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Photonic band structure calculations of two-dimensional Archimedean tiling patterns
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We present a study of photonic band structures of two-dimensional Archimedean tiling patterns. The tilings
we have investigated are (4.82), (6%), (4.6.12), and (3%2.4.3.4), which have been discovered computationally
and experimentally in self-assembled microphase separation of ABC star block terpolymer systems. Using
plane-wave method, we have calculated eigenvalue equations for various combinations of dielectric contrast on
the complex patterns. We demonstrate the existence of complete photonic band gaps in the (4.6.12) structure.
Furthermore, we find that complete photonic bands readily open in the (3%.4.3.4) structures in the same way
as in dodecagonal quasicrystals. Complex tilings open up a way to construct photonic crystals.
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I. INTRODUCTION

Archimedean tilings depicted by Kepler in Harmonices
Mundi IT (1619) are regular patterns of polygonal tessellation
in plane by using regular polygons.! According to Kepler,
they are congruent because only one type of vertices is per-
mitted in each tiling. It is known that only 11 kinds of
Archimedean tilings illustrated in Fig. 1 can fill the whole
plane without gaps. Here, a set of integers (n,.ny.n5.++*)
denotes a tiling of a vertex type in the way that n;-gon,
n,-gon, and ns-gon,..., meet consecutively on each vertex.
The symbol (32.4.3.4), for instance, represents a tiling in
which two equilateral triangles, a square, an equilateral tri-
angle, and a square gather edge-to-edge around a vertex.

Recently, several Archimedean tiling structures denoted
by (6%), (4.8%), (4.6.12), and (32.4.3.4) were discovered in
the self-organized structures of synthetic polymer systems.>™
Interestingly, the lattice constants of the structures can reach
the wavelength of visible light. Hence, they may open the
possibility of constructing novel photonic band gap (PBG)
devices, such as waveguides or dielectric mirrors, where the
propagation of electromagnetic waves or the spontaneous
emission of light is forbiddden.!®! In this paper, we present
photonic band structures of the four Archimedean tiling pat-
terns accessible in the self-assembling structures.

To generate such mesoscopic patterns, much attention has
been paid to block copolymer systems.?*>* Intramolecular
segregation of block copolymers consisting of different poly-
mers covalently linked together gives rise to microphase
separations producing periodic morphologies: lamellar, co-
continuous, hexagonally cylindrical, and bcc spherical struc-
tures are well known. Concerning optical properties, triply
periodic cocontinuous structures such as double-diamond
and gyroid structures have been extensively investigated by
several researchers.?-30

The focus of the present paper is two-dimensionally com-
plex patterns produced by ABC star block copolymers (ter-
polymers) consisting of chemically distinct three polymers
linked at one junction. Their melts can form two-dimensional
tiling patterns, precisely, polygonal cylindrical phases whose
sections are the Archimedean tilings. If the interactions be-
tween ABC polymer components are equally strong, only
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(6%), (4.8?), and (4.6.12) belonging to the single junction
class®! (SIC) can be obtained as direct patterns,” where each
polygon in the Archimedean tiling directly corresponds to
each polymeric microdomain. It is firstly because only three
polygons corresponding to ABC microdomains should meet
on a vertex, and secondly because only even polygons
should appear, which fact is called even polygon theorem.>*?
Very recently, an indirect skeleton tiling (32.4.3.4) has been
obtained.® The tiling is more complex than the SIC; however,
the skeleton structure is the (32.4.3.4) Archimedean tiling.
Therefore, we consider three direct tilings, (63), (4.82), and
(4.6.12), and one skeleton tiling, (3%.4.3.4), in the present

paper.
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FIG. 1. Archimedean tilings: A set of integers (n;.ny.n3.-+*)
denotes a tiling of a vertex type in the way that n,-gon, n,-gon, and
n3-gon, ..., meet consecutively on each vertex. Superscripts are
employed to abbreviate when possible. There exist only 11 types of
tiling by regular polygons, where all vertices are of the same type.
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Dodecagonal
quasicrystal

[4.8.10: 4.6.10]
(3.3.4.3.4)

FIG. 2. (Color online) MC simulation results: Phase diagram as
functions of arm-length ratio of ABC star terpolymer system with
symmetric interactions between three components. Morphologies in
the central region are five cylindrical structures: (4.82), (63),
(3%.4.3.4), dodecagonal quasicrystal, and (4.6.12). Three-
dimensional structures are perforated layer (PL), lamella+cylinder
(L+C), single diamond (Diamond), columnar piled disk (CPD),
lamella-in-sphere (L-in-S), and lamella+sphere (L+S). See details
in Ref. 2.

worthwhile to
33-36

It is mention that dodecagonal
quasicrystals are thought to be promising candidates for
PBG structures because of their high degree of rotational
symmetry.>’-* It was suggested that a complete PBG opens
with low dielectric contrasts in a dodecagonal structure.?’
Although the two-dimensional (2D) space group is pdgm,
the (3%2.4.3.4) tiling produces 12-fold-like Fourier peaks,*
and it is an approximant of the dodecagonal quasicrystal.®
Therefore, the band structure of (32.4.3.4) is worth consid-
ering. In this direction, a systematic study has been
reported.*® Finally, we should mention that a Monte Carlo
(MC) simulation®> and a mean-field theory*® of ABC star
terpolymers suggest a soft and mesoscopic self-organized
dodecagonal quasicrystal, which has been realized recently.*’

The organization of paper is as follows. In Sec. II, we
provide an Archimedean tiling phase diagram of ABC star
terpolymers obtained by MC simulations. We explain the
MC simulation method and present some results. In Sec. III,
we elucidate how to construct tiling patterns with the arbi-
trary component ratio of ABC species by a geometric opera-
tion in terms of minimal fundamental triangles. The method
of photonic band calculations for both £ and H polarizations
is provided in Sec. IV. We have used plane-wave expansion
method.’3!® In Sec. V, the main results of the paper are
presented. Sec. VI is devoted to discussion and summary.

II. MONTE CARLO SIMULATION OF ABC STAR
TERPOLYMERS

In this section, we present a phase diagram and an ex-
ample of the (32.4.3.4) structure obtained in our MC simu-
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(a)

FIG. 3. (Color online) MC simulation result of (32.4.3.4) by
A9B7C14 star-shaped terpolymers in a box with 25X48X48.
Small domains represent B, large ones are C, and A is transparent.
(a) Top view. The skeleton (32.4.3.4) net is superimposed. (b)
Cylindrical structure is shown. Both pictures represent the volume
rendering of averaged densities over 10> MC steps at 8=0.071.

lations. Since details of the method were described in Refs. 2
and 3, we briefly explain it.

The method is a simple extension of the bead-and-bond
lattice polymer MC method called “diagonal bond method.”
A bead occupies only one lattice point to ensure excluded
volume interactions as usual; the difference is that the bond
length can be 1, 2, or V3 in the unit of lattice spacing. One
ABC star block copolymer consists of Ny A-type beads, Ng
B-type beads, N~ C-type beads, and one Y-type bead (junc-
tion point), which are connected by N—1 bonds, where N
=N +Np+Nc+1.

To represent energetics that drives the system to mi-
crophase separation, unit contact energies are imposed only
between pairs of different species within the body diagonal
distance 3. We consider the Hamiltonian as 2¢€;, where
E,j=1 when i # j, and i and j stand for A, B, or C. The MC
procedure is the following: We select one bead randomly and
choose a trial move randomly out of possible moves; if the
trial is a vacancy, we determine move or not according to the
Metropolis algorithm.

Cubic boxes up to L* with L=30-64, or quasi-two-
dimensional boxes with L,=L,=48-128 and L,=10-25,
subjected to periodic boundary conditions have been used.
The occupation ratio of beads in the lattice points is 0.75.
The system is prepared as totally randomized at the infinite
temperature, and then quenched at 8=1/kzT=0.07-0.11 to
wait ordering, where kj is the Boltzmann constant and 7 is
absolute temperature.

The phase diagram obtained from simulations is illus-
trated in Fig. 2. The line with the condition that Ny=Np has
been seen in Ref. 2. Two-dimensional polygonal cylindrical
patterns occupy the central region of the triangular phase
diagram. Figure 3 depicts the result of a unit cell (32.4.3.4)
structure. A large-scale quasi-two-dimensional simulation re-
sult has been demonstrated in Ref. 45.

III. GEOMETRY OF TILINGS
A. Single junction class: (6%), (4.8%), and (4.6.12)

Evidently, in real microphase separations, the area ratios
of ABC components are not the same as those of the
Archimedean tilings that are by definition composed of regu-
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FIG. 4. (Color online) Minimal fundamental triangles of (a)
(63), (b) (4.6.12), and (c) (4.8%) Archimedean tilings, which belong
to the single junction class. Limiting cases (d)—(f) and the resulting
tiling (g) (3.6.3.6), (h) (3.4.6.4), and (i) (4%), respectively. Other
limiting cases (j) (39), (k) (3.6.3.6), (1) (4*), and (m) (3.12%). (n) St.
Andrew’s cross having curved polygons from the minimal triangle
of (4.8%).

lar polygons. Furthermore, interactions between components
affect the length and the shape of polygon boundaries. In this
section, we explain how to construct the tiling structures for
photonic band calculations that are obtained in experiments.
First, we will use the symbols (n,.n,.n5.- ) for tilings con-
sisting of nonregular or curved polygons as well: n; means a
polygon surrounded by n; polygons with different chemical
species, and then (n;.n,.n5.-++) means a tiling composed of
vertices at which n-gon, n,-gon, n3-gon, and so on meet.
The single junction class (SJC) of the Archimedean til-
ings, which corresponds to three types of minimal fundamen-
tal triangles,” plays a quite important role. Notice the three
minimal fundamental triangles in Figs. 4(a)-4(c). The mini-
mal fundamental triangle tiles the whole plane by mirror
symmetric operations with respect to its edges. In math-
ematical terms, (a), (b), and (c) are associated with A,, G,
and B, root systems, respectively. The shape of the minimal
fundamental triangle is specific to the phase type and is in-
dependent of the area ratio of each component. As in Figs.
4(a)-4(c), if the vertex (solid circle) called junction here is
the incenter of the triangle and if three lines (emanating from
the junction) that represent domain boundaries are straight
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FIG. 5. Area ratios of photonic crystals: (a) A:B:C=1:1:1 in
the (63) structure, (b) A:B:C=2:1:2 in the (4.82) structure, and (c)
A:B:C=1:1:2 in the (4.6.12) structure. These ratios are used in
photonic band calculations.

and perpendiculars to the edges of the triangle, then exact
Archimedean tilings (a) (6%), (b) (4.6.12), and (c) (4.8?)
composed of regular polygons are obtained.

To obtain a tiling corresponding to an experiment, put a
junction on an appropriate position inside a fundamental tri-
angle and draw three straight or curved lines to three edges
such that the lines are perpendicular to the edges at the edges
of the triangle (mirror planes). Our SJC photonic crystals we
consider here are depicted in Fig. 5. The ratios of compo-
nents are A:B:C=1:1:1 for the (6%) structure, A:B:C
=2:1:2 for the (4.8?) structure, and A:B:C=1:1:2 for the
(4.6.12) structure, which are typical ratios in numerical ex-
periments. We assume that domain boundaries are straight
lines in our calculations. Dielectric contrasts will be de-
scribed later.

Occasionally, it has been stated that observed tiling types
are designated different from the SJIC. In view of symmetry,
they can be unified into the classification scheme of the SJC.
Let us consider limiting cases that the junction is on an edge
or a vertex of a minimal fundamental triangle. For example,
we can construct (h) a (3.4.6.4) tiling from (e), which corre-
sponds to the structure that has been obtained by Sioula ef
al.® In this case, repulsion between triangular and hexagonal
regions are stronger than others. There is a number of cases,
which is summarized in Table I and Figs. 4(d)—4(n). Finally,
we can employ curved domain boundaries instead of straight
lines. For example, in terms of the minimal triangle of
(4.8%), we are able to construct a pattern (n) called St. An-
drew’s cross by Yamauchi et al.’

TABLE I. Minimal fundamental triangle type denoted by one of
the single junction class (SJC) and their limiting cases [Figs.
4(d)-4(f) and 4(j)-4(m)] and resulting Archimedean tilings.

SIC — Tiling
(d) (6% (3.6.3.6) (2)
(e) (4.6.12) (3.4.6.4) (h)
() (4.8%) (4% (]
G (6% (39
(k) (4.6.12) (3.6.3.6)
M (4.8%) (4% Checkerboard
(m) (4.6.12) (3.12%)
(n) (4.8?) (4.8 St. Andrew’s cross

195122-3



UEDA, DOTERA, AND GEMMA

FIG. 6. Unit cell of the (32.4.3.4) structure. The area ratio
calculated in this paper is A:B:C=9:7:14 or 9:7:16. The two-
dimensional space group is p4gm.

B. Skeleton tiling (32.4.3.4)

The construction of the (32.4.3.4) structure is a nontrivial
problem. Notice the unit cell of the (3%.4.3.4) structure (Fig.
6). There are two squares and four equilateral triangles in the
unit cell. The plane group is p4gm: The center of a square
has C, point symmetry and there are mirror planes passing
through consecutive triangles.® Therefore, we rationally im-
pose the C, symmetry on squares and the mirror symmetry
on triangles. Furthermore, we assume three additional re-
quirements for simplicity: (1) Squares have C,, symmetry
inside them, (2) two types of B rectangles are of the same
shape, and (3) all domain boundaries are straight lines. Con-
sequently, the positions of domains can be assigned by only
three parameters x, y, and z as shown in Fig. 6.

Physically, the density of junctions of molecules on all
vertices seems to be the same.? If so, the area ratio of an A
hexagon to an A octagon must be 6:8. The ratios of A, B, and
C are known. Using these three relations, we can determine
X, v, and z. The area ratio we have calculated in this paper is
A:B:C=9:7:14 or 9:7:16.

IV. METHOD OF PHOTONIC BAND CALCULATION

In this section, we outline the calculation method of pho-
tonic band structures for two-dimensional crystalline struc-
tures and show the accuracy of our computation. We employ
the plane-wave expansion method.

A. Plane-wave expansion method

Since the dielectric structure is uniform in the z direction,
the relative dielectric constant & is a function of x and y
denoted by x: e=g(x). The two-dimensional Bravais lattice
is spanned by two primitive vectors a; and a,. The dielectric
structure satisfies the periodic boundary condition

e(x+a;) =e(x). (1)
The reciprocal lattice vectors b; and b, are defined by

a[‘bj=2775l'j, (2)
where &; is the Kronecker delta symbol.
To solve the Maxwell equations, we expand 1/& by the

Fourier series:

PHYSICAL REVIEW B 75, 195122 (2007)

1 )
—— =2 K(G)e, 3)

8(X) - G

where the sum is taken over every reciprocal lattice vector
G, which is a linear combination of b; and b,:

G:llb|+l2b2, (4)

where /; and [, are integers. The Fourier coefficient is ex-
pressed by

1 1 .
k(G)=— | dx—e 6%, (5)
So s, € (X)

where §, denotes the area of the unit cell.

We assume that the magnetic permeability of the photonic
crystals is equal to that in free space, ug: B(r,7)=puoH(r,1).
Maxwell equations become

V X E(r,1) = MO%H(r,t), (6)

V X H(r,1) = sos(r)%D(r,t), (7)

where E and H are the electric and magnetic fields, and D
and B are the displacement and magnetic induction fields,
respectively. g, is the dielectric constant in free space.

The electromagnetic waves travel in the x—y plane; thus,
H and E are independent of z in the equations. The equations
are then decoupled into two independent sets of equations.
The first set is

JE, oH,
—= = 8
ay Mo o (8)
JE, oH
] _.X’ 9
o Mo ot )
oH, oH JE,
— - =g, (10)
ox dy at
and the second set is
oH, JE,
- = X N 11
Pl (1)
oH, oE,
— =—gpe(x)—, 12
= E0e(x) (12)
JoE, JE, oH,
— ==y 13
w oy M (13)

The first set is called E polarization, where E is parallel to
the z axis and H is in the x—y plane. The second set, on the
other hand, is called H polarization, where H is parallel to
the z axis and E is in the x—y plane.

We derive first the eigenvalue equation of E polarization.
From the first set [Egs. (8)—(10)], we obtain the wave equa-
tion in terms of £,

195122-4
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FIG. 7. Plots of the Fourier series expansions of 1/&(x) by
means of (a) /=11 (529 waves) and (b) /=30 (3721 waves) for
(3%.4.3.4) with dielectric constants e,=13, ez=13, and e-=1,
where [ is the maximum integer of |/;| or |/,| in Eq. (4). Shaded
regions indicate 1/&<<0.13.

1 )& & £ 1 &ZE (14)
— 2,2 ~—E.,
e(x) | ax*  ay? 2o
where c¢ is the speed of light. We seek the solution of the
form E.(x,t)=Ey(x)e™'®, where w is the eigenangular fre-

quency, and E((x) are the eigenfunction of the wave equa-
tion. Ey(x) satisfies the following eigenvalue equation:

(1)2
1 { 7 }EO(X) E.  (15)
o)

We apply Bloch’s theorem expressed by
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FIG. 8. Band gap as a function of 1/I for (3%.4.3.4) with di-
electric constants €4=13, ep=13, and e-=1, where [/ is the maxi-
mum integer of |/;| or |I,| in Eq. (4). Upper points correspond to the
bottom of the air band, and lower points correspond to the top of the
dielectric band. From right to left, these points correspond to /
=11, 16, 22, 25, 30, and 37, namely, 529, 1089, 2025, 2601, 3721,
and 5625 plane waves, respectively. These lines converge to 0.504
and 0.481, indicating that the band gap remains.

Eo(x) = u(x)e™*, (16)
where
u(x +a;) = u(x) (17)
and E((x) can thus be represented by

Eo(x) = 2 ghge'®+Ox, (18)
G

We finally obtain the eigenvalue equation for the expan-
sion coefficients g as follows:
’ 2 w
> k(G-Gk+G'| Yo =3
G/

G- (19)

The coefficient matrix is not Hermitian, and we introduce a
new vector defined by

Using this vector, we obtain the eigenvalue equation with a
Hermitian matrix:

(1)2

2 k(G-Gk+Glk+G' e =58 1
G/

In the case of H polarization, from the second set of equa-
tions [Egs. (11)—(13)], we obtain the wave equation

axe(x)ax ave(x)ay | P 2o

and again we seek the solution of the form H.(x,?)
=H(x)e™'“". Then, we obtain

a1 a9 a1 d o’
_{é'xs(x)ax 6’y8() }HO(X) 2H0(X)7 (23)

where H(x) is the eigenfunction of the wave equation.
The Bloch theorem allows us to express Hy(x) as

195122-5



UEDA, DOTERA, AND GEMMA

FIG. 9. Photonic band structure for (63) with dielectric constants
ea=13, gg=1, and gc=1: E polarization (solid line) and H polar-
ization (broken line).

Hy(x) = 2 pge' k6, (24)
G

The eigenvalue equation with a Hermitian matrix in terms of
¢g, which we should solve numerically, is

2

|€

2 k(G-G)k+G)- (k+G g =
G/

bG- (25)

[}

c

Since Eqgs. (19) and (25) are different, the band structures
of E and H polarizations are different. We seek complete
PBGs where the gaps of both E and H polarizations overlap.

B. Accuracy of computation

It is known that the computation of accurate two-
dimensional photonic band structures of complex patterns is
nontrivial and requires a certain care. To check the conver-
gence of eigenvalues and, consequently, to show the accu-
racy of our results, we first illustrate how Fourier series ex-
pansions reproduce the most complicated structure
(32.4.3.4), and second, we show how a band gap converges
with changing the number of waves in the expansion in Eq.
(3). We select (3%.4.3.4) because its lattice constant is larger
than those of SJC patterns in the unit of edge length of poly-
gons.

r M K I

FIG. 10. Photonic band structure for (6°) with dielectric con-
stants g4=1, g5=13, and &-=13: E polarization (solid line) and H
polarization (broken line).
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wal2nec

I M K r
FIG. 11. Photonic band structure for (4.8%) with dielectric con-

stants €4=13, eg=1, and e-=1: E polarization (solid line) and H
polarization (broken line).

Suppose —I[<I[;<I, where [; is I; or [, in Eq. (4). The
number of plane waves is (2/+1)2. We have checked the
Fourier coefficient in Eq. (5) by reproducing 1/&(x). The
integral Eq. (5) is computed through 256 mesh points in each
direction. Figure 7 shows plots of the Fourier series expan-
sions for a (32.4.3.4) structure with dielectric constants &,
=13, g5=13, and e-=1. In Fig. 7(a), there is a substantial
amount of large islands. Consequently, it implies that the
accuracy of band structures using 529 waves is dubious. On
the contrary, the higher expansion by 3721 waves reproduces
well the complex pattern as shown in Fig. 7(b).

Figure 8 shows the largest band gap of E polarization as a
function of 1/ for the same structure (Fig. 17). Upper points
correspond to the bottom of the air band, and lower points
correspond to the top of the dielectric band. From right to
left, these points correspond to 529, 1089, 2025, 2601, 3721,
and 5625 plane waves, respectively.

Broken lines are least-squares fits to four points with
larger /. The extrapolation to values with 1//=0 demon-
strates that the band gap remains. As far as we have done, the
topology of generic band structures (not in detail) for 529
and 3721 waves give the same one for all patterns. To obtain
more accurate values as possible, we have chosen 3721 plane
waves. Below all results, both figures and values are ob-
tained using 3721 waves.

1.0
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wal2nc
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FIG. 12. Photonic band structure for (4.8%) with dielectric con-
stants e4=1, e3=13, and e-=13: E polarization (solid line) and H
polarization (broken line).
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FIG. 13. (Color online) Photonic band structure for (4.6.12)
with dielectric constants €4=13, eg=1, and e-=1: E polarization
(solid line) and H polarization (broken line). The gap-midgap ratios
(Aw/ w) are 9.3 X 1072 (bottom) and 3.0 X 1072 (top).

V. PHOTONIC BAND STRUCTURES

Before going into details of band structures, let us remind
readers of two generic tendencies about how PBGs open,
which depend on the vector nature of waves and air-filling
factor of dielectric structures. Then, we present band struc-
ture calculations for Archimedean tiling patterns.

A. Dielectric cylinders and air cylinders

Making the dielectric contrast by &,,=1 (air) and &g
=13, which are usually used in the literature, we have inves-
tigated all combinations of dielectric constant, i.e., two types
of photonic crystals for the (6°) structure, four types for the
(4.8%) structure, and six types for (4.6.12) and (32.4.3.4)
structures. The positions of components A, B, and C are de-
fined as in Figs. 5 and 6.

There are two types of dielectric structures in two dimen-
sions: dielectric cylinders and air cylinders. Dielectric cylin-
ders imply a structure composed of isolated high-dielectric-
constant cylinders. Air cylinders are isolated low-dielectric-
constant ones; in other words, the structure is a connected
high-dielectric-constant vein.

The vector nature is a key difference from electronic
problems, which are governed by the scalar Schrodinger

r M K r

FIG. 14. Photonic band structure for (4.6.12) with dielectric
constants e4=13, e3=13, and e-=1: E polarization (solid line) and
H polarization (broken line).
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FIG. 15. (Color online) Photonic band structure for (32.4.3.4)
with dielectric constants e4=13, eg=1, and e-=1: E polarization
(solid line) and H polarization (broken line). The gap-midgap ratios
(Aw/w) are 2.2 X 1072 (bottom) and 3.1 X 1072 (top).

wave equation. It is well known that dielectric cylinders tend
to have PBGs with E polarization, and that air cylinders tend
to have PBGs with H polarization.!”

Electromagnetic energy is reduced when the displacement
field D can localize in regions with higher dielectric con-
stant. The corresponding states form the first band (dielectric
band). When the displacement field is excluded from higher-
dielectric regions, the energy increases and, accordingly, the
corresponding states form the second band (air band). Be-
tween these two bands, we have a PBG.

For dielectric cylinders, displacement fields of E polariza-
tion can concentrate into isolated high-dielectric regions,
while the displacement fields of H polarization cannot be
localized on isolated regions because of the transverse con-
tinuity of the vector fields. On the contrary, for air cylinders,
the displacement fields of H polarization can continuously
extend to networks with high-dielectric constant, leading to
the reduction of energy.

B. Air-filling factor and dielectric fluctuations

The air-filling factor is another important parameter. Gen-
erally, strong dielectric contrast makes PBGs wider. It has
been argued that dielectric fluctuations provide a guide to

r X M r

FIG. 16. (Color online) Photonic band structure for (32.4.3.4)
with dielectric constants e4=1, eg=1, and e,=13: E polarization
(solid line) and H polarization (broken line). The gap-midgap ratio
(Aw/w) is 5.1 X 1072
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have a better choice of the air-filling factor.!” The average of
dielectric constant and the fluctuation are

g=feu + (1 - feg, (26)

2 2
en.+ (1 —feg;
(A8)2= falr ( f) d12_1’ (27)
(fsair + (1 _f)sdi)
where f is the air-filling factor. For a given choice of dielec-
tric contrasts, the fluctuation has a maximum for a filling
factor as follows:

o (28)
Eair t Egi

fmax_

It has been argued that this maximum gives the strongest
scattering of electromagnetic waves. In our case of g,=1
and g4;=13, the better choice of the air-filling factor is about
93%. In practice, the higher the air-filling factor is, the larger
the PBG is. This argument may be useful when one designs
the ratio of components of a block copolymer before exact
band calculations are at hand. It should be mentioned that the
argument is independent of structures, dimensions, and the
degree of ordering, and that it is accordingly by no means
accurate.

C. (6°) structure

We present photonic band structures for a (63) tiling with
an area ratio of A:B:C=1:1:1. The plane group is p6mm.
Dielectric constants are €4=13, ez=1, and e-=1 in the case
of dielectric cylinders (Fig. 9), and g4=1, e5=13, and &,
=13 in the case of air cylinders (Fig. 10). Dielectric cylinders
have broad PBGs in E polarization, and narrow ones in H
polarization, but their positions are different. Thus, there is
no complete PBG. Air cylinders have PBGs in H polariza-
tion, and very narrow one in E polarization.

It is known that a triangular lattice composed of air cyl-
inders with larger fractions of air has the complete PBG.!
However, the air-filling factor of the (6°) is 33%, which is
too small to obtain the complete PBG.

D. (4.8%) structure

We present photonic band structures for a (4.8%) tiling
with an area ratio of A:B:C=2:1:2. The plane group is
p4mm. There are two ways to construct dielectric cylinders:
e4=13, eg=1, ec=1 (Fig. 11) and g4,=1, e5=13, ec=1. The
former has large PBGs in E polarization and a narrow PBG
in H polarization. These band gaps are very close but do not
overlap. The latter has PBGs only in E polarization. Simi-
larly, there are two ways to construct air cylinders: g4=1,
ep=13, =13 (Fig. 12) and e,=13, gg=1, g,=13. Only in
Fig. 12 we see PBGs in H polarization. In any case, there is
no complete PBG in the (4.8%) tiling. We think that these
results are essentially the same as the results of about 40% or
20% cylinders on square lattices.

E. (4.6.12) structure

We present photonic band structures for a (4.6.12) tiling
with an area ratio of A:B:C=1:1:2. The plane group is

PHYSICAL REVIEW B 75, 195122 (2007)

r X M r
FIG. 17. (Color online) Photonic band structure for (32.4.3.4)
with dielectric constants e4=13, e5=13, and e-=1: E polarization

(solid line) and H polarization (broken line). The gap-midgap ratio
(Aw/w) is 5.4 X 1072,

p6mm. There are three ways to construct dielectric cylinders:
es=13, gg=1, ec=1 (Fig. 13), g4=1, g5=13, gc=1, and
ea=1, ep=1, g=13. All cases have large PBGs in waves of
E polarization, and A and C dielectric cylinders have PBGs
in waves of H polarization. More importantly, in the case of
A dielectric cylinders, there are complete PBGs with 75%
air-filling factor. The structure looks like that composed of C
air cylinders. Let w be the frequency at the middle of a band
gap and Aw be the gap frequency width. The scale indepen-
dent gap-midgap ratios (Aw/w) are 9.3X 1072 and 3.0
X 1072,

On the other hand, there are three ways to construct air
cylinders: e4=1, eg=13, e=13; g,=13, ep=1, g-=13; and
e4=13, e5=13, gc=1 (Fig. 14). All cases have large PBGs in
waves of H polarization. B and C air cylinders have E PBGs
as well, but there is no complete PBGs.

The C air cylinders form the triangular lattice. However,
like the case of (6°), the fraction of the C air cylinders cannot
be far beyond 0.5, and the air cylinders do not show com-
plete PBGs (Fig. 14). Increasing the fraction of C compo-
nent, which is necessary for complete PBGs,'>!” will make
the structure undergo a microphase separation to another
structure. Instead of enlarging C air cylinders, A dielectric

1

0.5¢

1 05 0 05 1
x/a
FIG. 18. Electric field of near M-point E polarization mode in
the dielectric band for (32.4.3.4) with dielectric constants g,=13,
ep=13, and g-=1. Different shades indicate the plus and minus of
the field. The field mainly concentrates into A regions, leading to
the reduction of energy.
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FIG. 19. Electric field of near M-point E polarization mode in
the air band for (32.4.3.4) with dielectric constants g,=13, &5
=13, and g-=1. Different shades indicate the plus and minus of the
field. The field mainly concentrates into B regions; however, it in-
vades C air cylinders more and thus increases the displacement
energy.

cylinders forming the honeycomb lattice is promising as
shown in Fig. 13. The fact that the honeycomb lattice has the
complete PBG has been known.'®!7 In this case, since B
regions do not have the high dielectric constant, a gap of H
polarization around 0.3 seen in Fig. 14 disappears.

PHYSICAL REVIEW B 75, 195122 (2007)

F. (32.4.3.4) structure

We present photonic band structures for a (3%.4.3.4) til-
ing with an area ratio of A: B: C=9:7:14. The plane group is
p4gm, which is a nonsymmorphic group leading to the stick-
ing together of bands. There are three ways to construct di-
electric cylinders: €4=13, gz=1, ec=1 (Fig. 15); g4=1, &g
=13, ec=1; and g4=1, gz=1, g-=13 (Fig. 16). All cases
have large PBGs in waves of E polarization and H polariza-
tion. More importantly, in the case of A and C dielectric
cylinders, they have complete PBGs. The centers of these
PBGs are at almost the same position. The gap-midgap ratios
(Aw/w) for A dielectric cylinders are 2.2X 1072 and 3.1
X 1072, and that of C ones is 5.1 X 1072,

On the other hand, there are three ways to construct air
cylinders: e4=1, eg=13, e=13; g,=13, ep=1, g-=13; and
g4=13, eg=13, ec=1 (Fig. 17). All cases have PBGs in
waves of H polarization. In Fig. 17, there are again complete
PBGs. The center of the PBG in this case is at almost half
compared to the case of dielectric cylinders. It is quite inter-
esting that both C dielectric and C air cylinders of the same
structure have complete PBGs. The gap-midgap ratio
(Aw/w) for C air cylinders is 5.4 X 1072. When we increase
air-filling factor up to 50% (A:B:C=9:7:16), the gap-
midgap ratio becomes 6.6 X 1072,

We show the electric fields with E polarization for C air
cylinders with respect to the gap (wa/2mc~0.5) in Fig. 17.

TABLE II. Summary of the photonic band structures. Structures are dielectric cylinders (D) with g,

=13 and gg=¢,=1 or air cylinders (A) with e,=1 and eg=¢

,=13, where a, B, and vy stand for combinations

of A, B, and C. In the case of (32.4.3.4), C" implies data for A9B7C16. In the fourth column, £ or H means
its polarization has the largest PBG. In the second to the last column, when complete PBGs exist, the
gap-midgap ratios of the complete PBGs (Aw/w) are listed, where w is the eigenangular frequency at the

middle of a gap and Aw is the gap width.

Tiling Cylinder a Polarization Aw/w Fig.
(63) D A E 9
pomm A A H 10
(4.8?) D A E 11
p4dmm B E
A A H 12
B
(4.6.12) D A E 0.093, 0.030 13
pomm B E
C E
A A H
B H
C H 14
(3%.4.3.4) D A E 0.022, 0.031 15
pagm B E
C E 0.051 16
A A H
B H
C H 0.054 17
c H 0.066
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0 0.5 1.0 1.5 2.0
(Aey’

FIG. 20. The largest gap-midgap ratio against dielectric fluctua-
tions: E polarization of dielectric cylinders (solid circle) and H
polarization of air cylinders (open circle) are plotted for (6°), (4.8),
(4.6.12), and (32.4.3.4). Double circles correspond to the cases of
complete photonic band gaps. The least-squares fit is estimated
from solid or open data points; the slope is 0.19 or 0.46,
respectively.

An eigenfunction of the dielectric band at a point near the M
point a little way off to the I" point is displayed in Fig. 18.
The field concentrates mainly into A regions. The eigenfunc-
tion of the same point at the bottom of the air band is shown
in Fig. 19. The field is mainly concentrated into B regions;
however, it invades C air cylinders more and thus increases
the displacement energy.

VI. DISCUSSION AND SUMMARY

We have investigated photonic band structures of two-
dimensional Archimedean tiling patterns, (4.8%), (6°),
(4.6.12), and (3%.4.3.4), observed in self-assembled mi-
crophase separation of ABC star block terpolymer systems.
In Table II, we summarize the results. We call attention that
the honeycomb lattice obtained from the (4.6.12) structure,
in fact, has complete PBGs. Moreover, it is remarkable that
three types of the (3%2.4.3.4) structures favor complete
PBGs.

As discussed in Sec. V, there is a clear tendency in Table
IT that dielectric cylinders tend to have PBGs with E polar-
ization and that air cylinders tend to have PBGs with H
polarization. Furthermore, there are correlations between the
dielectric fluctuations defined by Eq. (27) and the gap-
midgap ratio of E polarization of dielectric cylinders and that
of H polarization of air cylinders, see Fig. 20. This plot dis-
plays the gap-midgap ratio of the largest band gap for E
polarization of dielectric cylinders (solid circle) and H polar-
ization of air cylinders (open circle). With increasing the
dielectric fluctuations, the ratio for both polarizations in-
creases. However, it appears that the existence of complete

PHYSICAL REVIEW B 75, 195122 (2007)

PBGs (double circles) has nothing to do with the dielectric
fluctuations. Of course, when a complete band gap exists for
a lattice, the ratio correlates with the fluctuation.

Triangular lattices have been extensively studied in the
case of hexagonal phases of AB diblock and ABA triblock
copolymers.?’ The area ratio of cylinders in the traditional
linear polymers is less than about 30%, which is an inevi-
table drawback by using these polymers to construct air cyl-
inders with high air-filling factors. In contrast, the (4.6.12)
structure provides fascinating possibility: Instead of con-
structing air cylinders with large radius, the dielectric A cyl-
inders of (4.6.12) forming the honeycomb lattice could be a
good substitute. The phase region of (4.6.12) in the phase
diagram (Fig. 2) is wide, and it is thus easy to form the
structure. This is one of feasible routes to self-assemble the
2D soft photonic crystals with complete PBGs.

We have found that in both dielectric and air cases, PBGs
easily open in the (32.4.3.4) Archimedean tiling structures. It
should be noticed that both dielectric and air cylinders with
the same shape have PBGs. Furthermore, for A9B7C16 with
air-filling factor of 50%, the gap-midgap ratio for C air cyl-
inders becomes 0.066. As mentioned in the Introduction, the
(3%.4.3.4) is akin to the dodecagonal quasicrystals: our ongo-
ing study will clarify the difference between the band struc-
ture of (32.4.3.4) and that of the higher approximant of dode-
cagonal quasicrystals.

Polymers have the dielectric constant of € ~2. We have
calculated the case with the dielectric contrast that is equal to
2 and have found that there are no PBGs in the (3%.4.3.4)
with composition A9B7C14.

To make high dielectric contrast, selective deposition of
CdSe nanocrystals to the 2-vinylpyridine microdomains and
selective removal of isoprene microdomains by UV etching
treatment or ozonolysis have been developed.’*?! Actually,
polyisoprene and poly(2-vinylpyridine) have been already
used in experiments.>® An alternative way is by using
organic-inorganic nanocomposite, which has been con-
structed as well.*

In conclusion, the bottom-up complex Archimedean til-
ings such as (4.6.12) and (32.4.3.4) offer a way to construct
photonic crystals. Subtle changes of the symmetry, shape,
and fraction of dielectric structures affect band structures.
Further study to optimize PBGs will be necessary.
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