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In this work, we study the role of bound electrons in quantum transport. The partition-free approach by Cini
�Phys. Rev. B. 22, 5887 �1980�� is combined with time-dependent density-functional theory �TDDFT� to
calculate total currents and densities in interacting systems. We show that the biased electrode-device-electrode
system with bound states does not evolve toward a steady regime. The density oscillates with history-
dependent amplitudes and, as a consequence, the effective potential of TDDFT oscillates too. Such time
dependence might open new conductive channels, an effect which is not accounted for in any steady-state
approach and might deserve further investigations.
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I. INTRODUCTION

The progressive miniaturization of electronic devices and
their future application in nanoscale circuitry entails the ne-
cessity of developing a quantum theory of transport. Such a
theory should account for the full atomistic structure of the
contacts and the molecular device, and for the dynamical
effects of exchange and correlation on the electron motion.

Most theoretical works on quantum transport focus on
steady-state properties and are based on a “contacting ap-
proach” first introduced by Combescot and co-workers.1–4 In
this approach, the system is separated in isolated parts in the
remote past �left and right leads and central device� and the
contacts between subsystems are treated as a time-dependent
perturbation �adiabatic switching�. Such a partition is crucial
in the formal derivation of the Meir-Wingreen formula,5

which allows for studying time-dependent phenomena and
correlation effects in the device region but is not suitable to
include long-range interactions and memory effects in a first-
principles manner �see discussion below�.

The contacting approach has a severe limitation. In a typi-
cal experiment, the whole system is contacted and in equi-
librium before a driving external field is switched on. Thus,
there is an implicit assumption of equivalence between �a�
the initially partitioned and biased system once the contacts
are introduced and �b� the whole system in equilibrium once
the bias is turned on. This assumption might be reasonable in
the long-time limit but is clearly inappropriate at any finite
time. As a consequence, the contacting approach is not suit-
able for describing transient regimes. Also, the memory of
initial conditions is not properly accounted for. In a nonin-
teracting system, memory effects are washed out provided
the local density of states is smooth in the device region.6–8

However, this is generally not true in the interacting
case.7,9,10

Recently, Dhar and Sen11 have shown that memory effects
might also be observed in noninteracting systems with bound
states. This finding renders the contacting approach ambigu-
ous since the equilibrium distribution of the initially isolated
device is arbitrary. It has also been shown that the one-
particle density matrix of the unbiased system does not re-
duce to the standard equilibrium result but rather oscillates
with frequencies �=�b−�b�, where �b and �b� are bound-

state energies. In order to circumvent this problem, Dhar and
Sen proposed the introduction of two “extra” reservoirs
weakly coupled to the device. For the unbiased system, the
equilibrium result is recovered in the limit where the extra
couplings tend to zero. However, out of equilibrium the re-
sults depend on the limiting procedure.

In this work, we use the “partition-free approach” by
Cini12 which is free from all of the above limitations. In
contrast to the contacting approach, the system is not parti-
tioned in the remote past and is in equilibrium at a unique
temperature and chemical potential �thermodynamic consis-
tency�. The initial equilibrium distribution of the device is
unambiguous. The system is driven out of equilibrium by
exposing the electrons to a time-dependent electric field.
Thus, the external perturbation is a local potential and the
partition-free approach can be combined with time-
dependent density-functional theory13–16 �TDDFT� to calcu-
late total currents and densities in interacting systems.7,8 The
use of TDDFT in quantum transport is gaining
ground7,8,10,17–29 and several properties of the time-dependent
exchange-correlation potential and kernel have recently been
discussed.30–34

In a previous work,6 we have shown how a steady current
develops under the influence of a constant bias. For nonin-
teracting electrons, we also proved that the steady current is
independent of the history of the applied bias and agrees
with the steady current calculated in the contacting approach.
The theory has been developed assuming a smooth density of
states in the device region. Here, we generalize the theory
and include bound states in the description of time-
dependent quantum-transport phenomena. Our main findings
are as follows. For noninteracting electrons �1� in the pres-
ence of bound states, the total current and the one-particle
density matrix oscillate with frequencies �=�b−�b�, and the
amplitude of the oscillations are unambiguous calculable
quantities. �2� the amplitude of the oscillations depends on
the history of the applied bias and on the original equilib-
rium, meaning that the long-time limit does not wash out the
effects of different initial conditions. �3� for the unbiased
system, the oscillations vanish and all the time-dependent
quantities reduce to their equilibrium value. Thus, in the
partition-free approach there is no need of extra reservoirs to
recover standard equilibrium properties. For Kohn-Sham
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electrons �TDDFT� �4� the steady-state assumption is not
consistent with the presence of bound states, �5� it is possible
to have self-consistent oscillatory solutions even for time-
independent external fields, and �6� density oscillations
might induce oscillations in the effective potential of TDDFT
and hence give rise to new conductive channels. This effect
cannot be captured in static DFT calculations.

The plan of the paper is as follows. In Sec. II, we give a
brief introduction to the extended Keldysh formalism which
properly accounts for the effects of initial correlations. A
general formula for the total current is derived in Sec. III.
Such a formula explicitly contains the distribution function
of the system in equilibrium and allows for working in both
the contacting approach and the partition-free approach. In
Sec. IV, we generalize the theory of Ref. 6 to include bound
states in quantum transport. The implications of our findings
in a formulation based on TDDFT are discussed in Sec. V. In
Sec. VI, we summarize the main results and draw our con-
clusions.

II. KELDYSH-GREEN FUNCTION

Let us consider a system of noninteracting electrons �or
mean-field electrons or Kohn-Sham electrons� described by

Ĥ�t� = �
m,n

�H�t��m,ncm
† cn, �1�

where the matrix

H�t� = � EL�t� VLC�t� 0

VCL�t� EC�t� VCR�t�

0 VRC�t� ER�t�
� �2�

models the electrode-device-electrode system of Fig. 1.
�Here and in the following, we use boldface to indicate ma-
trices in one-electron labels.�

Without loss of generality, we assume that the system is in
equilibrium for negative times t�0. Letting � be the chemi-
cal potential and � be the inverse temperature, all equilib-
rium quantities can be expressed in terms of the density ma-
trix

�̂ = e−��Ĥ0−�N̂�, �3�

with N̂=�mcm
† cm the operator of the total number of particles

and Ĥ0= Ĥ�t�0�. The Matsubara-Green function technique
is a well established theory for calculating �̂-averaged quan-
tities but is limited to equilibrium problems. A very powerful
tool for dealing with nonequilibrium �as well as equilibrium�
problems is provided by the non-equilibrium Green’s func-
tion �NEGF� theory.35,36

The basic quantity in NEGF is the Keldysh-Green func-
tion

�G�z;z���m,n =
1

i

Tr�T	exp
− i�
�

dz̄Ĥ�z̄��cm�z�cn
†�z��
�

Tr��̂�
,

�4�

where Tr denotes the trace over all many-body states. In Eq.
�4�, the integral is over the Keldysh contour � of Fig. 2, T is

the contour ordering operator, and Ĥ�z�= Ĥ�t� for z= t± while

Ĥ�z�= Ĥ0 for z=	. The fermion operators cm�z�=cm and
cn

†�z��=cn
† do not depend on the contour variables z and z�;

the reason of the contour argument stems from the need of
specifying their positions in the contour ordering. The
Green’s function G obeys an important cyclic relation37,38

G�0−;z�� = − e��G�− i�;z�� , �5�

G�z;0−� = − e−��G�z;− i�� , �6�

which is used as boundary condition for the solution of the
equation of motion

FIG. 1. �Color online� The electrode-device-electrode system
described by H�t�. It consists of left �L� and right �R� metallic
regions coupled to a central scattering region C. Region C contains
the actual molecular device and few atomic layers of the L /R
electrodes. FIG. 2. �Color online� The oriented contour � is composed by a

forward and a backward branch between 0 and 
 and a vertical
track going from 0 to −i�. According to the orientation, the point z
is later than z� and any point lying on the vertical track is later than
both z and z�. For any physical time t, we have two points t± on �
at the same distance from the origin. In the main text, we choose the
Greek letter 	 for z on the vertical track.
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	i
d

dz
1 − H�z�
G�z;z�� = ��z;z��1 , �7�

with 1 the unity matrix. The Keldysh-Green function reduces
to the Matsubara-Green function for z and z� on the vertical
track of the contour �.

In the NEGF formulation of quantum transport, the non-
local Hamiltonian connecting regions L and R to the central
region C is treated perturbatively to all orders. This is pos-
sible by rewriting H as E+V where

E = �EL 0 0

0 EC 0

0 0 ER
�, V = � 0 VLC 0

VCL 0 VCR

0 VRC 0
� , �8�

and by introducing the diagonal Green’s function g which
obeys the equation of motion below

	i
d

dz
1 − E�z�
g�z;z�� = ��z;z��1 . �9�

The diagonal g allows us to convert Eq. �7� into a Dyson
equation on �,

G�z;z�� = g�z;z�� + �
�

dz̄g�z; z̄�V�z̄�G�z̄;z�� , �10�

provided g obeys the same cyclic relations �5� and �6� as G.
We wish to stress that Eq. �10� is an exact equation only if
the contour � includes the forward and backward branches
and the vertical track. As one can see by inspection, the
removal of the vertical track from � is equivalent to setting
V�z=	�=V0=0 and hence to starting from an initial Hamil-
tonian H0=E0, with E0=E�t�0�.

To calculate the time-dependent total current, one needs
the lesser component of the Keldysh-Green function. Choos-
ing z= t− and z�= t+� in Eq. �10� and using the Langreth
theorem,39,40 we find

G��t;t�� = g��t;t�� + �
0




dt̄GR�t; t̄�V�t̄�g��t̄;t��

+ �
0




dt̄G��t; t̄�V�t̄�gA�t̄;t��

+ �
0

−i�

d	̄G�t; 	̄�V�	̄�g�	̄;t�� , �11�

where Green’s functions with superscript R �A� are retarded
�advanced� Green’s functions. It is possible to show that Eq.
�11� is equivalent to6

G��t;t�� = GR�t;0�G��0;0�GA�0;t�� . �12�

Equation �12�, as opposed to Eq. �11�, has a simple physical
interpretation. The lesser Green’s function is completely
known once we know how to propagate the one-electron
states in time and how these states are populated before the
system is driven out of equilibrium. The time evolution is
fully described by the retarded or advanced Green’s func-
tions GR,A, and the initial equilibrium distribution is fully

described by G��0;0�= if�H0�, where f���=1/ �e���−��+1�
is the Fermi function.

Equation �12� is valid for noninteracting electrons and for
mean-field �Hartree or Hartree-Fock� electrons; it is also
valid for Kohn-Sham electrons since in TDDFT the electron-
electron interaction is described by an exchange-correlation
potential which is local in time. The present work deals with
noninteracting electrons �Secs. III and IV� and Kohn-Sham
electrons �Sec. V�, and hence Eq. �12� can always be used.
Due to the nonlocality in time of the correlation self-energy,
Eq. �12� is no longer valid beyond the Hartree-Fock approxi-
mation of many-body perturbation theory. In the latter case,
the exact formula for the lesser Green’s function �which fully
accounts for transient and correlation effects� can be found in
Ref. 6.

III. CURRENT FORMULA FROM NEGF

The total current from region �=L ,C ,R can be calculated
from the time derivative of the total number of particles in �,

I��t� = − e
d

dt
Tr��− iG��t;t�� , �13�

where Tr� denotes the trace over a complete set of one-
particle states for region � and e is the electron charge. From
the equation of motion �7�, the change per unit time of the
lesser Green’s function is proportional to the commutator
�G��t ; t� ,H�t��. Projecting the Green’s function onto differ-
ent subregions,

G = �GLL GLC GLR

GCL GCC GCR

GRL GRC GRR
� , �14�

it is straightforward to realize that

I��t� = 2e Re TrC�GC�
� �t;t�V�C�t��, � = L,R . �15�

Equation �15� will be our starting point for the calculation of
the long-time limit of I��t� for different initial conditions and
in the presence of bound states. Equation �15� is valid for
both noninteracting and Kohn-Sham electrons. In the latter
case, G� is the Kohn-Sham Green’s function and I��t� is the
total current of the Kohn-Sham system which, according to
the Runge-Gross theorem,13 is the same as the total current
of the real interacting system. In the remainder of this section
and in Sec. IV, we specialize to noninteracting electrons.
Interacting systems will be considered in Sec. V.

A. Contacting approach

The contacting approach has been originally introduced
by Combescot and co-workers in a series of four papers.1–4

About 20 years after, it has been combined with NEGF to
include the effects of time-dependent perturbations and
short-range correlations in the scattering region.5,41 In the
contacting approach, regions L and R are in equilibrium at
the same temperature and chemical potential and are discon-
nected from C. The Hamiltonian for negative times is then
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H0=E0 and the one-particle eigenstates of the unperturbed
�and hence disconnected� system are strictly confined in the
left region or in the right region or in the central scattering
region. The equilibrium distribution of region C cannot be
univocally fixed since C is initially an isolated subsystem.
This is equivalent to saying that EC�t�0�=EC

0 , is in prin-
ciple, an arbitrary Hamiltonian.42 We observe that this ambi-
guity make the transient current difficult to interpret. To
drive a current through the system, one exposes the electrons
to a longitudinal electric field, and at the same time switches
on the contacts V between C and L /R. In a typical experi-
mental setup, regions L and R are bulk metallic electrodes
�see Fig. 1�. The dynamical formation of dipole layers at the
�-electrode interface screens the potential drop along region
� and the total potential turns out to be uniform in the left
and right bulks. For this reason, we model the effects of a
time-dependent electric field as a uniform shift of the energy
levels, i.e., E��t�=E�

0 +U��t�1�, �=L ,R and 1� the unity ma-
trix in region �.

Using Eq. �11�, the time-dependent current of Eq. �15� can
be rewritten as5

I��t� = 2e Re TrC�
0




dt̄�GR�t; t̄���
��t̄;t� + G��t; t̄���

A�t̄;t�� ,

�16�

where we have defined the so-called embedding self-energy

���z;z�� = VC��z�g���z;z��V�C�z�� , �17�

and introduced the short-hand notation

G�z;z�� � GCC�z;z�� �18�

for the Green’s function projected in region C. In obtaining
Eq. �16�, we have taken advantage of the fact that V�z� van-
ishes on the vertical track �isolated subsystems� and hence
the last term in Eq. �11� does not contribute. For the same
reason, the embedding self-energy vanishes if z and/or z� lie
on the vertical track and the lesser Green’s function G� ap-
pearing in Eq. �16� can then be rewritten as �see Eq. �A1� of
Ref. 6�

G��t;t�� = �
0




dt̄dt̄�GR�t; t̄����t̄; t̄��GA�t̄�;t��

+ GR�t;0�gCC
� �0;0�GA�0;t�� , �19�

with �=��=L,R�� the total self-energy. In most works on
quantum transport, the second term in Eq. �19� is neglected
�see, for instance, Eq. �31� of Ref. 41�. This is possible in the
limit t→
 and/or t�→
 provided the local density of states
�LDOS� DC in C is a smooth function. However, DC is not
smooth if bound states are present. Bound states render the
contacting approach ambiguous because the initial equilib-
rium of region C affects the behavior of the system also for
t→
. Moreover, as it has been recently pointed out,11 the
time-dependent current and one-particle density matrix do
not reduce to their equilibrium values when the perturbing
electric field is set to zero.

In the next section, we describe the partition-free ap-
proach. We will obtain a general expression for I��t� which

depends explicitly on the initial equilibrium. This expression
also allows us to switch easily between the contacting and
the partition-free approaches.

B. Partition-free approach

The partition-free approach has been introduced by Cini12

about a decade after the works of Combescot and co-
workers. Here, the system is contacted and in equilibrium at
a unique temperature and chemical potential before an exter-
nal electric field is applied. The initial density matrix of the
central region is then uniquely defined and transient phenom-
ena have a direct physical interpretation. Substituting Eq.
�12� into Eq. �15� and performing the multiplication between
Green’s functions, we obtain

I��t� = 2e Re TrC�Q��t��, � = L,R , �20�

with

Q��t� = �
���=L,R

GC�
R �t;0�G���

� �0;0�G���
A �0;t�V�C�t�

+ �
�=L,R

GC�
R �t;0�G�C

� �0;0�GC�
A �0;t�V�C�t�

+ �
��=L,R

GCC
R �t;0�GC��

� �0;0�G���
A �0;t�V�C�t�

+ GCC
R �t;0�GCC

� �0;0�GC�
A �0;t�V�C�t� . �21�

Equations �20� and �21� are completely general. In the
partition-free approach G��0;0�= if�H0�= if�E0+V0�, while
in the contacting approach G��0;0�= if�H0�= if�E0� with EC

0

arbitrary. In Appendix A, we prove that in the contacting
approach Eqs. �20� and �21� are equivalent to the current
formula in Eq. �16�, as it should.

In Ref. 6, we have shown that by exposing the electrons
to a constant �in time� electric field, the total current I��t� in
Eqs. �20� and �21� tends to a steady value I�

�S� given by �for,
e.g., �=L�

IL
�S� = e� d�

2

�f�� − UL


� − f�� − UR

��T��� , �22�

with T���=TrC�GR����L���GA����R����, �����=−2
�Im���

R����, and U�

=limt→
U��t�. We have also shown

that the steady value is independent of the history of the
applied bias �memory-loss theorem� and of the initial equi-
librium distribution of region C �theorem of equivalence�.
These results were obtained for a smooth LDOS DC. The
presence of bound states requires a generalization of the
theory. In the next section, we include bound states in time-
dependent quantum transport and investigate how they affect
the behavior of I��t� for t→
.

IV. INCLUDING BOUND STATES IN QUANTUM
TRANSPORT

For simplicity, we consider the case of a sudden switching
on of the bias U��t�=��t�U�


 in region �=L ,R �arbitrary
time-dependent biases are considered in the next section�.
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We also specialize the discussion to a hopping Hamiltonian
V�z�=V
 that is constant on the forward and backward
branch of the contour �. However, we leave open the possi-
bility of having a different constant value of V�z�=V0 for z
on the vertical track �this allows us to deal with different
approaches at the same time�.

In quantum-transport experiments, the central device is
typically connected to macroscopic metallic electrodes. The
one-particle eigenstates ��k�� of E�


=E��t→
�=E�
0 +U�


1�,
�=L ,R, form a continuum with energy �k�


 =�k�
0 +U�


�W�.
We define a bound state of the whole biased system L+C
+R as an eigenstate ��b� of H
=H�t→
�=E
+V
 with en-
ergy �b�WL�WR. �For one-particle eigenstates of the iso-
lated regions E�, �=L ,R, we use the Greek letter �, while
for one-particle eigenstates of the connected and biased sys-
tem H
, we use the Greek letter �.� Below, we calculate the
long-time limit of Q� in the presence of bound states.

A. Asymptotic kernel Q�

According to Eq. �21�, the long-time limit of the kernel
Q��t� is known once we know the long-time limit of
GCC

R �t ;0�, GC�
R �t ;0�, and GC�

A �0; t�V�C

 , G���

A �0; t�V�C

 . For

any t�0, the retarded Green’s function can be written as

GR�t;0� = − i exp�− iH
t� � � d�

2

GR���e−i�t �23�

and GA�0; t�= �GR�t ;0��†. Exploiting the smoothness of the
self-energy, we can use the Riemann-Lebesgue theorem to
derive the following asymptotic behaviors:

lim
t→


GCC
R �t;0� = − i�

b

��bC���bC�e−i�bt, �24�

lim
t→


GC�
R �t;0� = − i�

b

��bC���bC�VC�

 e−i�bt

�b1� − E�



− i�
k

GR��k�

 �VC�


 ��k����k��e−i�k�

 t �25�

and

lim
t→


GC�
A �0;t�V�C


 = i�
b

ei�bt��bC���bC���
A��b� , �26�

lim
t→


G���
A �0;t�V�C


 = i�����
k

ei�k�

 t��k����k��V�C




+ i�
k

ei�
k��



t��k���

���k���V��C

 GA��k��


 ���
A��k��


 �

+ i�
b

ei�bt

�b1�� − E��

 V��C


 ��bC���bC���
A��b� ,

�27�

where ��bC� is the projection of eigenstate ��b� onto region C
and GR,A���=GCC

R,A���.
The above asymptotic results are given in terms of sum

over bound states �discrete part� and sum over the continuum

of states of E�, �=L ,R �continuum part�. Inserting them into
Eq. �21� we obtain a continuum-continuum contribution,
Q�

�S�, and a discrete-discrete contribution, Q�
�D�, as well as

cross terms with discrete-continuum contributions. Taking
advantage of the smoothness of GR,A��� for ��WL�WR

and exploiting the Riemann-Lebesgue theorem, it is possible
to show that all cross terms vanish for t→
.

Let us focus on the continuum-continuum part of Q� �it is
straightforward to realize that only the first term in Eq. �21�
can contribute to this part�. Expanding G��0;0� in Matsub-
ara modes,

G��0;0� =
1

− i�
�

n

e��nGM��n�, � → 0, �28�

with GM��n�=1/ ��n1−H0� and �n=�+ �2n+1�
 / �−i��, we
can rewrite G���

� �0;0� as

G���
� �0;0� = if�E�

0�����

+
1

− i�
�

n

e��ng��
M ��n�V�C

0 GCC
M ��n�VC��

0 g����
M ��n� ,

�29�

with g��
M ��n�=1/ ��n1�−E�

0�. We observe that in the contact-
ing approach, V0=0 �regions L ,C ,R isolated for negative
times� and hence the second term in Eq. �29� vanishes. In
this case, the continuum-continuum part is

Q�
�S� = i� d�

2

f�� − U�


�GR�������� + i� d�

2

�
�

f�� − U�

�

�GR��������GA�����
A��� , �30�

which does not depend on time. In Appendix B, we prove
that Q�

�S� does not depend on V0 provided the hopping matrix
elements between states in region C and states ��k��, �
=L ,R, are smooth functions of k. Thus, the memory of dif-
ferent initial conditions is washed out by the continuum of
states and the final result is a steady contribution. Below, we
show that this is not the case for the discrete-discrete part
Q�

�D�.
All four terms in Eq. �21� contribute to Q�

�D�. After some
algebra one finds the following dynamical kernel:

Q�
�D��t� = i�

b,b�

fb,b���bC���b�C���
A��b��e

−i��b−�b��t, �31�

with

fb,b� = ��b�f�H0���b�� . �32�

The coefficient fb,b� is the matrix element of the equilibrium
Fermi function f�H0� between bound states b ,b� of H�t
→
�=H
. Equations �31� and �32� have been obtained us-
ing the bound-state contributions of the asymptotic behavior
in Eqs. �24�–�27� and the relation
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��b�� =
1

�b1� − E�

V�C


 ��bC� , �33�

with ��b�� the projection onto region �=L ,R of the full
bound state ��b�.

In conclusion, we have

lim
t→


Q��t� = Q�
�S� + Q�

�D��t� . �34�

Equation �34� is completely general and is valid provided the
Hamiltonian of region �=L ,R is uniformly shifted by a con-
stant potential �E�


=E�
0 +U�


1��, and the contacting Hamil-
tonian V�t�=V
 and the Hamiltonian for the central region
EC�t�=EC


 are constant in time. We observe that in deriving
Eq. �34�, no statements about V0 and EC

0 have been made; in
principle, they might be different from their asymptotic val-
ues V
 and EC


.

B. Asymptotic current and one-particle density matrix

The total current in the long-time limit is obtained by
substituting Eq. �34� into Eq. �20�,

lim
t→


I��t� = I�
�S� + I�

�D��t� , �35�

where I�
�S� is the steady part coming from Q�

�S� and is given in
Eq. �22�. Taking into account that the imaginary part of
��

A��� vanishes for �=�b, the dynamical part I�
�D��t� can be

written as

I�
�D��t� = 2e�

b,b�

fb,b��b,b�
��� sin���b − �b��t� , �36�

with

�b,b�
��� = TrC���bC���b�C���

A��b��� . �37�

Proceeding along similar lines, one can also prove that the
one-particle density matrix �C�t�=−iG��t ; t� in region C is
the sum of steady and dynamical contributions,

lim
t→


�C�t� = �C
�S� + �C

�D��t� , �38�

with

�C
�S� =� d�

2

�
�

f�� − U�

�GR��������GA��� �39�

and

�C
�D��t� = �

b,b�

fb,b���bC���b�C�e−i��b−�b��t. �40�

Equations �32�, �36�, and �40� and the following discussion
�including Sec. V� are the main results of this work.

In the contacting approach �V0=0�, H0=E0 is a block-
diagonal matrix and so is f�E0�. The coefficients fb,b� can
then be rewritten as the sum of three terms,

fb,b� = ��bC�f�EC
0 ���b�C� + �

�=L,R
��b��f�E�

0���b��� . �41�

The first term in fb,b� depends on the initial equilibrium of
the isolated central region and cannot be univocally fixed

�see discussion in Sec III A�. To make contact with Ref. 11,
we insert a complete set of eigenstates ��k�� for region �
=L ,R in the second term of Eq. �41�. We find

��b��f�E�
0���b��� = �

k

f��k�
0 �

��bC�VC�

 ��k����k��V�C


 ��b�C�

��b − �k�

 ���b� − �k�


 �

=� d�

2

f�� − U�


�
��bC��������b�C�

��b − ����b� − ��
, �42�

which agrees with the result of Dhar and Sen �see Eq. �55� of
Ref. 11�. We also observe that fb,b� of Eq. �41� gives rise to
oscillatory terms in the total current and one-particle density
matrix which do not vanish for U�


=0, �=L ,R. Thus, in the
unbiased system I��t� and �C�t� oscillate forever. To solve
this problem, Dhar and Sen have proposed a somewhat
ad hoc procedure which consists in introducing two extra
reservoirs with a wide band. The bandwidth should be large
enough to allow for the hybridization of the originally local-
ized bound states. Eventually, the coupling to the extra res-
ervoirs is removed and the standard equilibrium result is re-
covered. However, out of equilibrium this procedure suffers
from a serious problem: The nonequilibrium quantities de-
pend on how these extra couplings approach zero.

The partition-free approach is free from all the limitations
described above. The initial equilibrium is unambiguous and
EC

0 is simply given by the projection of the physical Hamil-
tonian onto region C. For the unbiased system, the equilib-
rium Hamiltonian H0 and the long-time limit Hamiltonian
H
 are the same. In this case, Eq. �32� implies

fb,b� = �b,b�f��b� , �43�

and the dynamical contribution to the total current vanishes
while the dynamical contribution to the one-particle density
matrix reduces to the equilibrium contribution of bound
states,

�C
�D� = �

b

f��b���bC���bC� , �44�

as it should. Out of equilibrium, both I��t→
� and �C�t
→
� oscillate around some steady value provided H
 has
more than one bound-state solution. The amplitudes of the
oscillations are calculable expressions and are completely
fixed by the original temperature and chemical potential.
Nonequilibrium results are well defined.

In Appendix C, we also prove that Eqs. �36� and �40�
conserve the total number of particles,

d

dt
NC�t� =

1

e
�IL�t� + IR�t�� , �45�

where

NC�t� = TrC��C�t�� �46�

is the number of particles in region C.

V. IMPLICATIONS FOR TDDFT

One of the main advantage of the partition-free approach
over the contacting approach is that the former can be com-

GIANLUCA STEFANUCCI PHYSICAL REVIEW B 75, 195115 �2007�

195115-6



bined with TDDFT.6–8 In this theory, the time-dependent
density of an interacting system can be calculated from a
fictitious system of noninteracting electrons moving under
the influence of the Kohn-Sham �KS� potential U. The KS
potential is the sum of the external applied potential vext, the
Hartree potential vH, and the exchange-correlation potential
vxc. According to the discussion of Sec. III A, the metallic
screening keeps the bulk electrodes in local equilibrium and
we can approximate U= �vext+vH+vxc� with a spatially con-
stant time-dependent shift deep inside region L /R. The one-
particle Hamiltonian of TDDFT is then given by Eq. �2� with
E��t�=E�

0 +U��t�1�, �=L ,R, and V�t�=V0.
Let us expose the electrons to a constant �in time� electric

field and let us assume that the system reaches a steady state
in the long-time limit. Then, the effective potential of the
bulk electrodes and the Hamiltonian of the central region EC
are stationary in the distant future. We have shown that the
steady-state assumption is consistent with the TDDFT equa-
tion for the total current provided the density of states in
region C is a smooth function.7 All history and initial-state
effects are contained in vxc�r , t→
�, meaning that two dif-
ferent time-dependent densities n�r , t� and n��r , t� may give
the same total current. In the adiabatic local-density approxi-
mation �ALDA�, there is no memory and the exchange-
correlation potential depends on the instantaneous density.
Hence, vxc

ALDA�r , t→
� is completely known once we know
n�r , t→
�. The latter can be calculated self-consistently
from Eq. �39�. The ALDA provides a practical scheme to
compute the current. However, such a scheme, originally
proposed by Lang,43 is obviously limited to the ALDA.
Moreover, owing to the nonlinearity of the problem, there
might be multiple steady-state solutions, and the absence of a
minimum principle in out-of-equilibrium systems makes im-
possible to say toward which steady state the electrons actu-
ally evolve.

Below, we show that the steady-state assumption is not
consistent in the presence of bound states. This result opens
up the possibility of having self-consistent oscillatory solu-
tions even for constant biases and may change substantially
the standard steady-state picture. Indeed, oscillations of the
effective potential in region C give rise to new conductive
channels, very much in the spirit of what happens in quan-
tum pumps.

The proof of the above statement proceeds by reductio ad
absurdum. Let H
 be the steady-state Hamiltonian of the
fictitious noninteracting system. In Appendix D, we prove
that the total current I��t→
� and one-particle density ma-
trix �C�t→
� oscillate like in Eqs. �35� and �38� but with
new coefficients fb,b�. An oscillating density and/or current is
not consistent with the steady-state assumption; the effective
potential of TDDFT is a functional of the density and hence
H�t� cannot be constant in time. We conclude that a steady
current is not compatible with the existence of bound states
in the steady Hamiltonian H
.

The new coefficients

fb,b� = ��b��f�H
0���b�

� � �47�

depend on the history of the bias. Indeed, the state ��b�� is
related to the bound state ��b� of H
 by a unitary transfor-
mation,

���bL� �
��bC� �
��bR� �

� = �ei�L



1L 0 0

0 MC 0

0 0 ei�R



1R

����bL�
��bC�
��bR�

� , �48�

with

��

 = lim

t→

�

0

t

dt̄�U��t̄� − U�

�, � = L,R , �49�

and MC some unitary “memory matrix” for region C. For
constant KS potentials ��


=0 and MC=1C and the coeffi-
cients fb,b� reduce to those in Eq. �32�.

The above results can be extended to systems of interact-
ing electrons and bosons, such as, e.g., phonons. We consider
the system electrons+phonons initially in equilibrium and
assume that the electron density is v representable. Then,
there must exist a local potential that reproduces the interact-
ing electron density in a noninteracting system of only elec-
trons. Such a potential defines uniquely H0. Next, we drive
the system electrons+phonons out of equilibrium by switch-
ing on a longitudinal electric field and we ask the question if
the interacting time-dependent electron density can be repro-
duced in the noninteracting system of only electrons moving
under the influence of a time-dependent local potential U.
According to the van Leeuwen theorem,16 the answer is af-
firmative provided the electron-phonon interaction preserves
the continuity equation, which is a very weak condition.
Moreover, the local potential U is unique. Again, we can
conclude that if the Hamiltonian of the fictitious system glo-
bally converges to an asymptotic Hamiltonian H
 for t→
,
the system cannot have more than one bound state.

We also observe that for truly noninteracting electrons,
the effective potential is equal to the external potential and
does not depend on the density. In this case, the solution of
Appendix D is an exact solution and Eqs. �36� and �40�, with
fb,b� given by Eq. �47�, can be tested against history-
dependent effects in total currents and densities. All history
�of the applied bias� and initial-state dependence are con-
tained in the coefficients fb,b�.

Finally, we wish to discuss a rather interesting example.
Let us imagine to switch on and then off the bias in a system
of �i� truly noninteracting electrons and �ii� KS electrons. In
system �i�, there is no self-consistent evolution since the
Hamiltonian is independent of the density. The asymptotic
Hamiltonian H
 is �trivially� equal to the initial Hamiltonian
H0 and hence the bound states are also eigenstates of H0.
Suppose that the bound-state energies lie in the continuum
when the bias is on. Then, switching the bias off would result
in a depopulation of the bound states and the asymptotic
density matrix �C�t→
� would, in general, differ from its
equilibrium value. This expected result is confirmed by the
exact solution. The system “remembers” that a bias has been
switched on through the memory matrix MC and the phases
��


, �=L ,R, appearing in Eq. �48�. Equation �48� defines
new states �b���b and according to Eq. �47� the coefficients
fb,b� are no longer given by �b,b�f��b�, as it would be in
equilibrium. The situation is totally different in system �ii�.
The time evolution of interacting electrons in initial nonequi-
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librium states has been recently investigated within time-
dependent current density functional theory44,45 �TDCDFT�.
It has been shown that the inclusion of memory effects46 in
the exchange-correlation vector potential leads to a dissipa-
tive KS dynamics,47–49 and D’Agosta and Vignale have been
able to prove48 that the electron density evolves �unless for-
bidden by symmetry� toward the ground-state density. Tak-
ing into account that the density of the TDDFT KS system, is
the same as the density of the TDCDFT KS system we con-
clude that H
=H0 and, more important, that the memory
matrix MC=1C and the phases ��=L,R=0 �mod 2
�, indepen-
dent of the history of the switching onoff process. Indeed, for
these values of MC and ��=L,R, the density matrix is constant
in time �and equal to the ground-state density matrix�, and
hence compatible with the �stationary� ground-state KS
Hamiltonian.

VI. CONCLUSIONS

We have generalized the theory developed in Ref. 6 to
include bound states in quantum transport. In the partition-
free approach, the electrode-device-electrode system is con-
tacted and in equilibrium at a unique temperature and chemi-
cal potential �thermodynamic consistency�. The electrons are
exposed to a time-dependent electric field for positive times.
The external potential is local in space and total currents and
density can be calculated from a fictitious system of nonin-
teracting electrons, according to the Runge-Gross theorem.

We have shown that for truly noninteracting electrons, the
biased system does not evolve toward a steady regime. The
total current and density oscillate due to the presence of
bound states. The amplitude of the oscillations depends on
the initial temperature and chemical potential and on the his-
tory of the applied bias. Bound-state oscillations might pro-
vide a probe to unveil the past of the system.

In contrast to the contacting approach, in the partition-free
approach the initial equilibrium distribution of region C is
well defined and all quantities reduce to their equilibrium
value by setting the external potential to zero. There is no
need of “extra reservoirs” to equilibrate spurious bound-state
oscillations.

Our findings might have interesting implications for the
fictitious system of TDDFT. In Ref. 7, we have shown that
the time-dependent current tends to a steady value provided
the Hamiltonian globally converges to a steady Hamiltonian
and the density of states in region C is smooth. This result is
no longer valid in the presence of bound states. In Sec. V, we
have shown that bound electrons in steady-state regimes lead
to a contradiction: current and density would oscillate and, as
a consequence, the effective potential of TDDFT would os-
cillate too. Steady quantities are not compatible with the ex-
istence of bound states.

According to the above discussion, the effective potential
of TDDFT might oscillate upon application of a constant
bias. We expect that these oscillations have exponentially
small amplitude deep inside the electrodes and are detectable
only close to the molecular device. Indeed, for truly nonin-
teracting electrons the amplitude of the density oscillations is
proportional to the bound-state wave functions. Therefore,

the KS potential is time dependent in the device region and
tends exponentially to a constant �in time� deep inside the
electrodes. In this case, one can use a recently proposed prac-
tical scheme8 to investigate bound-state dynamical effects
within TDDFT. The scheme is based on the real-time propa-
gation of the occupied KS orbitals and we are currently
working at the implementation of the algorithm �which has
been tested in one-dimensional model systems with excellent
results8,9�. As for the case of gate voltages in electron pump-
ing, oscillations of the effective potential open new conduc-
tive channels. Such an effect is completely left out in static
DFT calculations and its possible relevance in molecular
transport has yet to be discovered.
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APPENDIX A: EQUIVALENCE BETWEEN CURRENT
FORMULAS IN THE CONTACTING APPROACH

In the contacting approach, regions L ,C ,R are isolated for
negative times and hence G�C

� �0;0�=GC��
� �0;0�=0,

G���
� �0;0�=����g��

� �0;0�, and GCC
� �0;0�=gCC

� �0;0�. The
kernel Q��t� simplifies to

Q��t� = �
�

GC�
R �t;0�g��

� �0;0�G��
A �0;t�V�C�t�

+ GCC
R �t;0�gCC

� �0;0�GC�
A �0;t�V�C�t� . �A1�

Extracting the retarded and advanced component of the
Keldysh-Green function from the Dyson equation �10�, we
can express GC�

R in terms of GCC
R =GR, and G��

A , GC�
A in

terms of GCC
A =GA. Equation �A1� can then be rewritten as

Q��t� =� GR�t; t̄����t̄; t̄��GA�t̄�; t̄����
A�t̄�;t�

+ GR�t;0�gCC
� �0;0� � GA�0; t̄���

A�t̄;t�

+� GR�t; t̄���
��t̄;t� , �A2�

where the integrals �between 0 and 
� are over barred time
variables. Taking into account Eq. �19�, it is straightforward
to realize that Eq. �16� is actually equivalent to Eqs. �20� and
�21�.

APPENDIX B: INDEPENDENCE OF V0 IN Q�
„S…

The continuum-continuum contribution to Q��t� can be
written as Q�

�S�+�Q�. The steady value Q�
�S� originates from

the first term on the right-hand side of Eq. �29� and is inde-
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pendent of V0. The extra term �Q� accounts for the possible
effects of a nonvanishing coupling V0 in the remote past.
Here, we prove that �Q� vanishes in the long-time limit.
From Eq. �29�, we find

�Q� =
1

− i�
�

n

e��n�Q���n� , �B1�

with

�Q���n� = �
�
� d�

2


GR���S����
�n − � + U�


 e−i�tGM��n��
��

�� d��

2

S��

† ����
���� + GA������

A����

�n − �� + U�

 e−i��t.

�B2�

The matrix S���� is defined according to

S���� = �
k

2
��� − �k�

 �VC�


 ��k����k��V�C
0 �B3�

and is a smooth function of � provided the matrix elements
of V0 between states in region C and states ��k��, �=L ,R are
smooth functions of k. Also, S����=0 for ��WL�WR and
hence the products S�GR and S��

† GA are smooth functions. At
finite temperature, the Matsubara frequencies have a finite
imaginary part and the denominators in Eq. �B2� are well
behaved. Exploiting the Riemann-Lebesgue theorem, we
conclude that both integrals in Eq. �B2� vanish for t→
,
meaning that �Q�=0.

APPENDIX C: CONSERVATION OF THE PARTICLE
NUMBER

The time derivative of the number of particles in region C
can be easily calculated from Eq. �40�,

d

dt
NC�t� = − �

b,b�

��b − �b��fb,b�Sb,b� sin���b − �b��t� ,

�C1�

with Sb,b� the overlap between bound states b ,b� in C,

Sb,b� = TrC���bC���b�C�� . �C2�

Let us now consider the expression for the total current. The
sum IL

�S�+ IR
�S� of steady contributions vanishes. Taking into

account that fb,b� is symmetric under the exchange of b and
b�, and that the real part of the advanced self-energy is a
Hermitian matrix, we can safely replace �

b,b�
��� with

�b,b�
��� =

1

2
TrC���bC���b�C����

A��b�� − ��
A��b��� �C3�

in the expression for the dynamical contribution to I��t�. The
difference between self-energies at different bound-state en-
ergies is

��
A��b�� − ��

A��b� = VC�



��b − �b��

��b�1� − E�

���b1� − E�


�
V�C


 ,

�C4�

and hence Eq. �C3� becomes

�b,b�
��� =

��b − �b��
2

Tr����b����b���� , �C5�

where we have used Eq. �33�. Exploiting the orthonormality
relation

�
�=L,C,R

Tr����b����b���� = �b,b�, �C6�

we find

�
�=L,R

�b,b�
��� = −

��b − �b��
2

Sb,b�. �C7�

It is now straightforward to realize that the sum IL
�D�+ IR

�D� of
dynamical contributions is equal to the change per unit time
of the number of particle in region C �which is given in Eq.
�C1��.

APPENDIX D: LONG-TIME LIMIT OF TDDFT

We have already shown in Sec. IV that for a sudden
switching on, H�t�0�=H
, ∀t�0, the total current and
one-particle density matrix oscillate in the long-time limit.

Let us denote with a bar �ḡ, Ḡ, and �� Green’s functions and
self-energies corresponding to this case. The asymptotic ex-

pressions of ḠCC
R �t ;0�, ḠC�

R �t ;0� and ḠC�
A �0; t�V�C

0 ,

Ḡ���
A �0; t�V�C

0 are given in Eqs. �24�–�27�. Below, we will

find a relation between the asymptotic behavior of G and Ḡ,
with G the Green’s function of the TDDFT Hamiltonian.

For arbitrary time-dependent potentials in region �=L ,R,
the retarded self-energy can be expressed in terms of �R as

��
R�t;t�� = e−i���t��̄�

R�t;t��ei���t��, �D1�

with

���t� = �
0

t

dt̄�U��t� − U�

� . �D2�

The quantity ���t� depends on the history of the applied bias.
We assume U��t� to approach U�


 rapidly enough that ���t�
converges to some value ��


 for t→
. Then,

lim
t,t�→


��
R�t;t�� = �̄�

R�t;t�� . �D3�

The above identity allows us to fix the asymptotic behav-
ior of the Green’s function in region C. From the equation of
motion, we have
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	i
d

dt
1C − EC�t�
GCC

R �t;0� −� dt̄��
R�t; t̄�GCC

R �t̄;0� = ��t� .

�D4�

For large t, we can replace EC�t� with its asymptotic value
EC


. Moreover, taking into account that the self-energy van-
ishes when the separation between its time arguments goes to
infinity, we can replace ��

R�t ; t̄� with ��
R�t ; t̄�, in accordance

with Eq. �D3�. Then, Eq. �D4� reduces to the equation

obeyed by ḠCC
R �t→
 ;0�, meaning that

lim
t→


GCC
R �t;0� = lim

t→

ḠCC

R �t;0�MC
† , �D5�

where MC
† is some unitary matrix that accounts for the his-

tory of the applied bias �memory effects�. From Eq. �D5� and
the equation of motion for GC�

A �0; t�, one can also prove that

lim
t→


GC�
A �0;t�V�C

0 = lim
t→


MCḠC�
A �0;t�V�C

0 . �D6�

Also the asymptotic behavior of GC�
R can be calculated

from the equation of motion. We have

	i
d

dt
1C − EC�t�
GC�

R �t;0� − VC�
0 g��

R �t;0�

−� dt̄��
R�t; t̄�GC�

R �t̄;0� = 0. �D7�

Taking the limit t→
 and exploiting the relation g��
R �t

→
 ;0�=e−i��



ḡ��
R �t→
 ;0�, we obtain

lim
t→


GC�
R �t;0� = e−i��




lim
t→


ḠC�
R �t;0� . �D8�

In a similar way, one can prove that

lim
t→


G���
A �0;t�V�C

0 = ei�
��



lim
t→


Ḡ���
A �0;t�V�C

0 . �D9�

Substituting these results �Eqs. �D5� and �D6� and Eqs.
�D8� and �D9�� in Eqs. �20� and �21�, one can calculate the
asymptotic behavior of the time-dependent total current. Pro-
ceeding along the same line which leads to Eq. �35�, one can
show that I��t� is again given by the sum of the steady-state
value I�

�S� of Eq. �22� and the dynamical contribution I�
�D��t�

of Eq. �36�. However, the coefficients fb,b� are in general
different from those in Eq. �32�. After some algebra, one
readily finds that the new coefficients fb,b� can be expressed
as in Eqs. �47� and �48�.

The time-dependent one-particle density matrix also has
the same analytic form of Eqs. �38�–�40� but with the same
new coefficients fb,b� of Eqs. �47� and �48�.
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