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We study the momentum and frequency dependences of the dynamical spin susceptibility in the supercon-
ducting state of bilayer cuprate superconductors. We show that there exists a resonance mode in the odd as well
as the even channel of the spin susceptibility, with the even mode being located at higher energies than the odd
mode. We demonstrate that this energy splitting between the two modes arises not only from a difference in the
interaction, but also from a difference in the free-fermion susceptibilities of the even and odd channels.
Moreover, we show that the even resonance mode disperses downward at deviations from Q= �� ,��. In
addition, we demonstrate that there exists a second branch of the even resonance, similar to the recently
observed second branch �the Q* mode� of the odd resonance. Finally, we identify the origin of the qualitatively
different doping dependence of the even and odd resonances. Our results suggest further experimental tests that
may finally resolve the longstanding question regarding the origin of the resonance peak.
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I. INTRODUCTION

Magnetic excitations in the high-temperature supercon-
ductors are of fundamental interest. While it is currently still
a topic of intense debate whether a continuum of magnetic
excitations is responsible for the occurrence of superconduc-
tivity in the cuprates, the feedback effect of dx2−y2 wave su-
perconductivity on the magnetic excitation spectrum has
been well established in the context of the “resonance peak.”
This peak has been observed by inelastic neutron scattering
�INS� experiments in three different families of the high-
temperature superconductors.1–4 The doping dependence of
the peak frequency, �res�Q�, the downward dispersion of the
resonance, which tracks the momentum dependence of the
particle-hole continuum, and the emergence of a second
resonance branch further away from Q are at least qualita-
tively consistent with the idea that the resonance peak is a
particle-hole bound state �i.e., a spin exciton� below the
particle-hole continuum. According to theory,5 this excitonic
resonance is a fundamental property of a dx2−y2 supercon-
ductor. �For a review of other theoretical scenarios, see Refs.
6–8.�

Recent INS experiments in overdoped YBa2Cu3O6+x
�YBCO� revealed the formation of two resonance modes that
differ by their symmetry with respect to the exchange of
adjacent copper oxide layers.9,10 The original resonance
mode observed in the bilayer cuprate possesses an odd �o�
symmetry, while the new one exhibits an even �e� symmetry.
The frequency of the even mode is larger, while its intensity
is smaller than that of the odd mode. Moreover, while the
doping dependence of the odd mode is nonmonotonic and
roughly follows �res

o �5kBTc,
11 the frequency of the even

mode increases monotonically with decreasing doping.12,13

Furthermore, a similar behavior has been found recently in
Bi2Sr2CaCu2O8+�,13,14 indicating universal features of the
spin response of superconducting cuprates.

The spin susceptibility in bilayered cuprates has been ana-
lyzed theoretically in the past within the random-phase
approximation15–18 �RPA� and the splitting in energy be-
tween odd and even resonances has been attributed to the
difference in the strength of the residual interaction leading
to the bound state.15–17 The larger the interaction, the more
the resonance is shifted downward from the lower edge of
the particle-hole �ph� continuum. Such a difference in the
interaction can easily be obtained from the t-J model, where
the interactions in the even and odd spin channels are given
by

Jo,e�q� = J��q� ± J�, �1�

with J� ,J��0 being the in-plane and out-of-plane exchange
interaction, respectively. Thus Jo�Je, and the odd resonance
occurs at a lower energy than the even one. Moreover, since
the even mode lies closer to the ph continuum, its intensity is
lower than that of the odd one. These two theoretical
results15–17 are in good agreement with the experimental
observations.9,10,12,13

In this paper, we address three issues which have not yet
been considered in earlier studies on the spin resonance in
bilayer systems. First, we argue that the difference between
the even and odd modes comes from two factors. One is the
difference in the interaction, which was taken into account in
earlier studies; another is the difference in the free-fermion
susceptibilities of the even and odd channels which has been
neglected. We show that the two factors are generally com-
parable to each other and depend on the same combination of
parameters. Numerically, the difference in the interactions
leads to a larger splitting between the even and odd reso-
nances than the difference between the even and odd free-
fermion susceptibilities. Second, we extend our previous
analysis of the odd resonance’s dispersion19 to the even
channel and show that the even resonance mode also
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disperses downward at deviations from Q. Moreover, we
show that the downward dispersion of the even mode is more
parabolic than that of the odd channel. Third, we demon-
strate that there exists a second branch of the even resonance,
similar to the recently observed second branch �the Q*

mode19� of the odd resonance.20,21 We show, following the
approach of Ref. 19, that in the even channel, this second
branch is much narrower in energy than in the odd one.
These results suggest further experimental test that may fi-
nally resolve the longstanding question regarding the origin
of the resonance peak.

Finally, we analyze the doping dependence of the even
and odd resonances. In the overdoped region, both modes
decrease due to a decreasing superconducting gap. In the
opposite limit of zero doping, even and odd resonances very
likely evolve into the acoustic and optical spin-wave modes
of the bilayer Heisenberg antiferromagnet. We show, how-
ever, that, while plausible, the crossover from one regime to
the other cannot be obtained within a simple RPA scheme
chiefly because of the incorrect doping dependence of the
free-fermion susceptibilities: the real part of both even and
odd susceptibilities decreases with decreasing doping at
half-filling.22 This behavior is a direct consequence of the
fact that the even susceptibility diverges at the van Hove
singularity and the odd susceptibility possesses a maximum
near the van Hove point.

The rest of the paper is organized as follows. In Sec. II we
introduce our theoretical model and discuss the origin of the
splitting between the even and odd resonance at Q= �� ,��.
In Sec. III we present the dispersion of the two resonances
away from Q and show that a Q* mode also arises in the
even channel. In Sec. IV we discuss the doping dependence
of the resonances. Finally, in Sec. V we summarize our re-
sults and conclusions.

II. EVEN AND ODD RESONANCES AT Q= „� ,�…

The coupling between two CuO2 planes in a unit cell of
YBCO is described by the interlayer hopping matrix element
t��k�= 1

4 t��cos kx−cos ky�2 �Ref. 23�. This coupling leads to
the formation of bonding �b� and antibonding �a� energy
bands whose dispersion are given by

�k
a,b = − 2t�cos kx + cos ky� + 4t� cos kx cos ky

±
1

4
t��cos kx − cos ky�2 − � , �2�

with t=250 meV, t� / t=0.4, t� / t=0.2, and � being the
chemical potential �these parameters provide a good fit to the
Fermi surface of the bilayered24 Bi2Sr2CaCu2O8+��. The re-
sulting Fermi surfaces for the bonding and antibonding
bands are shown in Fig. 1.

The bonding and antibonding creation and annihilation
operators are related to the fermionic operators c1,2 in the
two layers via

ca =
c1 + c2

�2
, cb =

c1 − c2

�2
. �3�

It is also convenient to introduce even and odd components
of the spins at site i, which are given by

Se�i� =
S1�i� + S2�i�

2
=

1

2
�ca,�

† �i�	�,
ca,
�i�

+ cb,�
† �i�	�,
cb,
�i�� ,

So�i� =
S1�i� − S2�i�

2
=

1

2
�ca,�

† �i�	�,
cb,
�i�

+ cb,�
† �i�	�,
ca,
�i�� . �4�

The experimentally measured susceptibility is related to the
even and odd susceptibilities, �e= �SeSe	 and �o= �SoSo	 via25

��q,�� = �e�q,��cos2 qzd

2
+ �o�q,��sin2 qzd

2
, �5�

where d is the separation between the layers. For noninter-
acting electrons, the susceptibilities in the even and odd
channels are given by �0

e =�0
aa+�0

bb and �0
o=�0

ab+�0
ba, respec-

tively, where �0
aa and �0

bb represent intraband particle-hole
excitations, and �0

ab and �0
ba represent interband excitations.

The free-fermion susceptibilities in the superconducting state
at T=0 are given by5,26

�0
ij�q,�� =

1

4

k
�1 −

�k
i �k+q

j + 
k
i 
k+q

j

Ek
i Ek+q

j �
�� 1

� + Ek+q
j + Ek

i + i�
−

1

� − Ek+q
j − Ek

i + i�
� ,

�6�

with i , j=a ,b, Ek
i =���k

i �2+ �
k
i �2, and 
k

i is the supercon-
ducting gap in the bonding �i=b� and antibonding �i=a�

FIG. 1. �Color online� Calculated Fermi surface for the bilay-
ered cuprates as obtained from Eq. �2�. The arrows indicate the
transition between bonding-bonding �bb�, antibonding-antibonding
�aa�, and antibonding-bonding �ab ,ba� states for antiferromagnetic
wave vector Q=�� ,��.
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bands. In the following, we assume that the pairing part of
the Hamiltonian is symmetric with respect to the bilayers and
given by

Hpp = 

k


�k��c1,↑
† �k�c1,↓

† �− k� + c2,↑
† �k�c2,↓

† �− k� + H.c.�

= 

k


�k��ca,↑
† �k�ca,↓

† �− k� + cb,↑
† �k�cb,↓

† �− k� + H.c.� ,

�7�

where 
�k�=

0

2 �cos kx−cos ky�. It then follows that the pair-
ing gap is the same for bonding and antibonding bands, im-
plying 
k

a =
k
b =
k. However, the respective Fermi surfaces

in both bands are located at different momenta k in the Bril-
louin zone. In order to obtain the full �e,o, we use the RPA.
Within RPA, the even and odd parts of the full spin suscep-
tibility are given by

�RPA
� �q,�� =

�0
��q,��

1 − g��q��0
��q,��/2

, �8�

where �=o ,e and ge,o�q� are the fermionic interaction verti-
ces in the even and odd channels. To reproduce the experi-
mentally measured frequency splitting between both reso-
nances at Q, and the dispersion of the two modes �see
below�, we use

go,e�q� = g0
1 − 0.1�cos�qx� + cos�qy��� ± 0.027g0. �9�

According to Eq. �1�, the first �second� term on the right-
hand side �rhs� of the above equation can be interpreted simi-
larly as it arises in the t-J model from the in-plane �out-of-
plane� exchange interaction J��q� �J��. Here, we use g0

=0.55 meV in accordance with our previous study.19 This
has to be seen as a renormalized value of the on-site Cou-
lomb repulsion which is taken to be of the order of 2 eV.

We first consider the spin susceptibility at momenta close
to Q= �� ,��. The dominant contribution to the susceptibili-
ties comes from fermions near the hot spots, where both k
and k+Q are close to the Fermi surface. In a dx2−y2 wave
superconductor with the above 
�k�, one has 
�k+Q�=
−
�k�. As a consequence, Im �0

e,o exhibits discontinuities
due to the opening of the superconducting gap.27 For the odd
susceptibility, Im �0

ba and Im �0
ba exhibit a single discontinu-

ity at �c
ab�Q�= �
k

a � + �
k+Q
b �, where k is chosen such that

�a�k�=�b�k+Q�=0 �see Fig. 1�. Below this frequency,
Im �0

ab=0 �at T=0�. At the same time, Im �0
e possesses two

discontinuities located at �c
aa�Q�= �
k

a � + �
k+Q
a � and �c

bb�Q�
= �
k

b � + �
k+Q
b �, where k is again chosen such that both fer-

mions are at the Fermi surface �see Fig. 1�. Im �0
e is zero

below the lower discontinuity and jumps between two finite
values at the higher discontinuity. Analyzing Eq. �6�, we find
�c

bb�Q���c
ab�Q���c

aa�Q�.
Hence, in the even and odd channels, the susceptibility at

low frequencies is purely real and, according to Eq. �6�, one
finds that the bare �0

��Q ,�� ��=a ,b� behaves as

�0
��Q,�� = �0

��Q,0� + A�f��/�ij� , �10�

where A��0, f�x��x2 at small x, and f�x���log�1−x�� near
x=1. Substituting this result in Eq. �8�, one finds that since
f�x� changes between 0 and � when x changes between 0
and 1, the susceptibilities in both the odd and even
channels develop resonances below the thresholds of the
particle-hole continuum, at frequencies �e,o where
1=ge,o�Q��0

e,o�Q ,�e,o� /2.
As we said above, there are two reasons why the reso-

nances in the even and odd channels occur at different fre-
quencies. One is that the even and odd free-fermion suscep-
tibilities �0

e,o�Q ,�� are different; another reason is that the
interactions are different in the even and odd channels. Be-
low we consider these two effects separately.

The difference in �0
e,o�Q ,�� arises predominantly from

the fact that the �dimensionless� magnetic correlation length
�e,o

−2 =1−ge,o�Q��0
e,o�Q ,0� /2 is different in the two channels

already in the normal state. Additional differences between
�0

e,o�Q ,0� which arise in the superconducting state scale as

0 /EF, are small, and can be neglected. Assuming that the
relative difference between the even and the odd resonances
is small and that the resonance frequencies are sufficiently
low such that f�x� in Eq. �10� scales as x2, we find that at the
antiferromagnetic momentum Q

�e − �o

�o
=

�e
−1 − �o

−1

�o
−1 . �11�

The rhs of the above equation is, in turn, related to the dif-
ference in the normal-state static � via

�e
−1 − �o

−1

�o
−1 �

g0�Q�
2

�o
2��0

ab�Q,0�

+ �0
ba�Q,0� − �0

aa�Q,0� − �0
bb�Q,0�� . �12�

The dominant contributions to the rhs of Eq. �12� come from
fermions in hot regions near �0,�� and �� ,0�, for which the
term proportional to t� in the dispersion �Eq. �2�� reduces to
±t�. Expanding the rhs of Eq. �12� to leading order in t�, we
obtain

�e
−1 − �o

−1

�o
−1 � t�

2 g0�o
2

2�3 � d�d2k

��k − i��2��k+q − i��2 , �13�

where �k is the in-plane dispersion �i.e., Eq. �2� with t�=0�.
Linearizing �k and �k+Q in the hot regions as vF�kx+ky� /�2
and vF�kx−ky� /�2, respectively, substituting this expansion
into the susceptibilities, and performing the integration, we
obtain

�e
−1 − �o

−1

�o
−1 � t�

2 8g0�o
2

�2vF
3kmax

, �14�

where kmax�kF is the upper limit of the integration over
momentum and kF=0.4�2�. Observe that the rhs of Eq. �14�
is positive, implying that the resonance in the even channel
occurs at a larger frequency than the resonance in the odd
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channel. To estimate the strength of the effect, we use vFkF
�1 eV�4t and g0�0.5 eV, and define J�=4t�

2 /U and J
=4t2 /U, with U being the initial unrenormalized Coulomb
potential for the single-band Hubbard model.28 We then have

�e
−1 − �o

−1

�o
−1 � 0.1�o

2J�

J
. �15�

The second source for the difference between �e and �o
is the difference in the interaction strength between the two
channels. As mentioned above, within the t-J model, the two
interactions are given by Jo,e=J��q�±J�. At q=Q, this effect
alone leads to

�e
−1 − �o

−1

�o
−1 �

J�

J
, �16�

where J=J��q=Q�. We see that both effects described by
Eqs. �15� and �16� are, in fact, of the same order and both
lead to a larger �e compared to �o. Moreover, the effect of
the t� dependence of the interaction is larger, at least near
optimal doping, where �o�1. However, with decreasing
doping, and hence increasing �o, the role of the difference in
the even and odd free-fermion susceptibilities may become
more dominant.

In Fig. 2, we present the results for the bare and full
susceptibilities at optimal doping ��=0.15 per CuO2 plane,
corresponding to �=−1.195t� obtained from a numerical
evaluation of Eqs. �6� and �8�. We see that Re �0 in the even
and odd channels are almost identical below 2
0; i.e., the
difference in the susceptibilities is too small to give rise to an
observable difference between �e and �o. This agrees with
our analytic treatment. Hence, the difference between �e and
�o arises from the difference in the effective interactions ge
and go.

We present the RPA susceptibilities �RPA
e,o at Q in Fig. 2�c�.

We see that both even and odd susceptibilities show reso-
nance behavior. By construction, the resonance in the even
channel occurs at a larger frequency than the odd resonance.

Accordingly, the intensity of the even resonance is smaller,
which agrees well with the experimental observations.9

Regarding the temperature evolution of the resonance
peak, it has been found previously29 via a self-consistent
solution of the Eliashberg equations that after the reso-
nance peak develops rapidly below Tc, its energy position
remains unchanged with decreasing temperature. This be-
havior mirrors that of the superconducting gap obtained
within strong-coupling theory, which reaches its max-
imum already at temperatures slightly below Tc and then
becomes practically temperature independent, in contrast
to the BCS weak-coupling approach. If we use a fit
to the temperature-dependent maximum superconducting
�SC� gap obtained from the Eliashberg approach, 
0�T�
=
0 tanh�1.76�Tc /T−1�, we find that the resonance fre-
quency remains practically unchanged below T�70 K for a
system with Tc=92 K.

III. DISPERSION OF THE RESONANCE PEAK

We next consider the dispersion of the even and odd reso-
nances and present in Fig. 3 an intensity plot of
Im �RPA

e,o �q ,�� at optimal doping as a function of frequency
and momentum along the diagonal q=��� ,�� �Figs. 3�a�
and 3�c�� and along the bond direction q= ��� ,�� �Figs. 3�b�
and 3�d��. The momentum dependence of the odd mode’s
frequency and intensity, shown in Figs. 3�a� and 3�b�, is quite
similar to that of the resonance mode in the single-layer
model.19 In particular, away from Q three discontinuities in
Im �0

o emerge, corresponding to scattering channels with mo-
menta q, �2� ,0�−q, and �2� ,2��−q. The first momentum
corresponds to a direct transition, while the last two mo-
menta describe scattering processes involving umklapp
scattering.19 As discussed before, the resonance can occur
only at frequencies below the lowest discontinuity in
Im �0

o.5,19 Since the superconducting gap decreases towards
the diagonal of the Brillouin zone �BZ�, the resonance dis-
persion follows the momentum dependence of the ph con-
tinuum, forming a paraboliclike shape.5,19 Upon reaching
Q0��0.8,0.8��, corresponding to the wave vector connect-
ing the nodal points of the superconducting gap on the Fermi
surface, the spin gap vanishes and no resonance is possible.
For even smaller q, one finds that another resonance branch
emerges, the so-called Q* mode, arising from an umklapp
transition.19

In contrast, the even part of the spin susceptibility exhibits
six discontinuities in Im �0

e away from Q= �� ,��. Intraband
scattering within the bonding and antibonding bands gives
rise to three of these discontinuities. Similar to the odd sus-
ceptibility, we find that a genuine resonance occurs only
below the lowest discontinuity in Im �0

bb due to the direct
transition with momentum q. This transition is again respon-
sible for the paraboliclike shape of the even mode’s disper-
sion, as shown in Figs. 3�c� and 3�d�. However, we find
that the intensity of the even resonance falls off much faster
as one moves away from Q than that of the odd one.
Since the superconducting gap and the splitting of the
Fermi surfaces is zero along the diagonal of the BZ, the
position of the so-called silent band is the same for the odd

FIG. 2. �Color online� �a� Im �0
e,o, �b� Re �0

e,o, and �c� Im �RPA
e,o as

a function of frequency at the antiferromagnetic wave vector
Q= �� ,�� at optimal doping. Here, we use g0=0.55 eV.
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and even channels. Thus, both resonances merge together at
Q0��0.8,0.8�� �see also Fig. 4�c��. Similar to the resonance
in the odd channel, we find that for momenta smaller than
Q0, an umklapp transition leads to the formation of a Q*

mode in the even channel. However, its energy range is much
smaller than that of the odd Q* mode due to the proximity to
the ph continuum.

As previously discussed19 and also visible by comparing
Figs. 3�a� and 3�b� for the odd mode, and Figs. 3�c� and 3�d�
for the even mode, the Q and Q* modes are not only sepa-
rated in frequency, but their intensity maxima are also lo-
cated in different parts of the zone; this represents a major
qualitative distinction between the two modes. For the odd as
well as the even resonance mode, we find that while the
intensity of the Q mode �i.e., the mode originating at Q� is
largest along q= �� ,��� and q= ��� ,��, the Q* mode has

its largest intensity along the diagonal direction, i.e., along
q=��� ,�� and q= ��2−��� ,���. This rotation of the inten-
sity pattern by 45° reflects the qualitative difference in the
origin of the two modes.19 The intensity of the Q mode is at
a maximum along q= �� ,��� and q= ��� ,��, since in this
case the fermions that are scattered by q are located farther
from the nodes than for diagonal scattering. In contrast, the
Q* mode arises from the rapid opening of a gap in the ph
continuum below Q.0, which is most pronounced along the
diagonal directions of the zone.

IV. DOPING DEPENDENCE OF THE EVEN AND ODD
RESONANCES

Next, we consider the doping dependence of the reso-
nance modes in the odd and even channels. In order to de-

FIG. 3. �Color online� RPA results for mag-
netic excitations in a bilayered dx2−y2 supercon-
ductor at optimal doping. Calculated Im �o and
Im �e obtained from Eq. �8� for g0=0.55 eV as a
function of momentum along the diagonal
�q=��� ,��� and bond �qx�qy =��� direction and
frequency in the SC state.

FIG. 4. �Color online� �a� Doping dependence
of �a� the resonance frequency at Q in the odd
and even channels, and �b� the superconducting
gap 
0 and g0. ��c�–�f�� Dispersion of the even
and odd modes for various doping concentrations
in the �c� underdoped, �d� optimally doped, and
��e� and �f�� overdoped regime.
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scribe the doping dependence, it is necessary to know that of
the superconducting gap as well as that of go,e�q�. The dop-
ing dependence of the superconducting gap, which is shown
in Fig. 4�b�, is taken from recent angle-resolved photoelec-
tron spectroscopy experiments,30 which suggest that the su-
perconducting gap increases by about 10–20% going from
the optimally doped to the underdoped cuprates. In order to
describe the doping dependence of go,e�q�, we leave the mo-
mentum dependence of go,e�q� unchanged and only change
the overall prefactor g0 in Eq. �9�, as a function of doping by
fitting the frequency of the resonance in the odd channel. The
doping dependence of g0 is also shown in Fig. 4�b�. We find
that this procedure provides a satisfactory fit to the experi-
mentally measured dispersion of both resonance modes over
a considerable range of doping.

In Fig. 4�a� we present the doping dependence of the reso-
nance in the even and odd channels at Q= �� ,��. As ex-
pected from the discussions above, we find that with increas-
ing doping, the energy splitting between both modes
decreases, and for �=0.21 is only about 
�res�1 meV at Q,
while for �=0.15 one has 
�res�12 meV. This decrease in
the splitting is observed over the entire dispersion of the
resonance modes in the even and odd channels, which we
present in Figs. 4�c�–4�f� for several different doping levels.
In addition, we find that the dispersion of the even mode
exhibits a continuous downshift with increasing doping,
while that of the odd mode first shifts upward with increas-
ing doping in the underdoped systems, but shifts downward
in the overdoped regime. In order to understand this qualita-
tive difference between the underdoped and overdoped re-
gions, we note that, in general, the doping dependence of the
resonance modes is determined by that of the superconduct-
ing gap �which, in turn, determines that of the ph continuum�
as well as that of go,e�q�. While a decrease of the supercon-
ducting gap, and hence a downward shift in frequency of the
ph continuum, leads to a downward shift of the resonances, a
decrease of go,e�q�, in contrast, leads to an upward shift of
the modes’ dispersion.

Since the dispersion of the even resonance is located in
frequency close to the ph continuum, and Re �0

e varies
strongly in the vicinity of the ph continuum due to its loga-
rithmic singularity, it follows that the dispersion of the even
resonance is rather insensitive to changes in ge�q�. As a re-
sult, the doping dependence of the even resonance is pre-
dominantly determined by that of the ph continuum, exhib-
iting a continuous downward shift in energy with increasing
doping. In contrast, in the underdoped regime, the energy
difference between the ph continuum and the odd mode’s
dispersion is rather large, and Re �0

o varies only weakly
around the resonance frequency. As a result, the resonance
frequency is very sensitive to changes in go�q�. Therefore, it
is the decrease in go�q� with increasing doping �and not the
decrease in the superconducting gap� that determines the
doping dependence of the odd mode’s dispersion and leads to
its upward shift in energy in the underdoped regime. Around
optimal doping, the odd mode’s dispersion has become suf-
ficiently close to the ph continuum such that the mode’s fur-
ther doping dependence is now determined by that of the ph
continuum and not longer by that of go�q�, similar to the case

of the even mode. Hence, the two opposite effects arising
from a decrease of the superconducting gap and that of go�q�
lead to the qualitatively different doping dependence of the
odd mode’s dispersion in the underdoped and overdoped re-
gimes. Note that with increasing doping, and the resulting
downward shift of the ph continuum, the momentum range
over which the Q* mode can be observed decreases.

Defining the momentum of the lowest energy spin reso-
nance along the bond �antinodal� direction as qmin
= �1±�0 ,1��, we find within our approach that �0 �and hence
qmin� increases linearly from �0=0.31 at 11% doping to �0
=0.44 at 21% doping, which is simply a result of the doping-
dependent changes in the Fermi surface. At the same time,
INS experiments reported that the incommensurability �0 in-
creases linearly at low doping and saturates at higher doping
concentrations �see Fig. 24 in Ref. 2�. At present, this satu-
ration cannot be explained within the spin exciton scenario.
We note, however, that the intensity of spin resonance de-
creases �a� as one moves away from Q= �� ,�� along the
bond direction and �b� with increasing doping. As a result, it
becomes experimentally increasingly difficult to determine
qmin with increasing doping. As the dispersion of the reso-
nance is also rather steep in the vicinity of qmin, an exact
experimental determination of qmin also requires fixed energy
scans with small energy intervals between them. Hence, we
believe that higher resolution INS experiments are required
in order to determine the precise doping dependence of qmin.

Finally, we briefly discuss the doping dependence of
�e,o�Q ,�=0�. If indeed, as suggested above, the odd and
even resonances are transformed into the acoustic and optical
branches of the spin-wave dispersion in the antiferromagneti-
cally ordered phase, one would expect that �0

o�Q ,�=0� in-
creases with decreasing doping. As a result, one would see a
downward shift in the odd mode’s dispersion even for a
doping-independent g0. One finds, however, that the doping
dependence of �0

o�Q ,0�, which is obtained from Eq. �6� by
simply changing the chemical potential �, defies this expec-
tation. This is shown in Fig. 5, where we present the doping
dependence of �0

o,e�Q ,0�. Note that the even susceptibility
possesses two logarithmic divergences as a function of dop-
ing, which occur when either the bonding or antibonding
Fermi surface touches the van Hove �vH� points �±� ,0� and
�0, ±�� and undergo a topological transition from a holelike

FIG. 5. �Color online� Re �0
e,o�Q ,0� as a function of doping

concentration in the normal state.
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to an electronlike Fermi surface indicating an instability to-
ward a spin-density wave phase. These transitions occur at a
doping level of x�0.23 for the antibonding band and at x
�0.55 for the bonding band �not shown�. In contrast, the odd
susceptibility, which arises from scattering transitions be-
tween the bonding and antibonding bands, does not exhibit a
logarithmic divergence but is simply enhanced and exhibits a
finite maximum. If we define the minimum distance �in mo-
mentum space� of the bonding and antibonding Fermi sur-
faces to the vH point �0,�� by ka��� and kb���, respectively,
then Re �0

o�Q ,0� exhibits a maximum at that doping level for
which the smaller of ka��� and kb��� possesses a maximum-
.Defining kmin���=min�ka��� ,kb����, one finds

Re �o�Q,0� � const +
1

2�t
arcsin�kmin

2 ���
t

t�

� . �17�

Note that for doping levels below which the van Hove sin-
gularity in Re �0

e�Q ,0� or the maximum in Re �0
o�Q ,0� oc-

curs, the susceptibilities decrease monotonically with de-
creasing doping, as shown in Fig. 5. This doping dependence
clearly reflects a shortcoming of the weak-coupling approach
used above, which fails to capture the strong correlation ef-
fects that are not only responsible for the occurrence of an-
tiferromagnetism but are very likely also the key ingredients
in the explanation of the pseudogap region in the underdoped
cuprates. It is interesting to note in this context that recent
studies of the doping dependence of �0�Q ,0� for a single-
layer system within the FLEX approach find that the vH
singularity is eliminated by interaction effects and that start-
ing from the overdoped region �0�Q ,0� increases monotoni-
cally with decreasing doping.31 This shortcoming of the ap-
proach used above is effectively compensated by a
phenomenologically introduced doping dependence of ge,o,
which increases with decreasing doping. This phenomeno-
logical approach, however, does not allow us to fully explain
the doping dependence of the resonant excitations in the un-
derdoped cuprates. In particular, it leaves open the question
how the downward dispersion of the resonance mode ob-
served in the optimally doped cuprates is transformed into
the upward dispersion of the acoustic spin-wave branch.

V. SUMMARY

In this study, we have investigated the form of magnetic-
resonance excitations in the even and odd spin channels of
the bilayer cuprates in the superconducting state. We obtain a
number of results suggesting further experimental tests that
may finally resolve the longstanding question concerning the
origin of the resonance peak. First, we show that the energy
splitting between the even and odd resonances arises not
only from a different interaction strength in both channels
but also from the difference in the free-fermion susceptibili-
ties in the even and odd channels. Both effects scale as
�J� /J and lead to a frequency for the even resonance that is
larger than that of the odd resonance. However, at least at
optimal doping, the numerical prefactors are such that the
energy splitting is dominated by the difference in the inter-
action strength and not by the difference in the free-fermion

susceptibilities. Since the latter scales with �o
2, the relative

importance of these two effects might change in the under-
doped cuprates. In agreement with previous results,15–17 we
also find that the intensity of the even resonance is weaker
than that of the odd resonance. Second, we computed the
dispersion of the even resonance and showed that the
even resonance also disperses downward as one moves
away from Q= �� ,��. Moreover, we demonstrated that the
downward dispersion of the even mode is more parabolic
than that of the odd channel. Third, we showed that there
exists a second branch of the even resonance, similar to the
recently observed second branch �the Q* mode19� of the odd
resonance.20,21 We find, however, that in the even channel,
this second branch is much narrower in energy than in the
odd one. Fourth, we studied the doping dependence of both
resonance modes and found that the doping dependence of
the even mode is determined by the downward shift of the ph
continuum with increasing doping. In contrast, the upward
shift in frequency of the odd resonance in the underdoped
cuprates is determined by the decrease in go with increasing
doping, while in the overdoped regime, the odd resonance
follows the doping dependence of the ph continuum. Our
results demonstrate that the structure of magnetic excitations
in the superconducting state of the bilayered cuprates is
dominated by the topology of the Fermi surface, the interac-
tion strength in the even and odd channels, and the dx2−y2

wave symmetry of the superconducting gap. We stress that
the excitonic bound state occurs for any �small� value of the
interaction; therefore our results are quite robust against the
variation of the band and interaction parameters. The details
of the band structure affect only minor features, e.g., how
fast the intensity decreases away from �� ,��. This is con-
firmed also by other groups.5

We emphasize that, generally within the spin exciton sce-
nario, the occurrence of the resonance peak, its downward
dispersion, and also the existence of the Q* mode are direct
consequences of the fact that the antinodal fermions develop
a gap with dx2−y2 wave symmetry. One has to distinguish,
however, the situation in the optimally doped and overdoped
cuprates from that in the underdoped cuprates. In the first
case, Tc coincides with the onset of gapping of antinodal
fermions. Then the resonance peak emerges at Tc and is com-
pletely related to the onset of superconductivity. In the sec-
ond case, the pseudogap phase emerges, and antinodal fer-
mions are gapped already below the pseudogap formation
temperature T*. Theoretically, the emergence of a
dx2−y2-wave-type gap in the antinodal regions is the only re-
quirement for the excitonic resonance to appear; coherent
superconductivity is not required �although the resonance
gets sharper below Tc� as was recently discussed.32

Finally, we note that the experimental situation has re-
cently been complicated by the report that an even resonance
exists at incommensurate wave vectors only.10 This result
contradicts earlier studies which have found that the even
resonance exhibits the largest intensity at Q= �� ,��.12 The
origin of this experimental discrepancy is currently unclear.

The issue left for further studies is the evolution of
the dynamic spin resonance in the strongly underdoped
cuprates. To properly treat the underdoped case and the
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evolution toward nonsuperconducting systems, such as
La1.875Ba0.125CuO4 �Ref. 33� which show a remarkable simi-
larity to the spin response of the superconducting cuprates,
will require to take into account the pseudogap, the contri-
bution of the localized magnetic moments, and Mott physics
omitted in the present study. Recently, some attempts have
been made to discuss the evolution of the resonance peak in
the pseudogap region of underdoped cuprates.34,35 We also
note in this regard that the RPA reproduces the observed spin
waves in the undoped material only if the Mott gap is taken
into account.36
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