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The frequency dependence of the equilibrium ac conductance �or the noise power spectrum� through a
mesoscopic structure is shown to exhibit steps and dips. The steps, at energies related to the resonances of the
structure, are closely related to the partial Friedel phases of these resonances, thus allowing a direct measure-
ment of these phases �without interferometry�. The dips in the spectrum are related to a destructive interference
in the absorption of energy by transitions between these resonances, in some similarity with the Fano effect.
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In recent years, it is becoming clear that measurements of
the noise power spectrum of a complex mesoscopic struc-
ture, C���, can provide invaluable information on its
physics.1,2 Examples include the information on the trans-
mission eigenvalues3 and the effective charge of the quasi-
particles, provided by shot-noise measurements.4 The noise
spectrum is proportional to the emission-absorption spectrum
of the system,5 which is related6 to its ac conductivity G���.
So far, much of the information was obtained at rather low
frequencies �with important exceptions7�. However, it is
clear that much further dynamic information will follow
from higher-frequency measurements, which we study in the
present Brief Report. Some of the motivation for this work
arose from the report of a structure at the Larmor frequency
in the power spectrum of a single magnetic moment on a
surface, measured at high frequencies with the scanning tun-
neling microscopy technique.8

The linear ac conductance G��� is determined6 by the
equilibrium properties of the unbiased system. It is related to
the equilibrium value of the noise power spectrum via the
fluctuation-dissipation theorem6 as follows:

C��� =
2�

e�� − 1
R�G���� , �1�

where �=1/kT �T is the temperature�, energies are measured
from the Fermi energy ��F=0�, and C��� is the �unsymme-
trized� current-current correlation function

C��� =� dte−i�t��Î�t��Î�0�� , �2�

with �Î= Î− �Î�, and Î��ÎL− ÎR� /2 is the net current operator
�i.e., the difference between the current coming from the left
and that coming from the right9� through the system �we use
�=1�.

As we show below, under appropriate conditions, the fre-
quency dependence of C��� is determined by the energy
dependence of the fundamental Friedel phase ����, which
relates to the charge accumulated in the region of the meso-
scopic structure. In particular, as � crosses a resonance en-

ergy, C��� follows the increase of ���� by �. We thus sug-
gest that � can be deduced from measurements of C��� or of
G���. Except for special points, where the transmission van-
ishes, ���� is related10 to the transmission phase of the quan-
tum scattering through the mesoscopic structure, whose mea-
surement using the Aharonov-Bohm interferometer has
attracted much interest.11 Here, we propose an alternative
method to measure this phase.

When the mesoscopic structure has more than one reso-
nance, we sometimes find dips in C��� when � is close to
the difference between the energies of these resonances.
Since C��� is directly related to the absorption of energy by
the system at energy �, such dips must arise from a destruc-
tive interference between the quantum amplitudes for the
transitions involving these resonances, in some analogy to
the Fano effect.12

In the absence of interactions,13 G��� and C��� of a me-
soscopic system can be conveniently described by its
�energy-dependent� scattering matrix S���. For clarity, we
concentrate on systems connected to electronic reservoirs by
two single-channel leads. Then,

S��� = �r��� t���
t��� r���� �

� ei�����cos ����ei���� i sin ����
i sin ���� cos ����e−i���� � . �3�

Here, r��� and r���� are the reflection amplitudes of the
structure, and t��� is its transmission amplitude. 	Without
magnetic fields, the system possesses time-reversal symme-
try and hence t���= t����.
 The second equality in Eq. �3�
depicts S��� in its parametric form, in which the phase �
represents deviations from left-right symmetry, which result
in r��r, and ���� is the Friedel phase. One may find C��� in
terms of the scattering matrix elements either by employing
the Kubo linear-response theory to calculate G��� or by us-
ing the scattering formalism9,14 to find C��� directly. The
result is
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C��� =
e2

4�
� d�f�� + ��	1 − f���
C��,�� . �4�

where f���= �e��+1�−1 is the Fermi function and

C��,�� = R�2 + 2t�� + ��t*��� − r�� + ��r*���

− r��� + ��r�*���� . �5�

In the rest of this Brief Report, we present explicit results
only at T=0. In that case, the integration is over the range
0	�	−�, and therefore C����0 only for �	0.

Consider first a single localized level, of energy �d,
coupled to the left and the right leads by the tunneling matrix
elements VL and VR,15 respectively. In this case,

S��� = − 1 +
2�iN

� − �d + i

� VL

2 VLVR

VLVR VR
2 � , �6�

where N is the density of states at the Fermi energy of the
leads, and 
=�N�VL

2 +VR
2� is the resonance width. The Frie-

del phase is given by 
 cot ����=�d−�, such that � decreases
from � to zero as � increases from −� to �, passing through
� /2 at resonance. When this system has left-right symmetry,
VL= ±VR, S��� is completely determined by ���� alone, i.e.,
in the notations of Eq. �3�, �=0, cos �=−cos �, and sin �
= ±sin �. Then, C�� ,��=2�sin2	����
+sin2	���+��
�. 	Note
that for a symmetric Breit-Wigner resonance, one has �t�2
=sin2 �.
 Consequently, at T=0,

C��� =
e2

2�
�

�

−�

d� sin2	����
, � � 0, �7�

and C is a monotonic increasing function of ���, growing
over a region of width 
 near ���d, where the integrand is
large. Moreover, since 
d�=sin2���d�, one has

C��� =
e2


2�
	��− �� − ����
, � � 0, �8�

and thus 2�C��� / �e2
� follows exactly the growth of the
Friedel phase from zero to �. Explicit calculations show that
this qualitative steplike behavior also appears for the non-
symmetric case when VL /VR� ±1.

A far more intricate behavior is obtained for a system of
two localized levels �at energies �1 and �2�, connected in
parallel to the two leads,16 via tunneling matrix elements VL1
and VL2 �for the left� and VR1 and VR2 �for the right lead�.15

The resonance widths of the two separate levels are 
i
=�N�VLi

2 +VRi
2 � for i=1,2. For this structure, the solution of

the scattering problem yields

t��� = t���� = A���	VL1VR1�� − �2� + VL2VR2�� − �1�
 ,

r��� = − 1 + A���	VL1
2 �� − �2� + VL2

2 �� − �1�

+ i�
1
2 − 
12
2 �/��N�
 , �9�

with r� given by the same expression as r, with VLi replaced
by VRi, while A����2�iN /D���, D���= ��−�1+ i
1���−�2

+ i
2�+
12
2 and 
12=�N�VL1VL2+VR1VR2�.

We next present a few typical graphs, calculated using

these exact expressions at T=0. We then explain some of the
observed features using approximate expressions. Fig. 1
shows 2C��� /e2 for two resonances which are located below
the Fermi energy. All the graphs exhibit two steps in
2C��� /e2, from 0 to 
1 and then from there to 
1+
2. The
small differences between the graphs are due to the magni-
tude of the left-right asymmetry. For sufficiently separated
resonances, one should not be surprised to see that each reso-
nance is indeed described by Eq. �8�, thus capturing the be-
havior of the partial Friedel phases for each resonance. The
same curves are found when both resonances are above the
Fermi level.

A surprisingly different result appears when the two reso-
nances are located on both sides of the Fermi level, allowing
absorption between them. Figure 2 shows 2C��� /e2 for this
case, for different ratios VL2 /VR2. For VL2=VR2, one finds the
same monotonic two-step noise as found in Fig. 1. However,
as this ratio decreases, there appears an increasing dip in the
noise, at ��� close to the difference �1−�2.

Most of the observed features can be understood from Eq.
�5�: away from resonances, t��� is small and r��� and r����
are close to −1, so that C�� ,�� is small. When � crosses one

FIG. 1. The T=0 noise spectrum of two localized levels located
below the Fermi energy ��1=−2 and �2=−10� of widths 
1=0.18
and 
2=0.5. The different curves correspond to different values of
the ratio VL2 /VR2, with values 1, 0.3, 0, −0.3, and −1 �keeping 
2

fixed and VL1=VR1�.

FIG. 2. Same as Fig. 1, but with �1=2 and �2=−10. The dip near
�=−12 increases as the ratio VL2 /VR2 decreases from 1 to −1, via
0.3, 0, −0.3.
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of the resonances �say, �1�, then r��� and r���� are both small,
the last two terms in Eq. �5� are small, and the integrand
C�� ,�� is dominated by 2R	1+ t��+��t*���
. When �+� is
not near the other resonance, then t��+�� is also small, and
C is of order 2, giving a large contribution to the integral.
This yields the two steps in C���. The only potential excep-
tion to this can happen when �+� is also near a resonance,
when �t���� and �t��+��� are both of order unity. In this case,
the result depends on the magnitude and phase of t��
+��t*���. For well separated resonances, the behavior of t���
near each of them can be approximated by Eq. �6�, namely,
t����VLVR. Thus, t��1�t*��1+���VL1VR1VL2VR2, and the
destructive interference in C is largest when VL1VR1VL2VR2
�−
1
2 /4.

In fact, the contribution of a scattering state ��� at energy
� to Eq. �2� can be written as the probability of the absorp-
tion of energy � by a transition between ��� and ��+��,
����Î��+���2. Consider the case when both ��� and ��+��
come from the left. Each of these contains incoming, trans-

mitted, and reflected waves. One then ends up with ���Î��
+�� 	1+ t��+��t*���−r��+��r*���
. The reduction of C
when both � and �+� hit the two resonances is then a con-
sequence of destructive interference between the first two
terms here, in some similarity to the original Fano effect.12

Whether the resulting dip is large or small thus depends on
the relative phases of t��1� and t��2� �see above� and on the
overall weight of this term in the final integral. This weight is
large only when the two resonances are on the two sides of
the Fermi energy.

A more quantitative insight into these results can be
achieved by looking at approximate analytical expressions,
derived when the resonance locations are well separated �for
instance, in small mesoscopic structures within the “ortho-
dox” model of the Coulomb blockade�, such that �
1

−
2�2 ,4
12
2 � ��1−�2�2. Although the resonance locations

and their respective widths are modified ��1,2→�a,b, 
1,2
→
a,b� once the two levels are connected to the leads to
form a “ring,” in this limit these modifications are small.
Writing D���= ��−�a+ i
a���−�b+ i
b�, one finds that up to
order 
12

2 , the resonance widths are unchanged, 
a
1 and

b
2, while �a,b��1+�2±�� /2, with the modified energy
difference between the two resonances given by �2��1

−�2�2−4
12
2 �0. The Friedel phase of the combined structure

is now given by ����=�a���+�b���, where the “partial” Frie-
del phases of the two resonances, �a and �b, are given by


a cot	�a���
 = �a − �, 
b cot	�b���
 = �b − � . �10�

The analytic expressions turn out to be much simpler for
the extreme cases of the left-right symmetry, namely, for
VL1= ±VR1 and VL2= ±VR2, i.e., when r���=r����. Had we
further assumed that VL1=VR1 and VL2=VR2, we would have
recovered Eq. �3� �up to an irrelevant overall sign�, with �
=0 and �=�=�a+�b. Therefore, at T=0, C��� is given by
Eq. �7�, with �=�a+�b. It is a monotonic function of the
frequency, as indeed found for this symmetric case in the top
curve of Fig. 2 and in Fig. 1. The two steps in this curve
indeed capture the energy dependence of �a and of �b.

An entirely different picture is found when VL1=VR1 and
VL2=−VR2, corresponding to the lowest curve in Fig. 2.
Then, the same approximations again yield Eq. �3� with �
=0, �=�a+�b, and an overall sign change, but now �=�a
−�b.

To explain analytically the difference between the upper
and lower curves in Fig. 2, we take the additional assumption

1=
2�
 /2. In that case, Eq. �5� becomes C�� ,��=2�1
−cos	����+���+��
cos	���+��−����
�=2�sin2	�a���−�b��
+��
+sin2	�b���−�a��+��
�. Using the definitions of �a and
�b, Eqs. �10�, one finds

C��,�� =
8�� + ��2


2 sin2	�a���
sin2	�b�� + ��


+
8�� − ��2


2 sin2	�b���
sin2	�a�� + ��
 . �11�

The � integration of this function, yielding C���, can be
performed straightforwardly �for T=0�, as done in the fig-
ures. This results with two complicated terms, which multi-
ply F��� and F�−��, where

F��� = �� + ��2/	
2 + �� + ��2
 . �12�

However, it is instructive to further expand these terms to
leading order in the width 
. For �	0, this yields

2�

e2 C���  F�����
0

−�

d� sin2	�a���
 + �
�

0

d� sin2	�b���
�
+ F�− ����

0

−�

d� sin2	�b���


+ �
�

0

d� sin2	�a���
�
=




2
F�����a�− �� − �a�0� + �b�0� − �b����

+



2
F�− ��	�b�− �� − �b�0� + �a�0� − �a���
 .

�13�

This approximate expression shows that �i� for ��+� � �
,
the noise spectrum follows closely the monotonic frequency
dependence of the partial Friedel phases �a and �b, and �ii�
the dip results from the function F.

Let us examine the � dependence in Eq. �13�. To this end,
we note that �a�−��−�a�0� differs significantly from zero
once 0	�a	−�, while �a�0�−�a��� mainly contributes
when �	�a	0 �and similarly for �b�. Suppose that the two
levels are located on both sides of the Fermi level, such that
�a�0��b �and hence, �=�a−�b��a�. Then, the phase dif-
ferences in the second term of Eq. �13� are rather small,
whereas those in the first term are substantive. As ��� in-
creases, firstly �b�0�−�b��� comes into play, giving the first
step of the curve at about ��b, and as ��� increases further,
�a�−��−�a�0� joins in and yields the second step at about
����a �see Fig. 2�. As ��� increases further, the function
F���, Eq. �12�, vanishes at �� � =�, resulting in the pro-
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nounced dip. In contrast, when the two levels are both on the
same side of the Fermi energy, e.g., �a��b�0 �in which
case �a���, one encounters the two steps as in the case
discussed above, but there will be no dip, since the contribu-
tion from the first term in Eq. �13� becomes effective only for
����a, namely, at absolute frequency larger than � �see
Fig. 1�. As Fig. 2 shows, all of these features survive when-
ever VL2 /VR2�1, namely, when ���� deviates from ����. As
we find by using the exact Eq. �5� �see our figures�, these
features also survive when the approximate assumptions
which led to Eq. �13� do not hold.

So far, we have discussed the ring of two localized levels
in the absence of a magnetic flux. Interestingly, a flux
through the ring modifies the product VL1VL2VR1VR2 by the
Aharonov-Bohm phase factor, ei�, where � is proportional to
the flux threading the ring. It is interesting to note that as �
changes by �, the sign of this product changes. We thus
expect that the new dip will appear and disappear periodi-
cally as the flux increases.

Finally, a comment about electron-electron interactions.
Although our derivation neglects these interactions, much of
the physics in the Coulomb blockade regime is believed to
be captured by a model of noninteracting electrons, with an
effective Hartree-like energy.17 Furthermore, we have ex-

tended our calculation to finite biases and found similar
qualitative results �which then extend also to positive ��. In
parallel, an evaluation of the dc current shot-noise spectrum
�at positive frequency�, performed in the Coulomb blockade
regime for a high bias voltage, shows a similar spectrum,
which is also sensitive to the relative phase of the two
resonances.18 In that case, however, the Coulomb blockade
breaks the left-right symmetry of the dc resonant current, so
that the interference effects are most pronounced for asym-
metric structures.18 In the case of ac conductance at zero bias
considered here, the Coulomb blockade would not break the
left-right symmetry, and we therefore expect that our quali-
tative picture remains valid for interacting electrons.
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