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We present an extension of the work of D’Amato and Pastawski �Phys. Rev. B 41, 7411 �1990�� on electron
transport in a one dimensional conductor modeled by the tight-binding lattice Hamiltonian and in which
inelastic scattering is incorporated by connecting each site of the lattice to one dimensional leads. This model
incorporates Büttiker’s �Phys. Rev. B 32, 1846 �1985�; 23, 3020 �1986�� original idea of dephasing probes.
Here, we consider finite temperatures and study both electrical and heat transport across a chain with applied
chemical potential and temperature gradients. Our approach involves quantum Langevin equations and non-
equilibrium Green’s functions. In the linear-response limit, we are able to solve the model exactly and obtain
expressions for various transport coefficients. Standard linear-response relations are shown to be valid. We also
explicitly compute the heat dissipation and show that for wires of length N��, where � is a coherence length
scale, dissipation takes place uniformly along the wire. For N��, when transport is ballistic, dissipation is
mostly at the contacts. In the intermediate range between Ohmic and ballistic transport, we find that the
chemical-potential profile is linear in the bulk with sharp jumps at the boundaries. These are explained using
a simple model where the left and right moving electrons behave as persistent random walkers.
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I. INTRODUCTION

Inelastic scattering provides a mechanism for dissipation
and decoherence in quantum systems. These effects are im-
portant in considering transport properties of mesoscopic
systems. Experimental examples are numerous and include
studies of transport in systems such as single-walled carbon
nanotubes,1 atomic chains,2,3 semiconducting
heterostructures,4 and polymer nanofibers.5 In the absence of
inelastic scattering, transport is ballistic and we see effects
such as conductance quantization,6,7 or with elastic scatter-
ers, we see effects of coherent scattering such as Anderson
localization.8 In either case, transport is non-Ohmic even
when we consider very long wires. Introducing inelastic scat-
tering necessarily leads to decoherence and both of the above
effects �ballistic transport and localization� are reduced. One
expects that in the limit of long wires, one should get Ohmic
transport.9 Recent experiments on atomic chains10 and
fullerene bridges11,12 have studied the effects of inelastic
scattering and the associated local heating on quantum trans-
port.

The physical sources for inelastic scattering are well
known and occur basically due to the interaction of the con-
ducting electrons with other degrees of freedom in the sys-
tem. For example, these could arise due to electron-phonon
interactions or interactions between conducting and noncon-
ducting electrons.13 However, the microscopic modeling of
inelastic scattering in the context of transport is nontrivial.
One of the first phenomenological models for dissipation
was due to Büttiker.14,15 In Büttiker’s model, one connects a
point inside the wire to a reservoir of electrons maintained at
a chemical potential � whose value is set by the condition
that there is no average current flow into this side reservoir.
This is equivalent to connecting a voltage probe at some
point on the wire and a nice experimental realization of this
situation can be seen in Ref. 4. In Büttiker’s model, an elec-

tron flowing into the reservoir can emerge with a different
phase and energy and thus one can have both decoherence
and dissipation.

A more detailed microscopic calculation using Büttiker’s
idea of incorporating inelastic scattering was performed by
D’Amato and Pastawski.16 In their study, they considered
transmission across a wire modeled by the tight-binding
Hamiltonian with a nearest-neighbor hopping parameter V.
Each site on the wire is connected to electron baths which
are themselves modeled by tight-binding Hamiltonians with
hopping parameter �. The wire is attached at the two ends to
ideal leads with the same hopping parameter as the wire.
These two leads are connected to reservoirs kept at fixed
chemical potentials �L and �R for the left and right leads,
respectively. The side leads are attached to reservoirs whose
chemical potentials are fixed self-consistently by imposing
the condition of zero current. Using this model D’Amato and
Pastawski analytically solved the case where the self-energy
correction due to the side leads is pure imaginary and has the
form i� where � is small. They were able to demonstrate the
transition from coherent to Ohmic transport. An inelastic
length scale �=aV /�, with a as a lattice parameter, was in-
troduced such that for wire length L�� transport was coher-
ent, while for L�� transport was Ohmic. A number of other
papers17–19 have also shown that other models of inelastic
scattering, for example, due to electron-phonon �using side
reservoirs as ensemble of harmonic oscillators to describe the
heat bath� or electron-electron interactions, can be related to
the Büttiker mechanism. Some recent papers have looked at
electron-phonon interactions using the Keldysh nonequilib-
rium Green’s function formalism combined with density-
functional methods,20 tight-binding molecular dynamics,21

and the self-consistent Born approximation.22 An alternative
mechanism for introducing inelastic scattering, through in-
troduction of an imaginary potential in the Hamiltonian, has
also been studied.23–26
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In the present paper, we present an extension of the work
of D’Amato and Pastawski. We study the case of transport of
both heat and electron in the presence of inelastic scatterers
in the form of self-consistent leads. The wire is subjected to
both chemical potential and temperature gradients and we
evaluate steady-state values of both the particle and heat cur-
rent operators. In the limit of a long wire when one is in the
Ohmic regime, we are able to obtain explicit expressions for
all the linear-response coefficients. It is verified that various
linear-response results such as Onsager reciprocity and the
Weidemann-Franz law are valid. In the intermediate regime
between ballistic and Ohmic transport, we propose a simple
model of right moving and left moving persistent random
walkers which can explain much of the observed behavior.
We also perform an explicit calculation of the heat loss along
the wire. This is a second-order effect in the gradients and
we show that there is uniform heat dissipation along the
length of the wire whose value is precisely the Joule heat
loss. For short wires, we show that heat dissipation takes
place primarily at the contacts. While heat dissipation by
Büttiker probes has been discussed in Refs. 15 and 27, we
believe that this is the first explicitly microscopic calculation
of dissipation in a quantum wire that clearly demonstrates
Joule heat loss in the Ohmic regime and dissipation into the
reservoirs in the ballistic regime.

The formalism used in this paper is the quantum Langevin
equations approach. In two recent papers,28,29 it was shown
how this approach can be used to derive both the Landauer
results and more generally the nonequilibrium Green’s func-
tion �NEGF� results on transport. Here, we show how this
method also works for the multiple reservoir case and
quickly leads to NEGF-like expressions for currents for both
particle and heat. These equations are the starting point of
our analysis. Thus, apart from extending the results of Ref.
16, we also use a different and more general approach. Un-
like Ref. 16, we also consider large values of the inelasticity
parameter.

The paper is organized as follows. In Sec. II, we define
the model and describe how the quantum Langevin approach
can be used to get formal expressions for electron and heat
currents in the steady state. In Sec. III, we write the self-
consistent equations and discuss the linear-response regime.
In Sec. IV, we solve the self-consistent equations for a long
wire which is kept in a specified temperature gradient and
evaluate the electrical and heat currents along the wire and
also the heat loss into the side reservoirs. The transition from
the ballistic to the Ohmic regime is briefly discussed in Sec.
V. Finally, we conclude with a discussion in Sec. VI.

II. MODEL AND GENERAL RESULTS

We consider a one dimensional wire modeled by the tight-
binding lattice Hamiltonian. The wire has N sites each of
which is coupled to an infinite reservoir which is itself mod-
eled by a one dimensional tight-binding system �see Fig. 1�.
The Hamiltonian of the system consisting of the wire and all
the reservoirs is given by

H = HW + �
l=1

N

HR
l + �

l=1

N

VWR
l ,

where

HW = − �
l=1

N−1

��cl
†cl+1 + cl+1

† cl� ,

HR
l = − �l�

�=1

�

�c�
l†c�+1

l + c�+1
l† c�

l �, l = 1,2, . . . ,N ,

VWR
l = − �l��c1

l†cl + cl
†c1

l �, l = 1,2, . . . ,N . �1�

Here, cl and c�
l denote, respectively, operators on the wire

and on the lth reservoir. The Hamiltonian of wire is denoted
by HW, that of the lth reservoir by HR

l , and the coupling
between the wire and the lth site is VWR

l . The coupling be-
tween the reservoirs and the wire is controlled by the param-
eters �l�.

We briefly indicate the steps leading to generalized quan-
tum Langevin equations of motion for the wire variables. We
assume that for t	 t0, the reservoirs are disconnected from
the wire. Each reservoir is in equilibrium at a specified tem-
perature Tl and chemical potential �l. At time t0, we connect
all the reservoirs to the wire and we are interested in the
steady-state properties of the wire. For t
 t0, the Heisenberg
equations of motion for the wire and reservoirs variables are

ċl =
i�

�
�cl−1 + cl+1� +

i�l�

�
c1

l for l = 1,2, . . . ,N , �2�

ċ�
l =

i�l

�
�c�−1

l + c�+1
l � for � = 2,3, . . . ,�, l = 1,2, . . . ,N ,

�3�

ċ1
l =

i�l

�
c2

l +
i�l�

�
cl for l = 1,2, . . . ,N , �4�

and we have taken c0=cN+1=0. The equation of motion of
the wire variables �Eq. �2�� involves the reservoir variable c1

l

and we will try to eliminate this. We note that the equation of
motion of each of the N reservoirs, given by Eqs. �3� and �4�,
is a set of linear equations with an inhomogeneous part given
by i�l�cl /�. We can solve these equations of motion using the
single-particle Green’s function of the reservoirs which is
given by gl�t�=−i��t�e−iHlt/�, where Hl is the single-particle
Hamiltonian of the lth reservoir and ��t� the Heaviside step
function. We finally find that the solution for the boundary
site on the lth reservoir is given by �for t
 t0�

FIG. 1. �Color online� A schematic description of the model.
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c1
l �t� = i�

�=1

�

g1�
l+ �t − t0�c�

l �t0� − �
t0

�

dt�g1,1
l+ �t − t��

�l�

�
cl�t�� .

�5�

Substituting this into the equation of motion �Eq. �2�� of wire
variables, we get

ċl�t� =
i�

�
�cl−1 + cl+1� − i�l − i�

t0

�

dt�
l
+�t − t��cl�t�� , �6�

where

�l�t� = −
i�l�

�
�
�=1

�

g1�
l+ �t − t0�c�

l �t0� ,


l
+�t� = ��l�

�
�2

g1,1
l+ �t� .

This is in the form of a generalized quantum Langevin equa-
tion where we identify �l as noise from the lth reservoir and
the last term in Eq. �6� is the dissipative term. The noise
depends on the reservoir’s initial distribution which we have
chosen to be an equilibrium distribution. The properties of
the noise is written most conveniently in the frequency do-
main. We consider the limit t0→−�. Let us define the Fou-
rier transforms c̃l���= �1/2��	−�

� dtei�tcl�t�, gl+���
=	−�

� dtei�tgl+�t�, �̃l���= �1/2��	−�
� dtei�t�l�t�, and 
l

+���
= ��l� /��2g1,1

l+ ���. Let us also use the definition �l���
=−Im�
l

+� /�= ��l� /��2�l���, where �l��� is the local density
of states at the first site ��=1� on the lth reservoir. With
these definitions, it is easy29 to show that the noise-noise
correlations are given by


�̃l
†����̃m����� = �l���f��,�l,Tl���� − ����lm, �7�

where f�� ,� ,T�=1/ �exp����−�� /kBT�+1
 is the Fermi
distribution function.

Taking Fourier transform of the equation of motion �Eq.
�6��, we thus get the following steady-state solution:

c̃l��� = �
m=1

N

Glm
+ ����̃m��� , �8�

where

G+ =
�

�
Z−1

and

Zlm =
�

�
�� − 
l

+��lm + �l,m−1 + �l,m+1.

As shown in Ref. 29, G+��� is basically the Green’s function
of the full system �wire and reservoirs� and for points on the

wire can be written in the form G+���= ��−HW /�− 
̄+�−1,
where HW is the single particle Hamiltonian of the wire

while 
̄+, defined by its matrix elements 
̄lm
+ =
l

+�lm, is a
self-energy correction arising from the interaction with the
reservoirs. We will be interested in particle and energy cur-

rents in the system. The corresponding operators are ob-
tained by defining particle and energy density operators and
obtaining their continuity equations.28 The particle density is
defined on sites, while the energy density is defined on
bonds. We will be interested in currents both inside the wire
and between the wire and reservoirs. Let us define jl

p as the
particle current between sites l , l+1 on the wire and jl

u as the
energy current between the bonds �l−1, l� and �l , l+1�. Also,
we define jw−l

p as the particle current from the wire to the lth
reservoir and similarly jw−l

u is the energy current from the
wire to the lth reservoir. These are given by the following
expectation values:

jl
p =

i�

�

cl+1

† cl − cl
†cl+1� ,

jl
u =

i�2

�

cl−1

† cl+1 − cl+1
† cl−1� ,

jw−l
p =

− i�l�

�

cl

†c1
l − c1

l †cl� ,

jw−l
u =

i��l�

�

�cl+1

† + cl−1
† �c1

l − c1
l †�cl+1 + cl−1�� .

Using the general solution in Eq. �8� and the noise properties
in Eq. �7�, we can evaluate the above expressions and find

jl
p = �

m=1

N
− i��m�

2

�3 �
−�

�

d��Glm
+ Gml+1

− − Gl+1m
+ Gml

− ��m�f l − fm� ,

�9�

jl
u = �

m=1

N
i�2�m�

2

�3 �
−�

�

d��Gl−1m
+ Gml+1

− − Gl+1m
+ Gml−1

− ��m�f l − fm� ,

�10�

jw−l
p = �

m=1

N
1

2�
�

−�

�

d�Tlm�f l − fm� , �11�

jw−l
u = �

m=1

N
1

2�
�

−�

�

d���Tlm�f l − fm� , �12�

where Glm
− =Gml

+* and Tlm=4�2�l�
2�m�

2�l�m�Glm
+ �2 /�4 can be

shown to be the transmission probability of a wave from the
lth to the mth reservoir.

III. SELF-CONSISTENT DETERMINATION OF
CHEMICAL-POTENTIAL PROFILE

We consider the case where the wire is held in a fixed
temperature field specified by the temperatures Tl, l
=1,2 , . . . ,N, of the N reservoirs. We will consider a small
temperature difference and assume that the applied tempera-
ture field has the linear form
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Tl = TL +
l − 1

N − 1
�T ,

where �T=TR−TL. The chemical potentials at the ends of the
wire are specified by the conditions �1=�L and �N=�R. The
N−2 side reservoirs l=2,3 , . . . ,N−1 are included to simu-
late other degrees of freedom present in a real wire and the
requirement of zero net particle current into these reservoirs
self-consistently fixes the values of their chemical potentials.
Thus, the chemical potentials ��l
 for l=2,3 , . . . ,N−1 are
obtained by solving the following set of N−2 equations:

jw−l
p = 0 for l = 2,3, . . . ,N − 1, �13�

with jw−l
p given by Eq. �11�. Once the chemical potential

profile is determined, we can use Eqs. �9� and �10� to deter-
mine the particle and heat currents in the system, while Eq.
�12� gives the heat exchange with the environment �side res-
ervoirs�.

In general, the set of equations �Eq. �13�� are nonlinear
and difficult to solve analytically. We will henceforth con-
sider the low-temperature and linear-response regimes where
the applied chemical-potential difference ��=�R−�L and
the temperature difference �T are both small. More specifi-
cally, we shall assume ����L,R, �T�TL,R, and kBTL,R
��L,R. For simplicity, we restrict ourselves to the following
choice of parameters: �l=�1�=�N� =� for l=1,2 , . . . ,N and
�l�=�� for l=2,3 , . . . ,N−1. Thus, all the reservoirs will have
the same Green’s function and density of states and we will
use the notation g1,1

l+ ���=g+��� and �l���=����.
Making Taylor expansions of the Fermi functions

f�� ,�l ,Tl� about the mean values �= ��L+�R� /2 and T
= �TL+TR� /2, we find that, in the linear-response regime, Eq.
�13� reduces to the following set of equations:

jw−l
p = �

m=1

N
1

2��
�Tlm��l − �m� +

�2kB
2T

3�
Tlm� �Tl − Tm��

= 0 for l = 2,3, . . . ,N − 1, �14�

where Tlm and Tlm� =dTlm /d� are evaluated at �=� /�. These
are linear equations in ��l
 and are straightforward to solve
numerically. We can then use Eqs. �9� and �10� to find the
particle and heat current. The local heat current in the wire is
given by jl

q= jl
u−�l jl

p. In the linear-response regime, we find

jl
p =

− 1

2��
�
m=1

N �Flm��l − �m� +
�2kB

2T

3�
Flm� �Tl − Tm�� ,

jl
q =

− 1

2��
�
m=1

N ��2kB
2T2

3�
Flm� ��l − �m� +

�2kB
2T

3
Flm�Tl − Tm�� ,

�15�

where Flm= �2�i���2 /�3��Glm
+ Gml+1

− −Gl+1m
+ Gml

− �� and Flm

and Flm� are evaluated at �=� /�. The heat loss from the wire
to the reservoir can be obtained using Eq. �12�. As we shall
see later, this heat loss is a second-order effect and therefore
we will keep terms up to second order in the expansion. We
then get

jw−l
q =

1

2��
�
m=1

N �−
�2kB

2T2

3�
Tlm� ��l − �m� −

�2kB
2T

3
Tlm�Tl − Tm�

+
1

2
Tlm��l − �m�2 +

2�2kB
2T

3�
Tlm� ��l − �m��Tl − Tm�

+
�2kB

2

3
Tlm�Tl − Tm�2� . �16�

In the next section, we will the consider the case of a long
wire �N→�� and consider particle and heat transport in the
presence of applied chemical-potential and temperature gra-
dients. Later, for an isothermal system, we will consider fi-
nite systems and discuss the transition from coherent to
Ohmic transport.

IV. LONG WIRE WITH APPLIED CHEMICAL-
POTENTIAL AND TEMPERATURE GRADIENTS

Let us first evaluate the matrix elements Tlm���. This in-
volves ���� and Glm

+ ���. As discussed before, ���� is the
local density of states at the boundary site of a semi-infinite
one dimensional chain and is given by ����= �� / ������1
−�2�2 / �4�2��1/2 for �����2� and zero elsewhere. For lat-
tice points in the bulk of the wire, i.e., points which are at a
distance ��=1/�R from the boundaries of the wire we find
�see Appendix� Glm

+ = �−1�l+m�e−�l−m�� / �2� sinh ��. We now
try the following solution for the self-consistent equations
given by Eq. �14�:

�l = �L +
l − 1

N − 1
�� . �17�

Using the fact that �m=−�
m=� �l−m�e−�l−m��=0, we see that the

self-consistent equations are satisfied for all points l in the
bulk of the wire �up to corrections which become exponen-
tially small with the distance from the boundaries�. Close to
the boundaries, the chemical-potential variation is no longer
linear. Here, we focus on the limit where N is very large and
the linear solution in Eq. �17� is accurate in the bulk of the
wire.

We will now use this solution to evaluate the various cur-
rents in the wire given by Eq. �15� and the heat loss from Eq.
�16�. We evaluate these currents at points l in the bulk of the
wire and �since Glm

+ decays exponentially with distance� do
not need the correct form of �l at the boundaries. We also
find, as expected, that the currents are independent of l. They
have the expected linear-response forms,

jp = − L11 � � − L12 � T ,

jq = − L21 � � − L22 � T ,

where ��=�� /N, �T=�T /N, and the various transport co-
efficients are given by

L11 =
1

2��
�

m=−�

�

Flm��/���l − m� =
1

��

sin2 �I coth �R

cosh 2�R − cos 2�I
,

�18�
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L12 =
�2kB

2T

3

dL11

d�
, �19�

L21 = TL12, �20�

L22 =
�2kB

2T

3
L11, �21�

where �R and �I are, respectively, the real and imaginary
parts of � and are all calculated at �=� /�. In deriving the
above form of L11, we have used the relation �
=2�� sinh �R sin �I / ����2�. In the parameter regime we are
looking at, it follows that both Ohm’s law and Fourier’s law
are valid, with the electrical and thermal conductivities given
by �=e2L11 and �=L22. We note that Eq. �20� gives the
Onsager reciprocity relation. This is usually derived within
linear-response theory and follows from time reversal invari-
ance of the microscopic equations of motion. We also find
from Eq. �21� that the Weidemann-Franz relation is satisfied.
This relation states that the ratio of the thermal conductivity
and the electrical conductivity is linearly proportional to the
temperature with a universal constant of proportionality
given by �2kB

2 / �3e2�. For metals, a derivation of this relation
using semiclassical transport theory and within the relaxation
time approximation can be found in Ref. 30. The validity of
this relation requires that inelastic processes can be neglected
�see discussion in Ref. 30�. However, we find that the rela-
tion continues to be valid in our model even though scatter-
ing is inelastic �since there is energy dissipation into the side
reservoirs�.

From Eq. �19�, we find that the Mott formula for the ther-
mopower holds.31,32 This is given by

Q =
L12

eL11
=

�2kB
2T

3e

1

�

d�

d�
. �22�

Recently Lunde et al.33 have reported an interesting reso-
nance, arising due to electron-electron interactions, observed
in the thermopower as a function of the Fermi energy. We
investigate if there are any interesting features in the depen-
dence of Q on � in our model. In Fig. 2, we plot the con-
ductivity and the thermopower 3eQ / ��2kB

2T�=d�ln �� /d� as
a function of � for different values of the coupling constant
��. Surprisingly, we find that for a range of values of the
inelasticity parameter ��, there is a peak in the thermopower
as a function of the Fermi energy.

Let us now look at the heat exchanges given by Eq. �16�.
In the long-wire limit, the condition of zero particle currents
into the side reservoirs �Eq. �14�� implies that �mTlm�l−m�
=�mT��l−m�=0. Hence, the terms linear in �� and �T in
Eq. �16� vanish, and only the second-order terms contribute
significantly. Let us first consider the coefficient of the term
containing ����2 which is given by

1

4��
� Tlm�l − m�2. �23�

Evaluating the sum, we find that it is exactly equal to L11.
Determining the other terms in Eq. �16�, we find that the net

heat loss per unit length �or from every bulk site� of the wire
is given by

jq = L11����2 +
4�2kB

2T

3

dL11

d�
������T� +

2�2kB
2

3
L11��T�2.

�24�

The first term corresponds to the expected Joule heat loss in
a wire and is always positive. The second term can be of
either sign and can be identified to be the Thomson effect
which corresponds to heat exchange that occurs in a wire �in
addition to the Joule heat� when an electric current flows
across a temperature gradient.

Finally, we check for local thermal equilibrium in the
wire. A requirement of local equilibrium would be that the
local density nl at the point l in the nonequilibrium state
should be the same as the density nl

eq at the point if the entire
wire was kept in equilibrium at a chemical potential �l and
temperature Tl. It is easy to evaluate nl and nl

eq and we find

nl − nl
eq = �

m=1

N
��2

�2 �
−�

�

d��Glm
+ ����2�����f��,�m,Tm�

− f��,�l,Tl�� ,

which in the linear-response regime, gives

nl − nl
eq =

��2

�3 �
m=1

N ��Glm
+ ��/���2���/����l − �m�

+
�2kB

2T

3

d

d�
��Glm

+ ��/���2���/����Tl − Tm�� .

For our linear profiles of temperature and chemical potential
and the form of Glm, it is clear that, for all bulk points, the
above difference vanishes �up to the order of O�1/N��. Thus,
we see that the local densities are consistent with the as-
sumption of local equilibrium.

FIG. 2. �Color online� Plot of the conductivity and thermopower
Q1=3eQ / ��2kB

2T� �inset� as functions of the Fermi level � for dif-
ferent values of the inelasticity parameter ��. They are plotted in
units of e2 /�� and �, respectively.
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V. CURRENT FLOW IN WIRE IN ISOTHERMAL
CONDITIONS: FINITE-SIZE EFFECTS

In this section, we look at finite length wires. We first
solve Eq. �14� numerically to determine the chemical-
potential profile and then estimate the current in the wire
using Eq. �15�. We also look at the local heat dissipation at
all points on the wire.

In our numerical calculations, we have chosen the param-
eter values �L=1.0, �R=1.1, and �=1.0 and have considered
different values of the dissipation strength �� and different
system sizes N. In Fig. 3, we plot the chemical-potential
profile for different system sizes and for a small value of the
dissipation ���=0.1�. We see that as we go to larger system
sizes, chemical-potential profile changes from a flat profile
with large jumps at the boundaries to a smooth linear profile.
For a larger dissipation parameter ���=1.0�, we see �inset of
Fig. 3� that a smooth linear profile is obtained even for small
system sizes. The limit of weak dissipation was studied in
Ref. 16. Following them, we find that for �� /��1, a very
good approximation for the transmission coefficients Tlm, for
any system size, is given by

Tlm
+ =

�2�l�
2�m�

2�2

�2�2 e−2�l−m�/�, �25�

where �=1/�R�2�2 /��2. Note that for l=2,3 , . . . ,N−1, T1l
and TlN are O���2�, while for m=2,3 , . . . ,N−1, Tlm are
O���4�. We then find that for ��1 and N�1, the following
chemical-potential profile provides a good approximate solu-
tion of the self-consistent equations,

�1 = �L, �N = �R,

�l = �L − � −
2�

�
�l − 2� for l = 2,3, . . . ,N − 1, �26�

where

� =
�L − �R

2�1 + N/��
.

Substituting this solution into the self-consistency equations
�mTlm��l−�m�=0 with Tlm given by Eq. �25�, we can explic-
itly verify that these are satisfied up to the corrections of the
order of 1 /�. In Fig. 3, we have plotted the above solution
for system size N=16 and find excellent agreement with the
numerical result �for larger system sizes, the fit agreement
becomes better�.

The above solution leads to the following result for the
current:

jN

��L11
=

1

1 + �/N
, �27�

where L11 is the Ohmic conductivity of the wire given by Eq.
�18� and we have normalized the current such that the N
→� limit gives a constant value independent of ��.

We have also looked at the transition from coherent to
Ohmic transport for general values of the dissipation param-
eter ��. In Fig. 4, we plot the scaled current jN / ���L11� as a
function of system size. We find that, in general, for any
�� /��1, the data can be fitted quite accurately to the form
in Eq. �27� with �=1/�R which can be interpreted as a co-
herent length scale. For �� /�
1, we find that there is no
coherent regime and the approach to the asymptotic limit has
a different form.

Persistent random walk model. It is possible to under-
stand the various aspects of the intermediate regime within a
simple classical Drude-type framework of right moving and
left moving electrons moving in fixed directions but with a
small probability of interconversion. We consider the case
where the left reservoir is kept at a chemical potential �
+�� and the right reservoir is at �. At the low temperatures
being considered, electron transport is basically due to the
electrons close to the Fermi level and we can focus on the
electrons within the energy gap �� in the left reservoir. Let
the density of these electrons inside the left reservoir be 2�L
and this consists of an equal proportion of right moving elec-
trons with velocity vF and left movers with velocity −vF. In
the right reservoir, the density of both left and right movers

FIG. 3. �Color online� Plot of the chemical-potential profile �i

as a function of the scaled length i /N for different values of N and
with ��=0.1. The points denoted by circles correspond to the ap-
proximate solution given in Eq. �26�. The inset shows the chemical-
potential profile for ��=1.0.

FIG. 4. �Color online� Plot of the normalized current versus
system size for different values of the dissipation constant ��. The
points denoted by circles correspond to the analytic scaling form
given in Eq. �27�.
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in the energy window �� is zero. Inside the wire, the pres-
ence of the side reservoirs allows a right mover to be con-
verted to a left mover with some probability. We now present
the following random-walk model to incorporate the above
basic idea. The model consists of a lattice of N sites with a
density �l

+ of right movers and �l
− of left movers at all sites

l=1,2 , . . . ,N. We impose the boundary conditions �1
+=�1

−

=�L and �N
+ =�N

− =0. At sites l=2,3 , . . . ,N−1 the particles
move according to the following rules: with probability p, a
right mover at site l moves to l+1 and with probability 1
− p, it transforms to a left mover and moves to site l−1.
Similarly, with probability p, a left mover at site l moves to
l−1 and with probability 1− p, it transforms to a right mover
and moves to l+1. At sites l=1,N, the right mover always
moves to the right and the left mover moves to the left. It is
then straightforward to write discrete time-evolution equa-
tions for the density fields �i

+�t� and �i
−�t�. Choosing a lattice

length scale a and a microscopic time scale �, we obtain, in
the continuum limit

��+�x,t�
�t

= − v
��+

�x
− ���+ − �−� ,

��−�x,t�
�t

= v
��−

�x
+ ���+ − �−� , �28�

where v=ap /� can be identified with the Fermi velocity vF
and �= �1− p� /� gives the scattering rate �note that the con-
tinuum limit requires by taking a→0, �→0, and p→1,
keeping v and � finite�. We obtain a length scale v /� which
we tentatively identify with the scattering length � intro-
duced earlier. The boundary conditions for the above equa-
tions are �+�x=0�=�L and �−�x=L�=0, where L=Na. These
give the following steady-state solution for Eq. �28�:

��x� = �+�x� + �−�x� = 2�L − �� −
2��

�
x , �29�

where

�� =
2�L

2�1 + L/��
�30�

is the density jump at the boundaries. This immediately leads
to Eq. �26� once we note that ��x�−2�L��l−�L. The current
in the wire is given by

J = v��+�x� − �−�x�� =
�v�L

L�1 + �/L�
, �31�

which again leads to the result in Eq. �27� after we make the
appropriate identifications.

An interesting question that is often asked in the context
of mesoscopic transport is where is the dissipation?9 In the
case of Ohmic transport, dissipation, through Joule heat loss,
takes place in the bulk of the wire. On the other hand, for
coherent transport, there is no dissipation in the bulk of the
sample and the only dissipation is at the contacts �or into the
leads�. This difference between Ohmic and coherent trans-
port can be demonstrated in our model by an explicit calcu-
lation of the local heat loss at all points on the wire. Using

Eq. �16�, we calculate the fraction of the total heat loss that
occurs at the contacts jC

q = jw−1
q + jw−N

q and the bulk heat loss
given by jB

q =�l=2
N−1jw−l

q . Note that the total dissipation is given
by �l=1

N jw−l
q = jp�� which easily follows from using the con-

dition �l=1
N jw−l

u =0. Table I shows the contact and bulk heat
losses for different system sizes and with ��=0.1. In this
case ��200. We see clearly that for N��, dissipation oc-
curs mostly in the contacts to the leads, while for N��,
dissipation occurs in the bulk of the wire. Note that the heat
is eventually dissipated into the reservoirs and is possible
even in a steady-state scenario because of the infinite size of
the reservoirs.

VI. DISCUSSION

An interesting aspect of the present study arises if we
compare it with studies of heat transport by phonons in os-
cillator chains. A big question there has been to find the
necessary conditions on a model of interacting particles re-
quired for the validity of Fourier’s law of heat conduction.34

As a result of a large number of studies, it now appears that
heat conduction in one dimensions is anomalous and Fouri-
er’s law is not valid for momentum conserving models.35

However, there are stochastic models where one can exactly
demonstrate the validity of Fourier’s law. In one such model,
inelastic scattering of phonons takes place by an exact analog
of the Büttiker probes. In this model, first proposed in Ref.
36 and solved exactly recently in Refs. 37 and 38, each site
on a harmonic lattice is connected to a heat reservoir whose
temperature is fixed self-consistently by the condition of zero
heat current. Just as Fourier’s law can be shown to hold in
this model, here we have shown that both Fourier’s law and
Ohm’s law are valid in the present tight-binding model. We
have also been able to explicitly demonstrate local thermal
equilibrium and various other linear-response results. One
other model where such a demonstration has been made in a
clear way is the work by Larralde et al.39 on the Lorentz gas
model. One other point to note is, as shown in Ref. 29, that
the treatments of electron and phonon transport can be done
in a very similar way using the formalism of quantum
Langevin equations and nonequilibrium Green’s function.

In this paper, we have extended the calculation of
D’Amato and Pastawski by studying the finite temperature
case and considering transport of both particles and heat in a
tight-binding chain. We have studied both the Ohmic and
ballistic regimes. It has been shown that a simple Drude-type
model of persistent random walkers can explain many of the

TABLE I. Heat dissipation at contacts and in bulk points.

L jC
q jB

q

16 0.9652 0.0348

64 0.8518 0.1482

256 0.5425 0.4575

512 0.3522 0.6478

1024 0.2049 0.7951

2048 0.1115 0.8885
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observed features in the intermediate regime. In the Ohmic
regime, we have calculated various thermoelectric coeffi-
cients and find that for certain values of the inelasticity pa-
rameter, the thermopower plotted as a function of the Fermi
energy shows a peak. Finally, we have explicitly computed
heat dissipation in the wire.

While we have only considered the linear-response re-
gime in this paper, the formalism described here can be used
to study the nonlinear regime too. Also, it can be easily used
to study inelastic scattering effects in the tight-binding model
in any dimensions and the reservoirs themselves can be in
any dimensions. Numerical implementations to study sys-
tems with Anderson type of disorder and systems with exter-
nally applied magnetic fields can also be done readily with
our approach. Finally, as pointed out in the Introduction, our
model of inelastic scattering also serves as a model for volt-
age probes. An important point in experiments involving four
terminal resistance measurements on quantum wires, as in
Ref. 4 for example, is that the voltage probe should be non-
invasive. In our model, the coupling to the probes can be
tuned and thus can be used to obtain a better understanding
of the role of probes in such experiments. Also, more de-
tailed models of the probes are easy to incorporate in our
approach. The quantum Langevin method can be easily used
for other models of the scattering reservoirs other than the
present model where each reservoir is a one dimensional
wire. This would basically involve a change in the form of
the self-energy correction. An interesting problem is an ex-
tension of the present formulation to include electron-phonon
and electron-electron interactions.

ACKNOWLEDGMENTS

We thank Diptiman Sen and N. Kumar for useful discus-
sions.

APPENDIX: EVALUATION OF GREEN’S FUNCTION

To find the Green’s function, we use the relation Glm
+

= �� /��Zlm
−1, where Z is a tridiagonal matrix with off-diagonal

terms all equal to 1. The diagonal terms are given by

Z11 = ZNN
+ = A��� =

�

�
�� −

�2

�2g+���� ,

Zll = B��� =
�

�
�� −

��2

�2 g+���� for l = 2,3, . . . ,N − 1.

�A1�

The function g+��� can be obtained from the Green’s func-
tion of an isolated semi-infinite one dimensional chain and,
in the region of interest here ������2��, is given by

g+��� =
�

�
���

2�
− i�1 −

�2�2

4�2 �1/2� . �A2�

Using standard matrix manipulations, we can evaluate the
inverse of Z and find

Zlm
−1 = �− 1�l+mDl−1DN−m

�N
for m 
 l

= �− 1�l+mDm−1DN−l

�N
for m 	 l , �A3�

where

Dl = AYl−1 − Yl−2,

�N = Det�Z� = A2YN−2 − 2AYN−3 + YN−4,

Yl =
sinh��l + 1���

sinh���
,

with

e±� =
B

2
± �B2

4
− 1�1/2

.

We will assume that the root � has been chosen such that
�R=Re���
0. Using the above results for the inverse of the
matrix Z, we find that for large N, the Green’s function in the
wire is given by

Glm
+ =

�− 1�l+m�

2� sinh �
�e−�l−m�� −

�A − e��
�A − e−��

�e−�l+m−2��

+ e−�2N−l−m���� . �A4�
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