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The quantum ion-acoustic waves in single-wall carbon nanotubes are studied with the quantum hydrody-
namic model, in which the electron and ion components of the nanotubes are regarded as a two-species
quantum plasma system. An analytical expression of the dispersion relation is obtained for the linear distur-
bance. Numerical results show that the frequency of the ion-acoustic wave strongly depends on the nanotube’s
radius in the long-wavelength cases.
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One of the most fascinating aspects about carbon nano-
tubes is their collective electronic excitations which may be
very important in understanding the electron interactions in
carbon nanotubes as well as the characteristics of their elec-
tronic structures. During the past years, the collective exci-
tations have been widely studied with different theoretical
models, such as the classical hydrodynamic model1,2 and the
quantum dielectric-response model with the random-phase
approximation.3–5 The studies correspond to high-frequency
excitations which come from electron oscillations in carbon
nanotubes.

It is well known that a carbon nanotube can be metallic or
semiconducting, which depends on its radius and the geo-
metric angle, and their electron and ion components can be
regarded as a two-species quantum plasma system. Both the
electrons and ions in the carbon nanotubes oscillate under the
low-frequency disturbances. In contrast to the high-
frequency excitations, we may expect that the low-frequency
disturbances will lead to a new excitation in the carbon nano-
tube, i.e., quantum ion-acoustic wave mode. A powerful the-
oretical tool for studying the quantum plasma is the quantum
hydrodynamic �QHD� model which was developed by Haas
et al.6 The QHD has been recently used to the quantum dust
acoustic wave7 and instabilities of electromagnetic waves in
quantum plasma.8 In particular, Haas studied ion-acoustic
waves9 in the one-dimensional quantum plasmas.

The aim of this paper is to study the dispersion relation of
the quantum ion-acoustic wave in the carbon nanotube with
the QHD model, in which we model a single-wall carbon
nanotube as an infinitesimally thin and infinitely long cylin-
drical shell with a radius a, and consider that electrons and
ions are distributed uniformly over the cylindrical surface,
with the equilibrium density n0. In the cylindrical coordi-
nates rs= �a ,� ,z�, the electron �ion� density ne �ni� and fluid
velocity ue �ui� can be determined by the following QHD
equations:6,9
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where me �mi� are the electron �ion� mass, e is the charge,
and � is the scaled Planck’s constant; �� = êz

�
�z + ê�a−1 �

�� , and
��rs , t� is the self-consistent potential. The second term on
the right-hand side �RHS� of Eq. �3� is the force due to the
internal interaction in the electron species, with We= ��2

me
ne

being the Fermi energy of the two-dimensional �2D� electron
gas, and the last term on the RHS of Eq. �3� represents the
quantum pressure which comes from the quantum diffraction
effects.

In Eqs. �2� and �4�, the self-consistent potential �in the
CGS units� is given by

��rs,t� = e	 ds�
ni�rs�,t� − ne�rs�,t�


rs − rs�

. �5�

where ds�=ad��dz�. By using the expansion of Coulomb
potential, 1 / 
rs−rs�
, in the cylindrical coordinates, the poten-
tial can be expressed by10
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e
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where g�a ,k ,m�=4�Im�ka�Km�ka�, while Im and Km are the
cylindrical Bessel functions of order m.

Taking into account the small electron inertial force, i.e.,
me /mi�1, the left-hand side of Eq. �3� can be neglected
under the low-frequency disturbance. Therefore, by integrat-
ing over Eq. �3� once and considering, the boundary condi-
tions ne=n0 and �=0 at z=�, we can obtain the relation
between the electron density and the potential as follows:
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e� = We − We0 −
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��
2�ne, �7�

where We0= ��2

me
n0.

The system of Eqs. �2�, �4�, �6�, and �7� constitutes a set
of nonlinear self-consistent equations for determining four
unknown quantities, ne, ni, ui, and �, which can only be
solved numerically, in general. As usually done in the linear
disturbance theory, we linearize the above equations by as-
suming ne=n0+ne1, ni=n0+ni1, ui=ui1, and �=�1, where
ne1, ni1, ui1, and �1 are the perturbed quantities. As a result,
we obtain the following linearized equations:
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Here, k is the lognitudinal wave number and m is the discrete
azimuthal quantum number.

We further apply the Fourier transform
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where A�rs , t� stands for any of the above-listed perturbed
quantities. With this transform, one may express the Fourier
transforms of the perturbed electron density, ion density, and
potential as follows:
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and

�1�a,k,m� = eag�a,k,m��ni1�a,k,m� − ne1�a,k,m�
 ,

�15�

where kF= �2�n0�1/2 is the Fermi wave number of the 2D
electron gas and km

2 =k2+m2 /a2. By substituting Eqs. �13�
and �14� into Eq. �15�, we can get the following dispersion
relation for the linear quantum ion-acoustic wave:
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where �s=cs /aB, aB=�2 / �e2me� is the Bohr radius, cs

=�TF /mi is the ion-acoustic velocity, and TF= ��2

me
n0 is the

Fermi temperature of the 2D electron gas.
In the long-wavelength limit, i.e., ka→0, we can use the

behavior of the Im�x� and Km�x� functions when x→0,
namely, Im�x�→amxm, K0�x�→ ln�1.123/x�, and Km�x�
→bmx−m�m�0�, where am=2−m /	�m+1� and bm

=2m−1	�m�, then we can get, for m=0,

� = 0, �17�

and for m�0,
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which depends strongly on the radius of the nanotube.
In contrast, we may use the asymptotic expressions of the

Bessel functions Im�x�=ex /�2�x and Km�x�=� �
2xe−x when

x→�. Thus, the dispersion relation can be written approxi-
mately as
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Especially, when the nanotube radius becomes infinity, i.e.,
a→�, Eq. �19� can be reduced to

�2/�s
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�kaB�2

kaB/2 + 2kF
2/�k2 + 2kF

2�
, �20�

which is the dispersion relation of the ion-acoustic wave in a
2D planar quantum plasma.

It can be seen from Eq. �16� that the dispersion relation
depends on the tubule’s radius a and the surface electron
density n0. Generally, radii of the single-wall carbon nano-
tubes range from 1 nm up to almost 15 nm. Using the atomic
density of a graphite sheet 38 nm−2, the surface electron den-
sity of a single-walled carbon nanotube can be approximated
by n0=4�38 nm−2.11 To further reveal the characteristics of
the dispersion relation in the long-wavelength limit, we plot-
ted the dependence of the normalized frequency � /�s on the
variable kaB for different nanotube’s radii a with fixed m
=2 in Fig. 1. One can see that for long-wavelength region
�i.e., kaB→0�, as increasing the nanotube’s radius the nor-
malized frequency � /�s decreases, while the normalized fre-
quency approaches to each other for short-wavelength region
�i.e., kaB→��. To see the effect of the discrete azimuthal
quantum number m on the normalized frequency, we plotted
the normalized frequency as a function of kaB for different
values of m with fixed a=5aB in Fig. 2. It can be seen from
Fig. 2 that for long-wavelength region, as increasing the
number of m, the normalized frequency increases, and for
short-wavelength region, the same asymptotic behavior as
that in Fig. 1 is observed.

In summary, we have used the QHD model to describe the
propagation of the quantum ion-acoustic wave in the single-
wall carbon nanotues. An analytical expression of the disper-
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sion relations has been derived in the case of the linear dis-
turbance. Simulation results show that for a fixed surface
electron density of a single-walled carbon nanotube, the fre-
quencies of the ion-acoustic waves strongly depend on the

nanotube’s radius and the azimuthal quantum number in the
long-wavelength cases.
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FIG. 1. The dispersion relation � /�s of the quantum ion-
acoustic wave for the discrete azimuthal quantum numbers m=2
and different nanotube’s radii: a=2aB, a=5aB, a=8aB, and
a=10aB.

FIG. 2. The dispersion relation � /�s of the quantum ion-
acoustic wave for the nanotube’s radius a=5aB and different azi-
muthal quantum numbers m=0, 1, 2, 3, and 4.
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