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The subject of this study is the exchange-correlation-energy functional of reduced density-matrix functional
theory. Approximations of this functional are tested by applying them to the homogeneous electron gas. We
find that two approximations recently proposed by Gritsenko et al., �J. Chem. Phys. 122, 204102 �2005�� yield
considerably better correlation energies and momentum distributions than previously known functionals. We
introduce modifications to these functionals, which, by construction, reproduce the exact correlation energy of
the homogeneous electron gas.
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I. INTRODUCTION

Reduced density-matrix functional theory �RDMFT� is
one possible way to tackle the problem of electronic corre-
lation. It is based on Gilbert’s theorem,1 which is an exten-
sion of the Hohenberg-Kohn theorem to nonlocal external
potentials. Gilbert’s theorem guarantees that the ground-state
expectation value of any observable of a quantum-
mechanical system is a unique functional of the ground-state
one-body reduced density matrix �1-RDM�. Thus, the funda-
mental quantity in RDMFT is the 1-RDM instead of the elec-
tronic density on which density-functional theory �DFT� is
built upon. The properties of the exact 1-RDM have been the
subject of theoretical studies for a long time.1–4 Nevertheless,
only relatively recently have approximate total-energy func-
tionals of the 1-RDM been used in practical applications.5–17

All these approximate functionals give a satisfactory account
of electronic correlations in small atoms and molecules at the
equilibrium distance. The latest generation of functionals
performs equally well at the molecular dissociation limit.
Especially this latest success makes RDMFT particularly ap-
pealing.

A great advantage of RDMFT, compared to DFT, is that
the exact many-body kinetic energy is easily expressed in
terms of the 1-RDM. More specifically, the total energy of a
many-electron system in its ground state, characterized by an
external potential V�r�, can be expressed in terms of the
ground-state 1-RDM � as

Etot��� = Eion +� d3r� d3r���r − r���−
1

2
�r

2���r,r��

+� d3r� d3r���r − r��V�r���r,r��

+
1

2
� d3r� d3r�

��r,r���r�,r��
�r − r��

+ Exc��� . �1�

The first term in the above expression is a constant not re-
lated to the electronic degrees of freedom, for example, the
ion-ion repulsion energy. The next three terms are, respec-
tively, the kinetic, the external potential, and the electrostatic

energy and they are known as explicit functionals of �. Fi-
nally, the last term is the exchange and correlation �xc� en-
ergy which contains all the remaining electronic contribu-
tions to the total energy. The exact form of this functional is
unknown and for practical applications needs to be approxi-
mated. Most of the approximate functionals for the xc energy
that have been introduced so far are implicit functionals of �.
They depend explicitly on the natural orbitals � j and the
corresponding occupation numbers nj which are defined as
the eigenfunctions and eigenvalues of the 1-RDM:

� d3r���r,r��� j�r�� = nj� j�r� . �2�

Viewed as a functional of arbitrary � in an appropriately
defined domain, the functional given in Eq. �1� has a mini-
mum value at the ground-state �. This appropriate domain is
defined through subsidiary conditions for � known as
N-representability conditions. It was shown by Coleman18

that there are two such conditions for �, and they concern the
occupation numbers

	
j=1

�

nj = N, 0 � nj � 1, �3�

where N is the total number of electrons. These conditions
guarantee that � corresponds to either a pure many-body
state or an ensemble of pure states. The first condition can be
enforced in the minimization with respect to � through the
Lagrange-multipliers method. In that way, the quantity to be
minimized becomes

F = Etot − �
	
j=1

�

nj − N� , �4�

where � is the corresponding Lagrange multiplier. � was
shown to be equal to the chemical potential, i.e., the deriva-
tive of the total energy with respect to the total number of
electrons.19 Interestingly, this allows one to exploit the dis-
continuity of � as a function of the particle number for the
calculation of the fundamental gap of materials and is a mo-
tivation for the development of RDMFT schemes for peri-
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odic systems in order to address questions such as the semi-
conductor and insulator gaps.

The second of the N-representability conditions �Eq. �3��
has a dramatic consequence: it allows for border minima in
the occupation number optimization. In other words, it al-
lows for the the existence of a subset of the optimal occupa-
tion numbers which are exactly equal to either 1 or 0 and do
not satisfy the condition �F /�nj =0. We refer to the corre-
sponding states as pinned states. It is rather unlikely for the
exact theory to produce pinned states for most systems of
interest. For an occupation number being exactly equal to 1,
the corresponding natural orbital would be present in all de-
terminants of the full configuration-interaction expansion
with nonzero coefficients. A situation like that has not been
found for small atoms and molecules or for the homogeneous
electron gas �HEG�, where the exact solution can be calcu-
lated. While this is true for the exact xc functional, all the
approximate functionals which are considered in this work
yield pinned states with nj =1 for all systems we applied
them to, except for the two-electron systems. These pinned
states are core states and, in the exact theory, they correspond
to occupation numbers which are marginally smaller than 1.
Hence, as far as the optimal � is concerned, the approximate
result, nj =1, is perfectly satisfactory. The important implica-
tion, however, is that �F /�nj�0 for the pinned states, and
consequently, �F /���r ,r���0 at the optimal �.

A number of approximate functionals for Exc, including
those of interest in the present work, can be cast into the
form

Exc��� = Exc��nj
,�� j
�

= −
1

2 	
j, l=1

� � d3r� d3r�f�nj,nl�

�
� j

*�r��l
*�r���l�r�� j�r��
�r − r��

, �5�

i.e., they have the form of the usual Hartree-Fock exchange
modified by the function f�nj ,nl� of the occupation numbers.
The first of such approximation was introduced by Müller4

and corresponds to the function f�nj ,nl�=�njnl. Müller con-
sidered a more general exponent for the occupation number
product in the exchangelike term and found an optimal ex-
ponent of 1 /2. By modeling the exchange and correlation
hole, Buijse and Baerends5 arrived at the same functional.
Goedecker and Umrigar6 considered a modification by ex-
plicitly removing the self-interaction terms. They also
presented6 a direct minimization with respect to the natural
orbitals and the occupation numbers and found correlation
energies for small atomic systems which are in very good
agreement with the exact results. Later, however, it was re-
alized that the Goedecker-Umrigar �GU� functional fails to
reproduce the correct dissociation limit for small
molecules.20,21 On the other hand, the Müller functional
yields the correct dissociation limit but, in all cases, overes-
timates substantially the correlation energy.20,21

In the last decade, several other functionals of the 1-RDM
have been introduced8–17 and applied to atomic and molecu-
lar systems. Recently, Gritsenko et al.13 proposed improved

1-RDM functionals based on a hierarchy of repulsive correc-
tions to the Müller functional. In that way, they attempted to
correct the overcorrelation of this functional. The functionals
corresponding to these hierarchical corrections are called
BBC1, BBC2, and BBC3 �from corrections to Buijse-
Baerends functional�. For all these functionals, it is essential
to divide the natural orbitals into strongly and weakly occu-
pied ones. This distinction appears naturally for finite sys-
tems, since usually, a subset of the orbitals corresponds to
occupation numbers close to 1, and the rest to occupation
numbers close to 0. For the BBC1 functional, the function
f�nj ,nl� is

f�nj,nl� = �− �njnl, j � l, and j,l weakly occupied

�njnl, otherwise,
�
�6�

For the BBC2 functional, it is

f�nj,nl� = �− �njnl, j � l, and j,l weakly occupied

njnl, j � l, and j,l strongly occupied

�njnl, otherwise.
�
�7�

Finally, in the BBC3 functional, the antibonding orbital is
treated as a strongly occupied orbital. Additionally, the self-
interaction terms are removed as in the GU functional, ex-
cept for the bonding and antibonding orbitals. Gritsenko et
al.13 applied the BBC functionals to diatomic molecules and
showed that they give an accurate description of these mol-
ecules at both the equilibrium distance and the dissociation
limit.

There is a strong motivation for the extension and appli-
cation of 1-RDM functionals to solid-state systems. This mo-
tivation stems from the success of these functionals in the
description of electron correlation for finite systems, as well
as the difficulties of DFT methods in describing certain ma-
terials and properties such as the band gap of semiconductors
and insulators22–25 or the band width of the conduction band
in Na.26

A very important prototype system, which serves as a
benchmark for the performance of approximate 1-RDM
functionals when applied to periodic systems, is the HEG.
Furthermore, this system can serve as a laboratory for the
development of approximate functionals, in a fashion similar
to DFT. As a consequence of translational invariance, the
natural orbitals can be chosen as plane waves and the search
for the ground state 1-RDM is restricted to the optimization
of the momentum distribution n�k�, which is the occupation
number that corresponds to the plane-wave natural orbital
with wave vector k. An important point to note is that the
self-interaction terms for the plane-wave natural orbitals van-
ish. Consequently, the GU and the Müller functionals are
identical. Finally, approximations that involve a special treat-
ment of single orbitals have zero effect in the continuous
wave vector case. Thus, the BBC3 functional is identical to
BBC2.

As a consequence of the rotational invariance of the HEG,
the occupation numbers have the property n�k�=n�k�, i.e., all
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the plane-wave natural orbitals corresponding to the same
absolute value k are degenerate �with respect to the occupa-
tion number�. This allows one to perform unitary transforma-
tions among the degenerate plane waves leading, e.g., to
angular-momentum eigenfunctions

�klm�r� = jl�kr�Ylm�	� �8�

for the natural orbitals, where jl�kr� are spherical Bessel
functions and Ylm are spherical harmonics. Since these func-
tions are localized in real space, it is conceivable to include
self-interaction corrections in terms of the natural orbitals
�Eq. �8�� for the HEG. To our knowledge, this possibility has
not been explored so far and is also beyond the aim of the
present work.

Choosing the natural orbitals as plane waves, the 1-RDM
of the HEG can be written as

��r,r�� =
2

V
	
k

n�k�eik�r−r��, �9�

where V is the volume of the system �V→��. Substituting
this expression in Eqs. �1� and �5�, we obtain for the total
energy

Etot = 2	
k1

k1
2

2
n�k1� −

1

V
	

k1,k2

f�n�k1�,n�k2��
4


�k1 − k2�2 + �2 ,

�10�

where k1, and k2 are wave-vector indices, and � is a small
quantity �usually �10−8� included for numerical stability. As
in Hartree-Fock, the external potential energy and the elec-
tronic Coulomb repulsion energy, i.e., the third and fourth
terms in Eq. �1�, cancel exactly with the first term, i.e., the
ion-ion interaction. The quantity F of Eq. �4� per particle
then becomes

F

N
=

3

2kF
3�

0

�

dk1k1
2�k1

2 − 2��n�k1� +
3

4
kF
3�

0

�

dk1�
0

�

dk2k1k2

�log� �k1 − k2�2 + �2

�k1 + k2�2 + �2� f�n�k1�,n�k2�� + � , �11�

where kF= �9
 /4�1/3rs
−1 is the Fermi wave vector of the non-

interacting HEG and rs is the radius �in a.u.� of the sphere
with volume equal to the volume per electron.

Cioslowski and Pernal27 applied the Müller functional to
the HEG and calculated analytically the resulting momentum
distribution,

n�k� = 512
��1 + 4k2�−4, �12�

where � is the electron density per spin, �=3�8
rs
3�−1. The

corresponding total energy per particle is independent of
the density and equal to −1/8 hartree. It is obvious that the
solution of Eq. �12� is consistent with the second
N-representability constraint of Eq. �3� only for �
� �512
�−1, i.e., rs
5.77. In other words, the Müller func-
tional gives a solution without pinned states only for rs

5.77. In addition, Cioslowski and Pernal demonstrated that
the Lieb-Oxford28 bound is violated for �
1.65�10−3, i.e.,
rs�4.167. The solution with pinned states for rs�5.77 was

calculated by Csányi and Arias.7 More specifically, for rs
�5.77, one gets an optimal momentum distribution n�k�
with n�k�=1 for k below a certain value kp and fractional
n�k��1 for k�kp. This behavior is in complete analogy to
the case of finite systems for the Müller functional. Unfortu-
nately, it is in conflict with the fact that the exact momentum
distribution29,30 is a monotonically decreasing function of k
and is strictly smaller than 1, i.e., there are no pinned states.
Additionally, the exact momentum distribution is concave for
k�kF, it shows a discontinuity at kF, and for k�kF, it goes
to zero asymptotically. The size of the discontinuity is de-
creasing with rs.

In addition to the Müller functional, Csányi and Arias7

considered a similar functional derived from a tensor product
expansion of the two-body density matrix, which they called
corrected Hartree-Fock �CHF�. Unfortunately, CHF gives
zero correlation for the HEG in the high-density limit
�rs→0�, coinciding with Hartree-Fock. In the opposite limit,
it strongly overcorrelates, giving the same results as the
Müller functional. In the intermediate region, including the
metallic densities, the result for the correlation energy is
close to the exact but its dependence on rs is monotonically
decreasing instead of increasing. In an attempt to improve
over the Müller functional and CHF, Csányi et al. considered
an improved tensor product expansion of the two-particle
density matrix.8 The resulting functional, which is called
Csányi-Goedecker-Arias �CGA�, performs very well in the
high-density regime and significantly better than the previous
two functionals in the region of metallic densities. The de-
viation from the exact correlation energy increases with rs
and, at higher densities, CGA coincides with CHF and the
Müller functional.

In the present work, we apply the BBC1 and BBC2 func-
tionals of Gritsenko et al.13 to the HEG and compare with
previous functionals as far as the resulting correlation ener-
gies are concerned. We also investigate other features such as
the resemblance of the resulting momentum distribution to
the exact and the state pinning. In order to apply the BBC1
and BBC2 functionals to the case of the HEG through Eq.
�11�, we need to distinguish between strongly and weakly
occupied orbitals. For finite systems, Gritsenko et al.13 chose
the first N /2 natural orbitals to be strongly occupied. In com-
plete analogy, we can use a critical wave vector kc=kF, be-
low which all states are assumed to be strongly occupied,
while above, they are weakly occupied.

An additional goal of the present work is to demonstrate
that the HEG can be used to develop functionals suitable for
metallic systems. The idea is to modify the BBC1 functional
in such a way that it yields the exact correlation energy for
the HEG. This is achieved in two different ways: �i� For each
given density, we choose kc such that BBC1 reproduces the
exact correlation energy of the HEG at that density. We call
this functional kc-functional. �ii� We introduce a function
s�rs� multiplying the xc terms of Eq. �5� for two weakly
occupied orbitals, keeping kc=kF. In this way, we replace the
sign change of the BBC1 functional with the parameter s.
Accordingly, we call this functional s-functional.

In the following section, we present details of the numeri-
cal implementation, as well as the results of applying the
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BBCs and the kc- and s-functionals to the HEG.

II. NUMERICAL IMPLEMENTATION AND RESULTS

The minimization of energy expression �11� with respect
to n�k� is performed using the steepest-descent method. We
choose to work in energy space instead of k space, i.e., we
perform the variable substitution �=k2 /2 and solve numeri-
cally the minimization problem for n���. Working in energy
space rather than k space improves the stability of the nu-
merical treatment. Energy � is discretized using a double-
logarithmic mesh centered at �F=kF

2 /2, where the occupation
varies the most. The upper limit of integration is chosen such
that the momentum-distribution function has dropped to val-
ues smaller than 10−6. The double integration with respect to
the energy is carried out using an adaptive grid technique
capable of treating integrable singularities such as the loga-
rithmic singularity of the present problem. The values of the
energy-distribution function n��� in between the mesh points,
necessary for the adaptive grid method, are obtained from an
interpolation scheme. The N-representability constraint 0
�n����1 is implemented through the substitution n���
=sin2�
���� /2� and variation with respect to ����. Extra care
is required to avoid n��� from being falsely pinned to 0 or 1.
Indeed, if for a particular �, n��� gets very close to 1 or 0
during the variation, it would stay pinned at that point. The
variation with respect to the Lagrange multiplier � is imple-
mented as an external iterative procedure, thus achieving
convergence for each value of �. The correct value of � is
selected by requiring the momentum-distribution function to
integrate to the correct number of electrons for a given value
of rs. Finally, we found that a reasonable value for the pa-
rameter � in Eqs. �10� and �11� is 10−8, which avoids both
numerical problems, as well as the dependence of the results
on �.

A. Application of the BBC functionals to the HEG

In Fig. 1, we show the correlation energy of the HEG as a
function of rs. The correlation energy calculated with the
BBC1 and BBC2 functionals is significantly closer to the
exact than any other functional over the whole range of rs.
Both functionals also seem to reproduce the correct
asymptotic limit of zero correlation for the dilute HEG. For
small densities up to metallic densities, the BBC functionals
undercorrelate, i.e., the absolute value of the correlation en-
ergy is too small. In the dense limit, they overcorrelate and
the crossover is at around rs=0.5 and 0.3 for the BBC1 and
BBC2, respectively. Unfortunately, in the area of low metal-
lic densities, both functionals yield correlation energies
which deviate from the exact values by 50%. In absolute
numbers, the error of BBC1 and BBC2 is of the same order
as the random phase approximation result.31 Nevertheless, in
the range 0.1�rs�1, the BBC functionals perform remark-
ably well. Compared to all previous 1-RDM functionals,
BBC1 and BBC2 offer a much better account of the electron
correlation for the HEG. Although less accurate than the
CGA in the high-density region, they perform better for me-
tallic densities and they reproduce the limit of zero correla-

tion at the dilute HEG limit where the Müller functional,
CHF, and CGA fail.

A feature of the exact momentum distribution, namely, the
discontinuity at the Fermi wave vector kF, is reproduced by
the BBC functionals. The discontinuity is more pronounced
for the BBC1 functional, as can be seen in Fig. 2, where we
plotted the momentum distribution of the HEG with rs=1
and rs=5 using the Müller functional, as well as BBC1 and
BBC2. Contrary to BBC1 and BBC2, the Müller functional
does not yield a discontinuity. To our knowledge, there is no
report of any other 1-RDM functional reproducing this fea-
ture of the HEG. To extract the size of the discontinuity
quantitatively, we used two energy mesh points very close to
�F �at a distance of ±10−8�F�. In Fig. 3, we plot the size of the
discontinuity �n as a function of rs. As we see, it increases
monotonically with rs and has the tendency to saturate for
large rs for both BBC1 and BBC2. For BBC2, the disconti-
nuity is substantially smaller than for BBC1 and it goes to
zero at 0.6�rs�0.7. Both the size and the dependence on rs
are in complete disagreement with the exact theory, where
�n is substantially bigger and decreases with rs, as one can
see from the two fits to the diffusion Monte Carlo �DMC�
data.29,30

We now turn to the question of state pinning. As we see in
Fig. 2, state pinning is a common feature of all the function-
als we employed. To verify that the states are truly pinned,
we plot the functional derivative �F /�n�k�, which is nonzero
for pinned states. As one expects, the number of pinned
states decreases with increasing rs. We define a wave vector
kp, below which the corresponding states are pinned, i.e.,
n�k�=1 for k�kp. In Fig. 4, we plot kp as a function of rs for
the Müller and the two BBC functionals. For all three func-
tionals, kp decreases monotonically with rs. For the Müller
functional, our numerical calculation confirms the analytic
result27 that above a critical value of rs=5.77, there are no

FIG. 1. �Color online� The correlation energy of the HEG as a
function of rs calculated with the BBC1 and BBC2 functionals
compared to various other calculations. The Monte Carlo result rep-
resents the Perdew-Wang fit �Ref. 31� of the DMC data of Ortiz and
Ballone �Ref. 29�. The dotted line corresponds to the numerical
results by Csányi and Arias �Ref. 7� employing the Müller func-
tional for rs�5.77. Its continuation, the dash-dotted line, for rs

�5.77, stands for the analytical results of Cioslowski and Pernal
�Ref. 27� employing the same functional. The results for the CHF
functional �Ref. 7�, as well as for the CGA �Ref. 8�, are also shown.
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pinned states, and therefore, kp goes to zero at this value.
This can already be seen in Fig. 2, where, for the Müller
functional at rs=5, the derivative is very close to 0 even for
small wave vectors. Interestingly, for BBC1 and BBC2, we
found no such critical value up to rs=20. Indeed, for both
BBC1 and BBC2, the decrease of kp is much smaller than for
the Müller functional, kp being almost constant for BBC2.

As we have seen, the performance of the BBC1 and
BBC2 functionals for the HEG is improved significantly
compared to previous functionals. This is especially remark-
able, given that they were originally constructed to describe
the dissociation of small molecules.

B. Improved functionals for the HEG

In this section, we attempt to improve over the BBC func-
tionals for the HEG. We present two functionals which are
simple modifications of the BBC1 functional. In both cases,

FIG. 2. �Color online� The momentum distribution n�k� of the HEG for rs=1 �left� and rs=5 �right� calculated with the Müller functional,
BBC1, and BBC2. BBC1 and BBC2 show a discontinuity of the momentum distribution at kF. For comparison, we include the fit to the
DMC data of Ortiz and Ballone �Ref. 29�. The derivative ��F /N� /�n�k� is also plotted. Note that for small k, the derivative is not 0 and n�k�
is pinned at 1.

FIG. 3. �Color online� The discontinuity �n of the momentum
distribution at kF for BBC1 and BBC2 as a function of rs compared
to the fits of Ortiz and Ballone �OB� �Ref. 29� and Gori-Giorgi and
Ziesche �GZ� �Ref. 30� to the DMC data.
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the BBC1 functional is generalized by introducing an addi-
tional function of rs such that the correlation energy of the
HEG is reproduced exactly for each rs. As exact results, we
regard the Perdew-Wang fit31 of the correlation energy ob-
tained from DMC calculations by Ceperley and Alder32 and
Ortiz and Ballone.29 The two Monte Carlo calculations yield
almost identical correlation energies.

For the first functional, we adjust the critical wave vector
kc, which is used to distinguish between strongly and weakly
occupies states, instead of using kc=kF, as in BBC1. We call
this functional the kc-functional. The corresponding function
f in Eq. �5� then reads

f�n�k1�,n�k2�� = �− �n�k1�n�k2� , k1,k2 � kc�rs�
�n�k1�n�k2� , otherwise.

�
�13�

We perform the fitting of kc over the range of metallic den-
sities, 0.5�rs�5. The results are compiled in Table I. For
rs=0.5, kc�kF, since this point is almost exactly reproduced
by BBC1 �see Fig. 1�. For rs�0.5, kc is a monotonically
increasing function of rs. Fitting kc has a strong impact on
the momentum distribution which is displayed in Fig. 5 for
rs=1 and rs=5. It is not surprising that the discontinuity is
displaced from kF to kc. Additionally, its size is reduced sig-
nificantly compared to BBC1. Both the displacement of the
discontinuity and the decrease in the step size are in dis-
agreement with the exact result.

An alternative idea is to keep kc=kF fixed and consider a
fitting parameter s multiplying the exchangelike terms when
both states, k1 and k2, are weakly occupied, i.e.,

f�n�k1�,n�k2�� = �− s�rs��n�k1�n�k2� , k1,k2 � kF,

�n�k1�n�k2� , otherwise.
�

�14�

In this way, the parameter s, which is a kind of strength of
the xc terms, becomes a function of rs, as indicated in Eq.

�14�. We call this functional the s-functional. The values of s
for the fitting to the Ortiz and Ballone DMC results are in-
cluded in Table II. As we see, s varies between 4 and −0.26
for the range of densities, 0.1�rs�10, we considered. In
Fig. 6, we show the resulting, monotonically decreasing
function s�rs�.

From Fig. 7, one can see that one of the advantages of
fitting s instead of kc is that the discontinuity of the momen-
tum distribution remains fixed at kF. In addition, its size is
almost constant ��0.2� as a function of rs. As we see in Fig.
3, the exact discontinuity is significantly higher and it is a
decreasing function of rs. Therefore, concerning the size of
the discontinuity, the s functional does not improve over the

FIG. 4. �Color online� The wave vector kp, where the optimal
momentum distribution becomes fractional, as a function of rs.

TABLE I. The the critical wave vector kc for some metallic
densities.

rs 0.5 1.0 2.0 3.0 4.0 5.0

kc /kF 0.994 1.032 1.085 1.122 1.155 1.172

FIG. 5. �Color online� The momentum distribution for the
kc-functional, compared with the BBC1 and the fit to the DMC data
of Ortiz and Ballone �Ref. 29�, for rs=1 and rs=5. For the
kc-functional, the discontinuity is moved from kF to kc, i.e., to
1.032kF and 1.172kF, respectively.

TABLE II. The fitted values of s for various values of rs for the
s-functional. s was fitted to reproduce the correlation energies of the
DMC calculation of Ortiz and Ballone �Ref. 29�.

rs s rs s

0.1 4.913 1.0 0.435

0.2 2.751 1.5 0.190

0.3 1.867 2.0 0.059

0.4 1.390 3.0 −0.074

0.5 1.087 4.0 −0.146

0.6 0.877 5.0 −0.189

0.7 0.727 7.0 −0.234

0.8 0.602 10.0 −0.263
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BBC1, which, in the dilute gas limit, is close to the exact
result. However, the increasing behavior of BBC1 is im-
proved by the s-functional which yields discontinuities that
are almost constant as a function of rs.

In conclusion, the s-functional results in momentum dis-
tributions that resemble the exact ones over the whole range
of rs more closely than any of the other functionals consid-
ered here.

III. CONCLUSION

We have applied a variety of 1-RDM functionals to the
HEG. We show that the BBC functionals13 yield a significant
improvement over previous functionals as far as the correla-
tion energy is concerned. In addition, they yield a disconti-
nuity of the momentum distribution at the Fermi wave vector
in resemblance of the exact HEG theory. However, the size
and the dependence on the density of this discontinuity are
not in agreement with the quantum Monte Carlo results.

By introducing an appropriately fitted function of rs in the
BBC1 functional, we demonstrate that the exact correlation
energy of the HEG can be reproduced with a smooth and
monotonic fitting function. For this function, we either use
the critical wave vector kc�rs�, which distinguishes between
the strongly and weakly occupied states, or a strength s�rs�
multiplying the exchangelike terms for two weakly occupied
states. Both of these procedures were applied to the BBC1
functional. The two functionals, yielding by construction the
exact correlation energy of the HEG, are assessed by the
quality of the resulting momentum distributions. We show
that choosing the second procedure, i.e., the s-functional, is
superior to fitting kc. The discontinuity �n of the momentum
distribution resulting from the s-functional is nearly constant
as a function of rs and hence represents a significant im-
provement over BBC1 and BBC2. However, the momentum

distribution obtained by the s functional still deviates signifi-
cantly from the exact one. To remedy this, more complicated
strategies have to be considered, possibly with the introduc-
tion of more fitting parameters.

Our functional of choice, being derived from the HEG, is
expected to yield good results for metallic systems. The ap-
plication to finite as well as nonmetallic periodic systems is
not straightforward because rs is not well defined in these
cases. Hence, the necessity to map rs onto other quantities
characterizing these systems or to involve a local density
approximation-type prescription relating s�rs� to the local
density arises.

ACKNOWLEDGMENTS

This work was supported in part by the Deutsche
Forschungsgemeinschaft within the program SPP 1145, by
the EXCITING Research and Training Network, and by
EU’s Sixth Framework Program through the Nanoquanta
Network of Excellence �NMP4-CT-2004-500198�.

FIG. 7. �Color online� The momentum distribution given by the
s functional, compared with the BBC1 and the fit to the DMC data
of Ortiz-Ballone �Ref. 29�, for rs=1 �s=0.435� and rs=5
�s=−0.189�. The discontinuity remains at kF and is approximately
equal to 0.2.

FIG. 6. �Color online� The dependence of the fitting parameter s
on rs resulting from fits to the Perdew-Wang parametrization �Ref.
31� of the correlation energy from two different sets of DMC re-
sults: Ceperley and Alder �Ref. 32� and Ortiz and Ballone �Ref. 29�.
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