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We propose an approach to explore the signature of the spin-orbit interaction in a quantum dot subjected to
a tilted magnetic field. The spin-orbit coupling within the dot manifests itself as an anticrossing of the energy
levels as the tilt angle is varied. The anticrossing gap has a nonmonotonic dependence on the magnitude of the
magnetic field and exhibits a peak at some finite values of the magnetic field. From the dependence of the
tunneling current through the quantum dot on the bias voltage and the tilt angle, the anticrossing gap, and most
importantly the spin-orbit coupling strength, can be determined.
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In recent years, there has been a well-concerted effort to
achieve a coherent control on the electron spin transport in
semiconductor nanostructures because of its attractive poten-
tial for future spin-based electronic devices.1 The spin-orbit
�SO� interaction plays a crucial role in that pursuit, as it
provides a means for coupling of the electron spin to its
orbital motion. The SO interaction may in turn be manipu-
lated by applying a gate voltage. Studies of the SO coupling
effects in parabolic quantum dots �QDs� are equally
intriguing2,3 because one expects that such a system will pro-
vide the important step toward quantum information
processing.4 In narrow-gap semiconductors such as the InAs-
based system, the dominant source of the SO interaction is
the structural inversion asymmetry.5 The resultant Bychkov-
Rashba type of SO interaction6 is the interaction of our
choice here. The most common method of determining the
strength of the SO coupling is to study the beating pattern in
Shubnikov–de Haas �SdH� oscillations.7 However, that pro-
cess does not always provide an unambiguous determination
of the SO coupling strength.

In this paper, we propose an approach to determine the
strength of the SO interaction in the QDs. It is based on an
analysis of the behavior of the electronic QD energy levels in
a tilted magnetic field. The tilted magnetic field has an ad-
vantage over parallel and perpendicular fields because it in-
troduces the Zeeman splitting of the energy levels and modi-
fies the orbital motion of the electron within the QD as well.
The relative strength of these two contributions in the elec-
tron dynamics can be varied by changing the tilt angle. With-
out the SO interaction, the energy spectrum of the QD has a
strong dependence on the direction of the magnetic field,
thus exhibiting regions of level crossings at different tilt
angles. The levels that cross have the opposite spin direc-
tions, and without the SO interaction there is no mixing be-
tween them. The SO interaction couples the different spin
states. In this case we should expect an anticrossing of the
energy levels as a function of the tilt angle. Interestingly, the
strength of the anticrossing characterizes the strength of the
SO coupling. The most accurate way to study experimentally
the structure of the energy spectra around the anticrossing
region is to measure the tunneling current through the quan-
tum dot. Transport spectroscopy is a powerful tool to study a
variety of phenomena related to the correlation and interac-
tion effects in a QD.8 The main idea of the tunneling spec-

trosopy at a finite bias voltage is that the tunneling current
depends on the number of available �for tunneling� channels
in the QD. In the following, we study the tunneling transport
through a QD in a tilted magnetic field and show that the
tunneling current is dependent on the tilt angle and the bias
voltage within the anticrossing region.

The energy range of the anticrossing region is usually
smaller than the energy of the interelectron interaction,
which can be estimated to be about 7 meV.3 The tunneling
process can then be described by a single-electron picture.
The Hamiltonian of an electron in a parabolic QD in a tilted
magnetic field is
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where A= 1
2Bz�−y ,x ,0� is the vector potential in the symmet-

ric gauge, −e is the electron charge, � is the SO coupling
strength, g is the effective Landé g factor, and p is the two-
dimensional vector in the �x ,y� plane. We have assumed that
there is no dynamics in the z direction due to the size quan-
tization and the electron occupies the corresponding lowest
subband. The value of � obtained from various experiments
lie in the range of 5–45 meV nm.7 In a tilted field, the per-
pendicular component is Bz=B cos � while the parallel com-
ponent is Bx=B sin �, where B is the magnitude of the mag-
netic field and � is the angle between the magnetic field
vector and the z axis. In the above expression for the vector
potential A, we have taken into account only the perpendicu-
lar component of the magnetic field Bz. Since the size of the
dot in the z direction is small, the only effect of the parallel
field is through the Zeeman energy. The energy spectra and
the wave functions corresponding to the above Hamiltonian
�but for a zero tilt angle� have been obtained earlier
numerically.3 All the calculations below have been per-
formed for the case of the InAs quantum dots. It should be
pointed out that titled-field experiments on the QDs have
been reported earlier in the literature,9 but without any con-
sideration of the SO coupling.

In our approach, a QD is attached through the tunneling
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barriers to the right and left leads. We study the tunneling
current through the dot at a finite bias voltage between the
leads. The tunneling process through a parabolic QD is de-
scribed as a sequential single-electron tunneling.10 The QD is
charactrized by the probability P0 that there are no electrons
in the dot and probabilities Pi , i=1, . . . ,N that the electron
occupies an energy level Ei in the dot. For the probabilitiy Pi
we can write the rate equations in the form

�P0

�t
= − P0�

i=1

N

Wi + �
i=1

N

PiVi, �1�

�Pi

�t
= − PiVi + WiP0, �2�

P0 + P1 + P2 + ¯ + PN = 1, �3�

where the last equation is the normalization condition. The
transition rates Wi and Vi are the rates of tunneling in and out
of the dot, respectively. These rates can be found from the
Fermi golden rule

Wi = �fL�Ei� + �fR�Ei� ,

Vi = ��1 − �fL�Ei�� + ��1 − fR�Ei��	 ,

where � is the tunneling rate, which we assume to be energy
independent and is also the same for both left and right leads.
The rate equations �1�–�3� are valid for �	kT, where T is
the temperature and k is the Boltzmann constant. Here fL�E�
and fR�E� are the Fermi distribution functions of the left �L�
and right �R� leads, respectively. The chemical potentials of
the left and right leads are �L and �R, respectively. In what
follows, we have chosen the ground state of a QD with a
single electron as the zero-energy state. The temperature in
our calculation is 
0.1 K.

For the stationary case, the time derivatives of P0 and Pi
are zero. Then the linear system of equations Eqs. �1�–�3�
can be easily solved and the stationary tunneling current can
be found from I�V�=�i=1

N �Wi
LP0−Vi

LPi�, where V is the bias
voltage and the chemical potentials �L and �R are related to
V as �L=V /2 and �R=−V /2.

In Fig. 1, we show the tunneling current as a function of
the bias voltage for four different cases. These cases are di-
vided into two groups by the angle of the applied tilted mag-
netic field: �i� ��=0° � and �ii� ��=90° �. In the first case, Fig.
1�a� and Fig. 1�c� do not show any significant difference
when the SO interaction is included, while in the second case
the presence of the SO interaction lifts the degenerate states
which creates more steps in the I-V curve �as seen in Fig.
1�b� and Fig. 1�d�	.

From Fig. 1 it is clear that by varying the tilt angle � one
can make a significant change in the I-V curve. In order to
study the effect of a tilted field, we have looked at the angle
dependence of the energy levels. Figure 2�a� shows several
level crossings in the absence of the SO coupling. The first
crossing appears around E=4.5 meV and � between 70° and
90°. In the presence of the SO coupling �Fig. 2�b�	, that level
crossing becomes an anticrossing with an energy gap of 
E.
Figure 2�c� shows that the energy gap increases with an in-
crease of �. The anticrossing in Fig. 2 is a direct manifesta-
tion of the SO interaction. We now demonstrate that the an-
ticrossing of the energy levels results in a specific
dependence of the tunneling current on the bias voltage and
the tilt angle.

FIG. 1. Tunneling current vs the bias voltage for four
different cases at B=4 T: �a� �=0, �=0; �b� �=0, �=90°;
�c� �=30 meV nm, �=0; �d� �=30 meV nm, �=90°. The param-
eters for the InAs QDs are m* /m0=0.042, g=−14, and the confine-
ment potential strength is ��0=3.0 meV.

FIG. 2. The energy spectra as a function of the tilt angle ��� for
B=4 T and for different values of the SO coupling strength:
�a� �=0, �b� �=20, and �c� �=30 meV nm. The dashed line in �a�
corresponds to the energy E=4.3 meV. In �c�, 
E is the energy gap.
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The tunneling current as a function of � is shown in Fig.
3. In Fig. 3�a� we present the data for the tunneling current at
different bias voltages with an increment of 0.2 meV for the
QD without a SO coupling. At V=8.6 meV ��L=4.3 meV�,
the Fermi energy of the left lead �L is below the first level
crossing, which is illustrated by the dashed line in Fig. 2�a�.
Around �=70°, there are three levels of the QD below �L.
As we increase �, the Fermi energy of the left lead goes
below the third energy level. At this point, the tunneling
current which depends on the number of levels between the
Fermi energies of the left and right leads, drops. However,
when ��80°, the Fermi energy �L is again above the third
energy level. The tunneling current then goes up. The tun-
neling current as a function of the tilt angle then shows a dip
at the voltage below the crossing point. When we increase
the voltage and approach the crossing point, the dip becomes
narrower. Just above the crossing point, the tunneling current
shows a narrow bump similar to that at V=9.2 meV in Fig.
3�a�. With a further increase of the bias voltage the bump in
the tunneling current becomes wider.

Figure 3�b� shows the tunneling current for a finite value
of the SO coupling strength �=30 meV nm. Just as for the
system without the SO interaction, the tunneling current re-
veals a dip when the bias voltage is less than 8.3 meV. With
an increase of the voltage, the system shows a behavior char-
acteristic of that of the level anticrossing. Namely, within a
finite interval of the bias voltages 
V=2
E, the tunneling
current becomes independent of the tilt angle. This corre-
sponds to the case where the Fermi energy of the left lead is
in the anticrossing gap. If the voltage is continuously in-
creased, the flat pattern disappears and in its place a bump
pattern emerges. This change of the pattern is evidence for
the existence of the SO coupling which opens a gap at the
crossing point �see Fig. 2�c�	. The dip occurs when the volt-
age is below the bottom edge of the energy gap, while the

flat curve appears when the voltage is inside the gap. The
bump in the curve means that the voltage is above the top
edge of the energy gap. The change of pattern from a dip to
being flat and then to a bump can be quantified by the volt-
age difference 
V. Since 
V=2
E, this voltage difference
will determine the strength of the SO coupling �.

Analyzing the tunneling current versus the angles, we are
able to directly evaluate �. However, the anticrossing energy
gap also depends on the magnitude of the applied magnetic
field. With an increasing magnetic field, the size of the en-
ergy gap increases and reaches a maximum value 
Emax
=
Vmax/2. Figure 4�a� illustrates the above trend for three
different values of �. For larger values of � the peak is
located at a lower magnetic field. The peak shifts toward a
higher field as the SO coupling strength decreases. The peak
values are all located between B=4.5 T and B=5.5 T. The
optimal value of the magnetic field illustrates the interplay
between the orbital and spin effects of the magnetic field. In
Fig. 4�b� the value of 
Vmax at the optimal magnetic field is
shown as a function of �. Note that at different values of �
the optimal magnetic field is different in Fig. 4�b�. With the
known maximum value of the voltage differences, 
Vmax, the
corresponding � can be directly determined.

For a perpendicular magnetic field the energy spectra also
shows the anticrossing behavior. Just as for the tilted field,
this should also result in the corresponding structure in the
tunneling I-V dependence. Application of a tilted magnetic
field has some advantage however: in a perpendicular field
the anticrossing structure is observed only at one value of the
magnetic field and we need to change the magnitude of the
magnetic field to see the anticrossing behavior. In a tilted

FIG. 3. Tunneling current as a function of the tilt angle � at
B=4 T and for �a� �=0, and �b� �=30 meV nm. Each line corre-
sponds to a constant bias voltage V. The bias voltage is expressed in
meV. The increment of the voltage is 0.2 meV. The curves have
been shifted vertically for clarity.

FIG. 4. �a� The magnetic field dependence of the voltage differ-
ence 
V for three different values of the SO coupling strength:
�=20, 30, and 40 meV nm. The corresponding peak positions are at
B=5.1, 5.0, and 4.6 T for �=20, 30, and 40, respectively. �b� The
SO coupling strength dependence on the maximum voltage
difference, 
Vmax. Each point corresponds to a different value of the
magnetic field.

BRIEF REPORTS PHYSICAL REVIEW B 75, 193303 �2007�

193303-3



field the anticrossing behavior exists at all values of the mag-
netic field greater than a certain critical value. Another ad-
vantage of the tilted field is that the magnitude of 
V, or the
magnitude of the anticrossing gap, is larger in the tilted mag-
netic field, which would make it easier to observe this effect.
As an example, for �=20 meV nm, the anticrossing gap in
the perpendicular field is 
0.23 meV, while the maximum
anticrossing gap in the tilted field is 0.41 meV. This also
means that the maximum value of the anticrossing gap �Fig.
4�a�	 should be observed at a nonzero tilt angle. Indeed for
�=20 meV nm the maximum 
V is realized at �=83. The
reason why the anticrossing gap is larger in a tilted magnetic
field and why there is a maximum in the dependence of the
anticrossing gap on the tilt angle is because the tilted mag-
netic field introduces a mixture of the spin and orbital effects
of the magnetic field. The parallel component of the tilted
magnetic field results only in the Zeeman splitting, while the
perpendicular component modifies the orbital motion within
the dot plane. The SO coupling introduces a mixture between
the states with different directions of spin. The smaller the
energy separation between the states, the stronger is the SO
mixture between the states. Due to the Zeeman energy, the
parallel magnetic field suppresses the energy difference be-
tween the states with different spin and effectively increases
the SO coupling between the states.

There are a few effects that we did not take into account
here. The first is the effect of the parallel component of the
tilted magnetic field on the tunneling rates. This is justified

as long as the magnetic length is much larger than the size of
the system in the z direction, i.e., much larger than the quan-
tum dot height and the width of the tunneling barriers. For a
4 T magnetic field this assumption is consistent with experi-
mentally studied self-assembled InAs quantum dots, for
which the diameter is 20–30 nm and a typical height of
4–10 nm.11 We also assume that the confinement potential of
the dot is parabolic and ignored the nonparabolicity of the
energy spectra in the Hamiltonian. We have also ignored the
dependence of the g-factor on the tilt angle, and the effects
of the strain on the energy spectra of the dot. For realistic
QDs, all these factors should be taken into account to evalu-
ate the anticrossing gap. The size parameters of quantum
dots used in our calculations are consistent with the dot sizes,
i.e., diameter 20–30 nm, of self-assembled InAs quantum
dots.11 Our primary goal here is to illustrate the main mes-
sage of our present work: in order to study the signature of
SO coupling in the tunneling experiments in a magnetic
field, one needs to apply a tilted magnetic field to have the
largest anticrossing gaps in the energy spectra. The actual
value of this gap may, however, depend on the type of ma-
terials and on the precise structure of the dots.
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