide the derivation of Eq. �20�, which gives
RH to leading order in g3 but in the absence of forward scat-
tering �g2=0�. Using Eqs. �9� and �13�, we can express the
zero-frequency Hall coefficient in terms of RH

0 and
Re Mxy�i0+�. We then perform a Kramers-Kronig transform,
insert the free-fermion values of the diamagnetic suscepti-
bilities, �x�0�=−2e2vF / ��ay� and �y�0�=−4e2t�

2 ay / ��vF�,
and use Eq. �15� to arrive at

RH�0� = RH
0�1 +

vF

8e3�t�
2 ay

1

H

�� d�

�2 Im�i��Kx;Ky�0�i→�+i0+�� , �B1�
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where �Kx ;Ky�0 is to be evaluated to first order in H. The
�=0 term in Eq. �15� disappears due to the principal part in
the � integral in Eq. �B1�. From Eq. �16�, one sees that
�Kx ;Ky�0 involves eight fermion fields and can be repre-
sented by diagrams like the one displayed in Fig. 3. There
are 32 different diagrams, but all of them can be expressed in
terms of only one function A�i ,H�, whose expression is
given by the diagram in Fig. 3. We thus obtain

RH�0� = RH
0�1 −

4vF
2g3

2

e�
� d�

�2 Im�A��� + i0+�

− A��− � − i0+��� , �B2�

where A��i�= ��A�i ,H� /�H�H=0 and we have pulled all
prefactors from Eq. �16�, as well as a factor t� from the
diagram, out of the definition of function A. The explicit
expression of A� is

A��i� =
e

�2��3 � dk1dk2dq
d�+�k1�

dk1

1

�3 �

1
2
3

� 1

i
1 − �+�k1��3

�
1

i
2 − �+�k2�
1

i
3 − �−�k2 − q�

�
1

i
1 + i
2 − i
3 + i − �−�k1 + q�
. �B3�

The frequency summations in Eq. �B3� are elementary, and
the various momentum integrals can also be evaluated ana-
lytically to first order in �, yielding

RH�0� = RH
0 �1 −

1

16
� g3

�vF
�2� d�

�

���/4�2 − sinh2���/4�
tanh���/4�sinh2���/4�� .

�B4�

The remaining energy integral is divergent and must be regu-
larized. Cutting the integral at the bandwidth W and assum-
ing T�W, we obtain the asymptotic behavior given in Eq.
�20�.
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