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Optical and spectral properties of quantum domain walls in the generalized Wigner lattice
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We study the spectral properties of a system of electrons interacting through long-range Coulomb potential
on a one-dimensional chain. When the interactions dominate over the electronic bandwidth, the charges arrange
in an ordered configuration that minimizes the electrostatic energy, forming Hubbard’s generalized Wigner
lattice. In such strong-coupling limit, the low-energy excitations are quantum domain walls that behave as
fractionalized charges and can be bound in excitonic pairs. Neglecting higher-order excitations, the system
properties are well described by an effective Hamiltonian in the subspace with one pair of domain walls, which
can be solved exactly. The optical conductivity o(w) and the spectral function A(k,w) can be calculated
analytically and reveal unique features of the unscreened Coulomb interactions that can be directly observed in

experiments.
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I. INTRODUCTION

Quantum many-body systems often exhibit complex be-
havior, arising from the strong interactions between the indi-
vidual degrees of freedom. In some cases, the exotic physical
properties can be simply explained in terms of suitable renor-
malized collective excitations. Well-known examples are the
charge-spin separation in the Luttinger liquid with gapless
bosonic excitations,' solitons on a charge-density wave
(CDW) condensate,? and fractional charges in quantum Hall
systems.? Another system that exhibits emerging complex
behavior is the generalized Wigner lattice (GWL), defined as
the classical charge pattern that minimizes the Coulomb re-
pulsion on a discrete lattice. The GWL was introduced by
Hubbard* to explain the charge ordering observed in the
TTF-TCNQ organic salts, and has since been invoked in
several classes of narrow-band quasi-one-dimensional
compounds.’” Increasing the electron bandwidth smears the
classical charge distribution and eventually drives the system
toward a small amplitude charge-density wave.®

In the strongly interacting limit, where the bandwidth is
much smaller than the electrostatic repulsive energy, the
quantum charge distribution remains very close to the clas-
sical configuration. In this limit, the low-lying excitations are
pairs of domain walls (kinks and antikinks) that carry frac-
tional charge.*%!0 It follows that the low-energy properties
of the system can be determined by solving the problem of
two interacting domain walls, which is equivalent to the
Coulomb problem on a one-dimensional chain. Since kinks
and antikinks have opposite charges, the lowest-lying excita-
tions of the GWL will be bound pairs, followed by a con-
tinuum of unbound domain walls. Restricting to the subspace
with only one kink-antikink pair, the quantum melting of the
GWL was estimated in Ref. 9 as the point where the gap in
the excitation spectrum vanishes. The result is in agreement
with previous variational estimates® as well as with more
recent exact diagonalization data,'? indicating that the single-
pair approximation captures the essential physics of the
GWL phase. On the other hand, it clearly breaks down close
to the quantum melting transition, where a proliferation of
domain walls is expected.
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In this paper, we take advantage of the exact solution of
the discrete Coulomb problem given in Refs. 11 and 12 to
evaluate the optical conductivity of the generalized Wigner
lattice at simple commensurate fillings p=1/s. The forma-
tion of excitons manifests through the emergence of a series
of sharp peaks, followed by a strongly asymmetric absorp-
tion band due to the kink-antikink continuum, characterized
by a sharp absorption edge. Remarkably, both the discrete
peaks and the edge singularity are direct consequences of the
long-range interactions among the electrons in the original
model that disappear when the Coulomb interactions are re-
placed by short-range potentials.

An analogous formalism is used to calculate the spectral
function A(k,w). However, since the addition or removal of
an electron to a GWL at filling p=1/s is equivalent to the
creation of s domain walls,” the single-pair approximation
only applies to the special case p=1/2. The interactions be-
ing repulsive, because the domain walls have equal charge,
the low-lying excitations in the spectral function are un-
bound scattering states, while antibound states appear as a
set of dispersive quasiparticle peaks above the continuum.'?

The paper is organized as follows. In Sec. II, we introduce
the one-dimensional model for spinless fermions with long-
range interactions and solve it in the narrow-band regime,
restricting to the subspace with one pair of domain walls. In
Secs. III and IV, we use this analytical solution to calculate,
respectively, the optical conductivity and the single-particle
spectral function. The results are briefly discussed in Sec. V
in connection with existing experimental work.

II. MODEL AND SINGLE-PAIR APPROXIMATION

We consider the following Hamiltonian for fermions on a
linear chain, interacting through long-range Coulomb forces:

. \%
H=- 12 (cici + CiTCi_l) + _E
i 2%

(n; - P)(”j -p)

— (1)
i Jl|

Here, ¢ is the nearest-neighbor hopping amplitude and V sets
the energy scale of the long-range repulsion, V,,=V/|m|.
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{cf,c,-} are, respectively, the fermionic creation and annihila-
tion operators, ni=c}Lc,- is the occupation number at site i, and
p is the average charge per site. The spin degrees of freedom
are explicitly neglected, corresponding to the limit of large
on-site repulsion U. The lattice parameter is set to unity.

Since we are interested in the strong-coupling regime, it is
useful to start by describing the classical solution, obtained
for =0. At simple commensurate fillings p=1/s, the ground
state takes one of the s equivalent configurations that mini-
mize the electrostatic energy, with one electron on every sth
site.!* The excited configurations of lowest energy corre-
spond to the inclusion of a domain with a different (shifted)
ground state, delimited by a kink and an antikink.’ The en-
ergy cost to form a classical domain of finite length sd (d is
the number of perturbed unit cells) can be calculated as

d ©

Av(d) = E Z (Vsm+1 + Vsm—l - 2Vsm)~ (2)

p=1 m=p

It defines an effective interaction between the domain walls
and can be evaluated exactly in terms of digamma functions.
However, a very good approximation is obtained by expand-
ing in powers of 1/sd and keeping only the leading term

V1

Aa(d) :Es_szsd'

3)
The above expression can be directly interpreted as the Cou-
lomb attraction between two defects of charge +1/s at dis-
tance sd, with 2_;“—:[1 - cot(%)], the energy cost for creat-
ing two isolated defects at infinite distance. The approximate
result [Eq. (3)] is quite accurate even at short distances.!?
Unless otherwise specified, we shall neglect the higher-order
terms (dipolar and multipolar interactions) in the following.

According to the above discussion, the gap in the excita-
tion spectrum is given classically by A (1). Actually, this can
be viewed as the effective coupling parameter of the model
that determines the stability of the classical charge pattern
against quantum fluctuations, so that the melting of the GWL
is expected when t=A(1).® Since the gap scales as ~V/s*
~Vn3, we see that for any finite value of the hopping inte-
gral ¢, the formation of a GWL becomes unfavorable at very
low fillings. In this case, an ordinary Wigner crystal phase is
more likely realized, where the electron wave functions are
spread on length scales much larger than the lattice spacing,®
and for which the usual continuum approach would be more
suitable. A similar argument shows that the GWL phase is
unfavored when moving away from the simple commensu-
rate fillings p=1/s. Indeed, at generic rational fillings p
=rls, it is easily shown that the gap still scales as ~V/s
(i.e., it is governed by the periodicity s of the classical pat-
tern), which can be arbitrarily small regardless of the value
of p.'® In the following, we shall therefore restrict to the
special fillings p=1/s, where the physics of the GWL is
more relevant, leaving the study of the continuum Wigner
crystal phase for future work.

Let us denote |m,d) the classical state corresponding to a
kink-antikink pair of length sd, with center of mass at m. The
total two-body wave function in the quantum case can be
written as
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Ll/s L/2s

=3 3 g dlmd),  (4)

q’K,x = 2L
m==L/s d=—L/2s

where the center of mass of the pair moves freely with mo-
mentum K, while the radial part obeys the following discrete

Schrédinger equation:®!”

3
=21(K)[e(d+1) + p(d-1)]+ (Es - % - E) @(d)=0,

(5)

with the boundary condition ¢(0)=0. The factor #(K)
=1 cos(Ks/2) reflects the fact that at each electron hopping
event, the center of mass of the defect pair moves by +s/2
lattice sites. The discrete hydrogen problem on the semi-
infinite chain admits an exact analytical solution'"'? in terms
of Gauss-hypergeometric functions (or, equivalently, of in-
complete beta functions). The excitation spectrum consists,
as in the ordinary hydrogen atom, of an infinite series of
bound states (kink-antikink excitons), followed by a con-
tinuum of scattering states. Observing that the two subspaces
of different polarity d>0 and d<<O is disconnected when
only nearest-neighbor electron hopping is allowed,'” the so-
lution of the Coulomb problem [Eq. (5)] on the infinite chain
is obtained straightforwardly by constructing combinations
of even or odd parity of the wave functions on the half-chain.
We now consider separately the bound and unbound solu-
tions of Eq. (5).

A. Domain-wall excitons

The bound states have energies

Vi s |
EK,,,=ES— 16¢(K) +|:m:| , (6)

with n=0,1,2,...,%. Introducing the parameter sinh(k,)
=V/[45’*t(K)(n+1)], the normalized radial wave functions
can be written as

exa(d) =A,de™F (1 —d,—n;2;1 - e*), (7)

where ,F| is one of the Gauss-hypergeometric functions and
A, is a normalization constant:

A, =2 sinh(k,) Vtanh(k,)e™"*n. (8)

2, can

The exciton radius, defined as r,=X_ d|¢x ,(d)
also be evaluated as'?

r,1=(n+1)2+Lh(2kn). 9)

sinh(2k,,)
In the strong-coupling regime, r,= (n+ 1) and the first bound
state (n=0) is strongly localized on one lattice spacing. At
large quantum numbers, the radius increases as r,
= (6s5°t/V)(n+1)? approaching the free scattering states.

B. Kink-antikink continuum

The energy of the scattering states is given by the sum of
the energies of the individual domain walls, with k the rela-
tive momentum of the two-body system
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FIG. 1. Excitation spectrum vs center-of-mass momentum K in
the single-pair subspace for #/V=0.02 at fillings p=1/2 (left) and
p=1/3 (right). The full lines correspond to the three lowest bound
states, while the dashed lines indicate the boundaries of the kink-
antikink continuum.

Ex =2, —21[cos(Ks/2 + k) + cos(Ks/2-k)].  (10)

The corresponding wave function is'?

ek i(d) =B ' (k)de™,F|[1 —d,1 —in(k);2;1 — e ],
(11)

where 7(k)=V/[2s%t(K)sin k]. The normalization factor is
determined by the asymptotic behavior at large d and is
given by

4s k)

2k
B = Lsmh[ 7(k)]

sin?(k)e~ k=m0 (12)
in the case of an open chain of length L/2s.

The excitation spectrum is illustrated in Fig. 1 for ¢/V
=0.02 at fillings p=1/2 and p=1/3. The gap in the excita-

tion spectrum is obtained from Eq. (6) setting K=0 and n

=0:
2
B

This value is lower than the classical value A (1) because of
the energy gain due to charge delocalization. The condition
A%"—( can be used to locate the melting of the GWL as the
region where charge defects are expected to proliferate.® For
the quarter-filled case s=2, the estimate #/V=0.12 is in good
agreement with the numerical results of Ref. 10.

ICES

III. OPTICAL CONDUCTIVITY

The finite frequency absorption at 7=0 can be expressed
in terms of the current-current correlation function through
the Kubo formula

E |<‘1’1< >\|J|¢Gs>|2

ka @—Eg) +i0"

o(w) = (14)

where the sum runs over all eigenstates, and the ground-state
energy is set to 0. For nearest-neighbor hopping, the current
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operator on the lattice is defined as j=irS,(cc;y—ct, c)).
The above dimensionless expression should be multiplied by
a prefactor oy=e’a’/fv to restore the proper units, where a
is the intersite distance on the chain and v is the volume of
the unit cell.

Approximating |i;s) in the GWL phase at fillings p
=1/s with the classical state |i.)=1I,c];|0), we see that the

effect of the operator ; is to create kink-antikink pairs of
length d=+1 at any of the m possible sites. The matrix ele-
ments with the single-pair states of Eq. (4) are thus given, in
terms of the eigenfunctions of the semi-infinite chain, as

o L
|<¢oc|j|‘['1<,>\>|2=f2;51<,0|€01<,)\(1)|2~ (15)

A. Coulomb potential

The optical absorption can be divided into two parts o
=0,,.+0,., which represent, respectively, the sharp transi-
tions from the ground state to the excitonic states and an
absorption band due to transitions to the kink-antikink con-
tinuum. The corresponding energies are obtained from Egs.
(6) and (10) by setting K=0. The excitonic part is an infinite
series of delta function peaks

O-EXC 2

Eo”lqson(l)lzé(w Ep,). (16)

where the spectral weights are given by Egs. (7) and (8)
above, making use of the property ,F;=1 at d=1. Setting
k(w)=arccos|—(w—2,)/4t] and converting the sum over
states in Eq. (14) into an integral, we obtain the following
analytical expression for the continuous absorption band:

Vv e—(V/2.v3z)[k(w)/sin k)]
(@) = ( ) | = (V) [misin k()]

45w (17)
Since we are assuming r=<V/ s3, the denominator can be set
equal to 1 up to exponentially small corrections (these be-
come important close to the melting of the GWL, where
anyway the single-pair approximation breaks down).

It should be noted that, even though the assumption ¢
<V/s? is needed to justify the restriction to the single-pair
subspace, in practice, the above expression is obtained from
the exact solution of the Coulomb problem to all orders in
t/'V. Indeed, the presence of an essential singularity in Eq.
(17) shows that this result cannot be obtained from a pertur-
bation expansion in ¢/V. It reflects the fact that the delocal-
ized nature of the scattering states is lost for any finite trun-
cation of the expansion in #/V.

The optical absorption determined above is illustrated in
Fig. 2(a) and agrees remarkably well with the exact diago-
nalization results of Ref. 10. The main discrepancy is a shift
in the position of the first excitonic peak that can be entirely
ascribed to the use of the pure Coulomb potential in Eq. (3)
instead of the full potential in Eq. (2). A transfer of spectral
weight from the excitons to the kink-antikink continuum
takes place as 7/V increases, as shown in Fig. 2(b), where
we have plotted the quantities [dwo, (w)/[dwo(w) and
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FIG. 2. (Color online) (a) Optical conductivity of the general-
ized Wigner lattice in the single-pair approximation as given by
Eqgs. (16) and (17) at p=1/2 and t/V=0.02. A finite broadening has
been introduced for graphical purposes. The open circles are the
exact diagonalization data of Ref. 10. In the inset, the same curve is
compared with the result obtained with the full potential of Eq. (2)
(dashed lines). (b) Fraction of the spectral weight carried by the
excitons (full lines) and the kink-antikink continuum (dashed line),
respectively.

fdwo,(w)! fdwo(w). Note that formulas (16) and (17) obey
the following property that derives from the closure relation
of the eigenstates of Eq. (5):

(w) = f doo(w)w=mt*s. (18)

This relation shows that the “average” absorption frequency
is independent of the interaction potential and can be used to
measure directly the value of the hopping integral in an
optical-absorption experiment.

In the above derivation, it was assumed that the potential
follows a pure Coulomb law, Eq. (3), which allowed us to
obtain explicit analytical formulas for the optical absorption.
However, the discrete Schrodinger equation (5) with the ex-
act potential A (d) of Eq. (2) can be solved to arbitrary ac-
curacy with small numerical effort. The result is presented in
the inset of Fig. 2(a). We see that the analytical expression
(17) agrees quite well with the numerical result. Discrepan-
cies arise at very small values of ¢/V, where the excitons
become localized on very short length scales, which is where
the potential A (d) sensibly deviates from the Coulomb law.

Note that an expression similar to Eq. (17) was derived by
Gallinar'® in the half-filled case p=1 for electrons with spin,
in the limit of a large on-site repulsion U. In that case, the
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FIG. 3. (Color online) Optical absorption for a screened poten-
tial at p=1/2 and t/V=0.02. The labels indicate the value of the
screening length €. The dashed line corresponds to the unscreened
Coulomb potential.

lowest-lying excitations correspond to pairs of doubly occu-
pied and/or empty sites.!” The energy cost for creating such
pairs is set by U, while the long-range tail of the Coulomb
potential acts to bind the opposite charges together.?’ Similar
effects have also been discussed in the context of conjugated
polymers, in which case, the energy scale of an electron-hole
exciton is set by the Peierls dimerization gap?! (see also Ref.
19).

B. Screened potentials

The characteristic optical line shape [Eq. (17)] ultimately
follows from the long-range nature of the Coulomb potential.
Indeed, although the energies of the scattering states are
given by the noninteracting expression (10), their wave func-
tions strongly differ from the free plane waves especially at
short distances (the scattering states are required to be or-
thogonal to the bound states). This is reflected in the optical
absorption, which involves the wave function precisely at d
=1, where the condition of orthogonality with the excitonic
states is most stringent. To illustrate this issue, we have
considered the case of a screened potential V/d
— Vexp(—d/€)/d. This potential is convex and ensures the
stability of the classical configuration considered here,*
which is preferable to the case of arbitrarily truncated Cou-
lomb interactions, for which the ground state is not always
univocally determined.

The results obtained for generic values of the screening
length are reported in Fig. 3 at filling p=1/2, for t/V=0.02.
Upon reducing the screening length, the optical absorption
shifts to lower frequencies, the discontinuity at the absorp-
tion edge is smoothened, the asymmetry of the line shape
becomes less marked, and the excitonic peaks progressively
disappear (below a critical value, no bound states are pos-
sible and o,,.=0). In the limit € —0, a truncated nearest-
neighbor potential is recovered. In that case, the effective
interaction A(d)=Ve "*=V, is constant for all d and the
scattering states reduce to free-particle states. The corre-
sponding current-current correlation function has a semicir-
cular shape and the resulting absorption band is

_ (e
U"n(w)_Zw 1—( 1 ) (19)
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To conclude this section, let us stress that the experimen-
tal observation of an edge singularity in the absorption line
shape, as shown in Fig. 2(a), can be taken as a signature of
the importance of long-range electron-electron interactions
in a given material and calls for theoretical models that go
beyond the intersite repulsion term usually considered.??

IV. SPECTRAL FUNCTION AT
QUARTER FILLING

In a photoemission experiment, an electron is added
or removed from the system in a sudden process that is
described by the single-particle spectral function A(g,w)
=—7LT Im G(q,w). In the spirit of the strong-coupling ap-
proach presented in the preceding section, adding an electron
to the classical configuration at p=1/s creates s kinks of
charge 1/s. Analogously, removing an electron creates s
antikinks of negative charge —1/s. In the special case s=2,
two defects are created and the problem becomes equivalent
to the one treated previously, albeit with repulsive interac-
tions (the analogy is no longer true for larger values of s,
where the creation or removal of an electron takes the system
away from the single-pair subspace).

Classically, since the interaction potential is repulsive, the
state of lowest energy in the system with one particle added
(removed) corresponds to configurations where the two kinks
(antikinks) are far apart. The creation energy of each kink is
3,/2=V/4 [see Eq. 3)].

In the quantum case, we can write the one-dimensional
Schrodinger equation for the two-body problem, which is
formally identical to the one presented in Sec. II, except for
a change of sign in the interaction potential. This results in a
symmetrically reflected excitation spectrum: the low-energy
part now corresponds to the domain-wall continuum, while
the discrete levels are moved to higher energies. The forma-
tion of such antibound states is due to the long-range nature
of the repulsive potential, as for the excitonic states encoun-
tered previously.

The spectral function for >0, which describes the in-
verse photoemission processes, can be calculated as

Alg.w)=2, (W gales o) 8w - Ex)), (20)
KA
where cJ:% et and |Wg,) are the solutions of the

repulsive Schrodinger equation (5). An analogous formula
holds at <0, with A(q,—w)=A(q,w). Replacing as usual
the ground state with the classical configuration at =0 en-
forces the constraint that electrons can only be created on the
unoccupied sites. The resulting expression for the spectral
function is

1
Alg,w) = EE loal*8w—E,)), (21)
A

where the sum runs over both the continuous spectrum (A
=k) and the discrete antibound states (A =n), whose ener-
gies are given by Egs. (10) and (6), respectively. We repro-
duce the latter here (the sign of the square-root term reflects
the repulsive nature of the interactions) as
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FIG. 4. Spectral function A(g,w) for s=2 and #/V=0.05. The
different curves correspond to different values of ¢, as indicated on
the left axis. Two dispersive antibound states are visible above the
kink-antikink continuum. A finite Lorentzian broadening has been
introduced for clarity.

% v ?
E,,= E + \/161‘2 cos>(q) + [m} . (22)

The results are reported in Fig. 4. The width of the con-
tinuous spectrum is modulated by ¢ and vanishes at g=+r.
The first two antibound states are clearly observable as well
defined quasiparticle peaks in A(g, w) that follow the roughly
sinusoidal dispersion relations [Eq. (22)].

V. DISCUSSION AND CONCLUSIONS

In this work, we have examined the spectral properties of
spinless electrons interacting through the long-range Cou-
lomb potential on a one-dimensional lattice, which consti-
tutes a minimal model to address the effects of electronic
correlations in narrow-band solids, away from the most stud-
ied half-filled case. In the strongly interacting regime, the
charges form a generalized Wigner lattice, whose elementary
excitations are fractionally charged domain walls, them-
selves interacting through long-range forces. Taking advan-
tage of the exact solution of the Coulomb problem on a
one-dimensional chain, we have derived an analytical ex-
pression for the optical conductivity at simple commensurate
fillings p=1/s, as well as for the single-particle spectral
function in the special case p=1/2. Both are in good agree-
ment with the available exact diagonalization data at p
=1 /2.10,13

The sharp peaks emerging in the optical conductivity, sig-
naling the formation of domain-wall excitons, the asymmet-
ric line shape of the absorption continuum, with its charac-
teristic edge singularity, as well as the sharp quasiparticle
peaks in the single-particle spectral function, are all robust
features that follow from the long-range nature of the Cou-
lomb potential and that are lost in models with strongly
screened or truncated interactions. These features should be
clearly observable in experiments, allowing to address the
relevance of long-range interactions in the charge-ordered
insulating phases of narrow-band one-dimensional systems.
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As an example, the midinfrared optical-absorption band
recently measured?? in the organic quarter-filled (p=1/2) salt
(DI-DCNQI),Ag—a prototypical system exhibiting Wigner
crystal ordering>—resembles very closely the theoretical
spectra obtained from Egs. (16) and (17), and a satisfactory
fit can be obtained with physically sound parameters (V
=1.1 eV and r=80 meV). Absorption shapes similar to the
ones presented in this work have also been reported in other
classes of organic compounds, such as DBTSF-TCNQF,,
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TTF-TCNQ,** and Cs,(TCNQ);,> corresponding, respec-
tively, to p=1, p=1/2, and p=1/3, whose detailed analysis
is postponed to future work.
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