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We study the potential for optimal control of a symmetric double quantum-dot structure interacting with a
single pulsed electromagnetic field. We first use the rotating wave and resonant approximations and reduce the
dynamics of the system to that of a degenerate three-level �-type system. We also formulate the optimal
control problem in terms of differential equations that have to be fulfilled by the optimal electromagnetic fields.
We then obtain general analytical expressions for the optimal pulse shapes that lead to global maximization of
the final population of the target state and of the time-averaged population of the target state in the quantum-dot
structure.
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In the past decade it has been realized that ideas from
quantum control in multilevel systems1–3 can be efficiently
applied to the control of the dynamics of electrons and spins
in semiconductor quantum dots.4–6 In this area, specific in-
terest has been given to the potential of controlled single-
electron transfer in double quantum-dot structures.7–16

In particular, Openov8 studied a system of a symmetric
double quantum-dot structure interacting with a rectangular
electromagnetic pulse for the controlled electron transfer be-
tween the two quantum dots, and applied his findings for the
implementation of the NOT quantum gate. Later, Paspalakis
et al.10 studied in detail the interaction of electromagnetic
pulses with the symmetric double quantum-dot structure de-
scribed by Openov and applied the methodology of con-
trolled rotation for the manipulation of the quantum state of
the system and the creation of single-quantum gates. The
effects of asymmetry of the quantum-dot structure on trans-
fer efficiency was also studied by Tsukanov and Openov.11 In
addition, the potential for electron transfer via the conduction
band �continuum of states� in the scheme of Openov has
been studied by Basharov and Dubovis.13 Finally,
Tsukanov15 revisited quite recently the same quantum-dot
structure as that of Openov and analyzed rigorously the ap-
proximations used in the description of the dynamics of the
system.

Lately, optimal control schemes2,3,17 have also been ap-
plied for the control of the dynamics of semiconductor
quantum-dot structures.18–22 In this work, we study the po-
tential for optimal control of the symmetric double quantum-
dot structure initially proposed by Openov.8 We present re-
sults in the case that the quantum-dot structure interacts with
a single pulsed electromagnetic field. We formulate the opti-
mal control problem in terms of differential equations that
have to be fulfilled by the optimal electromagnetic
fields.19,23,24 We then obtain general analytical expressions
for the optimal pulse shapes that lead to global maximization
of the final population of the target state and of the time-
averaged population of the target state in the quantum-dot
structure. The first can be used in creating the NOT quantum
gate,25,26 while the latter can be used for electron transfer in
a double quantum-dot structure.7,9,18

We consider a nanostructure composed of two identical
quantum dots �A and B in Fig. 1�. Each one, when isolated,

possesses only two bound-state energy levels. These local-
ized states are denoted by �A1� , �A2� and by �B1� , �B2� for the
A and B dots, respectively. The lower bound state has energy
�1 and the upper bound state has energy �2. The geometrical
characteristics of the dots are chosen such that the lower
energy level is deep in the potential barrier and the upper
energy level is near the edge of the potential barrier. These
features of the energy levels are carried over to the double
quantum-dot nanostructure as the quantum dots are taken to
be widely separated.

Therefore, the lower pair of energy levels �A1�, �B1� are
essentially degenerate, as the tunneling of an electron
through the potential barrier between these energy levels is
very improbable and will be omitted here. However, as the
upper energy levels �A2�, �B2� are taken to be near the edge
of the potential barrier, the electron tunneling probability be-
tween these levels is quite high and will be accounted for.
These are the assumptions made initially by Openov8 and
also adapted by others later on.8,10–13,15,16 These assumptions
have also been recently used by Ginzburg and Orenstein for
producing slow light in a coupled semiconductor quantum
well structure.27

The Hamiltonian of the double quantum-dot nanostruc-
ture, interacting with an external electromagnetic field E�t�,
is given by8,10

FIG. 1. Schematic diagram of the coupled quantum-dot structure
studied. The system posseses two degenerate localized lower levels
��1� and �2�� and two delocalized upper levels ��3� and �4��. The
lower states are coupled on-resonant to the excited state �3� by an
external electromagnetic field.
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Ĥ = �1��A1��A1� + �B1��B1�� + �2��A2��A2�

+ �B2��B2�� − U��A2��B2� + �B2��A2��

+ E�t����A1��A2� + �B1��B2� + H.c.� , �1�

where � is the electron dipole moment for the transition
�a1�↔ �a2� �a=A ,B� and U is the electron hopping energy
between the two dots for the excited electronic states �A2�
and �B2�. Hence 2U=�� /�, where � is the tunneling time,
i.e., the time needed by the electron to move from one local-
ized state ��A2�� to the other localized state ��B2��. The ap-
plied field is E�t�=E0�t�cos��Lt�, with �L being the angular
frequency and E0�t� being the slowly varying envelope of the
field.

Then we transform the Hamiltonian of the system �Eq.
�1�� to the interaction picture, where in the matrix represen-
tation of the Hamiltonian only the nondiagonal elements are
present, with the following transformation:

V̂int�t� = exp�− i	�1

�
��A1��A1� + �B1��B1��

+
�2

�
��A2��A2� + �B2��B2��
t� . �2�

As we have mentioned above, the upper localized states �A2�
and �B2� are coupled through tunneling and give rise to a pair
of delocalized states, a symmetric one ��3�= ��A2�
+ �B2�� /�2� and an antisymmetric one ��4�= ��A2�
− �B2�� /�2�. The energies of the delocalized states �3� and �4�
are expressed by means of the electron hopping energy as
�+=�2−U ��−=�2+U� for the symmetric �antisymmetric�
state. For convenience and consistency in our notation, in the
rest of this Brief Report we represent the two lower localized
states by �1�= �A1� and �2�= �B1�.

We then concentrate our study on the exact resonant ex-
citation case, i.e., the case where the angular frequency
���L� is equal to the energy difference between the localized
states and the symmetric excited state ��+−�1�. A very im-
portant parameter describing the field-matter interaction
strength is the Rabi frequency �E0�t� /�. When the maxi-
mum Rabi frequency is much smaller than the angular fre-
quency of the applied field, a simplified expression for the
Hamiltonian of the system is obtained by eliminating fast
oscillating terms. In this approximation called the rotating-
wave approximation, valid for specific values of the applied
field parameters, the Hamiltonian reads

Ĥ =
1

2�2
��E0�t��1��3� + �E0�t��2��3�

+ �E0�t�e−i2Ut/��1��4�

− �E0�t�e−i2Ut/��2��4� + H.c.� . �3�

This Hamiltonian can be simplified further by assuming the
resonant approximation, which, as shown in Refs. 8 and 15,
is a very good approximation for the exact resonance case. In
this case, the transitions �1���2��↔ �4� can be ignored and the
simplified Hamiltonian reads

Ĥ� =
1

2�2
��E0�t��1��3� + �E0�t��2��3� + H.c.� . �4�

Under these approximations, the dynamics of the system re-
duces to that of a degenerate three-level �-type system that it
is driven at exact resonance by a single laser field. The latter
Hamiltonian will be the starting point for the implementation
of the quantum control scheme.

We are initially interested in the determination of the op-
timal shape and value of E0�t� in the time interval �0,T� that
leads to the maximization of the time-averaged population of
state �2�, i.e., the quantity 1

T
0
T	22�t�dt, where 	22�t� is the

corresponding density-matrix element for the population of
state �2�. In the case of exact resonant excitation, 	22�t�
=sin4�
�t��, where 
�t�=�
0

t V�t��dt� with V�t�=E0�t� / �4��.
We use the optimal control methodology of Garcia and

co-workers.19,23,24 The Lagrangian we use is

L = �
0

T

A�t�� �

�t
+ iẐ�t��	�t�dt + ��

0

T

L1dt . �5�

Here, � is a Lagrange multiplier, A�t� is a Lagrange multi-

plier density, Ẑ�t� is a Liouville operator for the three-level
system, and 	�t� is the density-matrix operator. The first term
in Eq. �5� ensures that the density matrix satisfies the Liou-
ville equation. The functional density L1 explicitly includes
the description of the optimal control. Following the meth-
odology of Garcia and co-workers,19,23,24 L1 is written as

L1 = Lob�	� + �V2�t� + �1�dV�t�
dt

�2

, �6�

where �, �1 are Lagrange multipliers and Lob�	� refers to the
physical quantity that we wish to maximize during the con-
trol time interval. The second term in the right-hand side of
Eq. �6� is related to the constraint on the total energy of the
control field and the third term is related to a constraint on
the minimal experimentally achievable duration of the con-
trol pulse.19,23,24 The latter ensures the exclusion of infinitely
narrow or abrupt, steplike solutions.

In our case, Lob�	�=	22�t� /T. In order to have the problem
analytically tractable, we will assume that V�t� is slowly
varying and omit the last term of Eq. �6�. Then,

L1 =
	22�t�

T
+ �


̇2�t�
�2 . �7�

We note that we have omitted the Liouville term of the
Lagrange, as we will include the analytical solution for 	22�t�
that has been obtained from the solution of the Liouville
equation.19,23 As 	22�t�=sin4�
�t��, Eq. �7� leads to the Euler-
Lagrange differential equation

�
d2
�t�

dt2 − 2
�2

T
sin3�
�t��cos�
�t�� = 0. �8�

The boundary conditions for 
�t� are chosen 
�0�=0 and

�T�=� /2. The first condition makes the Rabi frequency
nonzero at t=0, but it leads to analytical results for V�t�. A
time integration of Eq. �8� gives
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L1 − 
̇
�L1

�
̇
= �


̇2�t�
�2 +

sin4�
�t��
T

= c , �9�

where c is a constant. Applying the boundary conditions, we
obtain from Eq. �9� c=1/T and �=−1/ �TV2�0��. Then, Eq.
�9� can be rewritten as

�
0


 d
�
�1 − sin4 
�

= �V�0�t . �10�

The left-hand side of Eq. �10� is also written as

�
1

�2−cos2 
 dy
�y2 − 1�2 − y2�

= − �
�/2

arcsin�1/�2−cos2 
� sin zdz

1 − 2 cos2 z

=
1

2�2
ln� 1 + �2 cos�arcsin	 1

�2 − cos2 


�

1 − �2 cos�arcsin	 1
�2 − cos2 



�� ,

�11�

with y=�2−cos2 
� and z=arcsin�1/y�. Combining the right-

hand side of Eq. �10� with the result of Eq. �11�, we obtain
after some algebra that


�t� = arccos� 8K

K2 + 6K + 1
, K�t� = e2�2�V�0�t. �12�

Therefore,

V�t� =

̇

�
=

4�K�t� + 1��K�t�V�0�
K2�t� + 6K�t� + 1

. �13�

The form of �V�t� from Eq. �13� and the dynamics of the
populations for a typical double quantum-dot structure, ob-
tained from the numerical solution of the time-dependent
Schrödinger equation using the Hamiltonian of Eq. �1�, is
shown in Fig. 2. We note that the yellow curve of Fig. 2
shows that the population of state �4� is very small �close to
zero� and this confirms the resonant approximation and the
validity of the Hamiltonian of Eq. �4�.

We are now interested in the analytical determination of
the optimal shape and value of V�t� that leads to the maxi-
mization of population 	22�t� at a specific time tc when one
has on-resonant excitation. In order for this to succeed, we
will extend the optimal control methodology of Garcia and
Grigorenko.23 In this case,

L1 = 	22�t�
�t − tc� + �

̇2�t�
�2 . �14�

As 	22�t�=sin4�
�t��, Eq. �13� leads to the Euler-Lagrange
differential equation

�
d2
�t�

dt2 − 2�2 sin3�
�t��cos�
�t��
�t − tc� = 0. �15�

In this case, too, the boundary conditions for 
�t� are chosen

�0�=0 and 
�T�=� /2.

Treating the 
 function properly, we solve Eq. �14� and
obtain the optimal form of V�t� to be

V�t� =
�

2�tc
. �16�

We note that the optimal form of V�t� is the same as the one
obtained from the analytical solution of the problem in the

FIG. 2. �Color online� Time evolution of �a� �V�t� and �b� of the
populations in states �1� �red curve�, �2� �green curve�, �3� �blue
curve�, and �4� �yellow curve� with parameters �1=0.1 eV, �2

=0.4 eV, �U=5�10−4 eV, and ��V�0�= 5
2�2

�10−5 eV.

FIG. 3. �Color online� The same as in Fig. 2�b� but for a rect-
angular pulse that fulfills Eq. �16� and tc=50 ps.
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case of a rectangular pulse excitation.8,10 This is similar to
the optimal pulse form obtained for the case of two-level
system excitation.23 An example of complete population
transfer in the same double quantum-dot system as before is
shown in Fig. 3.

Using the optimal control methodology of Garcia and co-
workers, which has been applied so far only to two-level
systems19,23 and quasi-two-level systems,24 we obtain gen-
eral analytical expressions for the optimal pulse shapes that
lead to global maximization of the final population of a target
state and of the time-averaged population of the target state
in a specific double quantum-dot structure.

These results can also be applied in other systems and

processes that can be described by the Hamiltonian of Eq.
�6�. Such processes are, for example, the enantiomeric con-
version of chiral molecules and enantiomeric purification of
racemic mixtures,3,28–30 the creation of single-quantum gates
�the NOT gate, for example�, in microwave-driven three-level
superconductor quantum interference device quantum
bits,31–33 and the creation of ultrafast all-optical spin switch-
ing in magnetic structures.34
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