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Evanescent quasiparticles entering a superconductor and propagating over distances larger than the coher-
ence length give rise to intermediate states induced by double Andreev scattering on disorder. The resulting
effective attractive interaction between evanescent quasiparticles is retarded at the extremely slow frequency of
the applied bias voltage. The out-of-equilibrium mesoscopic superconductor with a fluctuating phase variable
is compatible with a recent experiment �S. Russo et al., Phys. Rev. Lett. 95, 027002 �2005��. Microscopic
theory is discussed in the random-phase approximation.
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I. INTRODUCTION

The developments in nanotechnology allow envisioning
the realization of a source of entangled pairs of electrons,1,2

the electronic counterpart of a source of Einstein-Podolsky-
Rosen pairs of photons, with possible applications to quan-
tum information and to a test of nonlocality of quantum me-
chanics with electrons. Recent experiments on three-terminal
devices by Beckmann et al.,3 Russo et al.,4 and more re-
cently by Cadden-Zimansky and Chandrasekhar5 realize an
important step in this direction by probing crossed Andreev
reflection,6–20 in which Cooper pairs from a superconductor
give rise to pairs of correlated electrons in two different fer-
romagnetic or normal electrodes.

Andreev reflection,21 the mechanism by which an electron
from a normal electrode is reflected as a hole at a normal-
metal–superconductor interface while a pair is transmitted
into the superconductor, takes place in a region of size �, the
coherence length of the disordered superconductor. Crossed
Andreev reflection �CAR� in a three-terminal normal-metal–
insulator–superconductor–insulator-normal-metal �NaISINb�
trilayer corresponds to an Andreev process such that an elec-
tron from Nb is transmitted as a hole in Na over a distance
of order �, leaving a pair in the superconductor. Elastic co-
tunneling �EC�, the other competing channel, amounts to
transporting an electron from Nb to Na without changing
its spin. The two possibilities are shown schematically in
Figs. 1 and 2. The nature of the dominant crossed transport
channel can be controlled by the relative spin orientation of
strongly polarized ferromagnets in a ferromagnet-insulator-
superconductor-insulator-ferromagnet �FaISIFb� structure:7,8

EC �CAR� dominates with parallel �antiparallel� spin orien-
tations, as it can be seen from the spin of the electron or hole
transmitted in electrode “Na” �see Fig. 1�. On the other hand,
EC dominates for normal metals with highly transparent
interfaces.14 Crossed transport dominated either by EC or by
CAR is obtained in the three recent experiments mentioned
above.3–5

More precisely, the crossed conductance22,23 Ga,b�Vb� of a
three-terminal device measures the sensitivity of the current
Ia�Va ,Vb� flowing through electrode Na with voltage Va to
the voltage Vb applied on electrode “Nb:”

Ga,b�Va,Vb� =
�Ia�Va,Vb�

�Vb
�1�

�see the circuit in Fig. 1�. The voltage Va may be arbitrary,
but, according to available experiments,3–5 we consider that
electrode Na is grounded �Va=0�, as the superconductor.

Theoretically, the crossed conductance defined by Eq. �1�
vanishes to lowest order in the tunnel amplitudes for a
NaISINb trilayer because the electron and hole transmitted by
EC and CAR have opposite charges and because of a sym-
metry of crossed transport: CAR and EC have identical
transmission coefficients8,13,14 �see Fig. 2�. This property
does not hold for a single-channel ballistic superconductor
connected by single atom contacts to normal electrodes: in
this case, the crossed conductance to lowest order in the
tunnel amplitudes oscillates around zero with periodicity �F
�the Fermi wavelength� as the distance L between the con-
tacts is varied. Oscillations in the Fermi phase factors aver-
age to zero in the realistic case of a multichannel contact8 or
in the case of a diffusive superconductor13 with nonmagnetic
impurities.
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FIG. 1. �Color online� Schematic representation of the electrical
circuit in a crossed transport experiment and of the two possibilities
for crossed transport in a NaISINb trilayer: transmission in the
electron-electron channel �elastic cotunneling �EC�� and in the
electron-hole channel, leaving a pair in the superconductor �crossed
Andreev reflection �CAR��. “e ↑” corresponds to a spin-up electron
and “h ↓” to a hole in the spin-down band. The CAR and EC
transmission coefficients decay exponentially over the coherence
length as the thickness of the superconductor is increased.
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The theoretical prediction of the vanishing of the crossed
conductance in a NaISINb trilayer is, however, contradicted
by the recent experiment by Russo et al.,4 which provides an
additional evidence of a disappearance of the crossed signal
in a magnetic field applied parallel to the layers. A charac-
teristic energy scale ��c within the superconducting gap � is
found experimentally,4 at which the crossed signal changes
sign from EC to CAR as the bias voltage energy increases
above ��c and eventually vanishes at higher energies. The
experimental ��c decreases to zero as the superconductor
thickness increases. One may conjecture that such experi-
ments are characteristic of a geometry-dependent coupling of
the superconducting phase variable to crossed transport by
evanescent waves. As we show, a natural possibility for such
coupling �quantum interference effects in the supercon-
ductor� results in an energy scale ��c smaller than the super-
conducting gap for extended junctions. Another possibility
�Coulomb interactions� was put forward by Levy Yeyati
et al. in Ref. 16 in connection with the modes of the electro-
magnetic environment.

II. QUANTUM INTERFERENCE EFFECT IN
SUPERCONDUCTORS

A. Transmission modes related to evanescent waves

Weak localization enhances the return probability and the
phase fluctuations of a normal metal.24 A superconducting
condensate is, on the contrary, delocalized and has a well
defined phase. Superconductivity and weak localization are
related to each other because the Cooper pairs of a supercon-
ductor can participate to the Cooperons of weak localization.
Smith and Ambegaokar show indeed that the phase stiffness
of a superconductor is reduced by weak localization.25 Weak
localization is, however, strongly modified in subgap trans-

port through a superconductor by the following property of
evanescent wave functions.

Electron tunneling through a normal metal involves the
simultaneous forward propagation in time of an electron and
the backward propagation in time of a hole, forming a diffu-
sion. The terminology “transmission mode” is used here for
describing the effect of disorder on subgap tunneling. For
evanescent states, a hole propagating backward in time can
be replaced in a transmission mode by an electron propagat-
ing forward in time: the wave function of a normal electron
in a box of size � being real valued is equal to the time
reversed particle wave function in the absence of a magnetic
field. Transmission modes of range � in subgap transport
through a superconductor can thus be made also either of a
pair of electrons or of a pair of holes propagating forward in
time.26 In a superconductor, a pair of electrons propagating
forward in time can be obtained from a Cooper pair in the
condensate.

B. Electron-hole conversion in transmission modes

As discussed in the preceding section, transmission modes
in a disordered superconductor correspond to two quasipar-
ticles scattering on the same sequence of impurities. Trans-
mission modes are described in a standard way on the basis
of ladder diagrams �see, for instance, Smith and
Ambegaokar25 in the context of localization in a supercon-
ductor�. As a direct consequence of Ref. 25, intermediate
states with electron-hole conversion from one impurity to the
next such as in Fig. 3�c� appear as the result of disorder
scattering, as opposed to usual Andreev reflection at a
normal-metal–superconductor interface27 being induced by
spatial variations of the superconducting pair potential. In-
termediate states with electron-hole conversion in the disor-
dered case are, of course, not due to anomalous electron-hole
scattering on impurities but due to electron-hole conversion
during propagation in between two impurities.
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FIG. 2. �Color online� Schematic representation of the lowest-
order processes: ��a� and �b�� crossed Andreev reflection �CAR� and
��c� and �d�� elastic cotunneling �EC�. Not only the current through
electrode Na has an opposite sign for ��a� and �b�� CAR and ��c� and
�d�� EC �as seen from the arrows on the figure�, but also the CAR
current is exactly opposite to the EC current for the lowest-order
processes in the tunnel amplitudes �as seen from Ref. 8�.
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FIG. 3. �Color online� Schematic representation of the ladder
series capturing the influence of disorder on the processes in Fig. 1.
Examples of Nambu labels �“e” for electron and “h” for hole� are
indicated on the figure ��a� and �c�� for elastic cotunneling with
transmission of an electron and ��b� and �d�� for crossed Andreev
reflection with transmission of a hole. e ↑ corresponds to a spin-up
electron and h ↓ to a hole in the spin-down band. For clarity, the ↑
and ↓ symbols of electrons and hole are not shown for the diffusion.
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For instance, transmission of an electron from electrode
Nb as an electron in electrode Na and transmission of an
electron in electrode Nb as a hole in electrode Na are shown
in Figs. 3�a� and 3�b�, respectively. The extreme case of a
sequence of electron-hole conversions due to disorder, result-
ing in net transmission from electrode Nb to electrode Na in
the electron-electron channel, is shown in Fig. 3�c�. Another
case of net transmission of an electron in electrode Nb as a
hole in electrode Na by a sequence of normal scattering on
disorder is shown in Fig. 3�d�. Electron-hole conversion in
between two impurities in Fig. 3�c� corresponds to a usual
Andreev process, however, “interrupted” at the time scale of
the elastic scattering time, leading to intermediate virtual
states with a characteristic energy much above the supercon-
ducting gap. We show below that this type of intermediate-
state characteristic energy scale for Andreev processes “in-
ternal” to the superconductor can be very much reduced by
quantum interference effects and become observable.

C. Self-crossings of transmission modes

Self-crossings of transmission modes28,29 are the building
blocks of weak localization in the normal case24,30 �see Fig.
4�a��. The distinguishing features of diffusion self-crossings
in subgap transport by evanescent wave functions �see Figs.
4�b� and 5�b�� were already pointed out in Ref. 17. The ne-
cessity of accounting for “advanced-advanced” or “retarded-
retarded” transmission modes was already discussed by Alt-
land and Zirnbauer26 for an Andreev quantum dot.

Weak-localization-like loops such as in Figs. 4�b� and
5�b� contain, among all possibilities, intermediate states cor-
responding to double Andreev processes in which an evanes-
cent electronlike quasiparticle �an AR transmission mode
made of an advanced and a retarded Green’s function for an
electron propagating forward in time and a hole propagating
backward in time� transforms by a first Andreev process at x1
in an evanescent holelike quasiparticle �another AR transmis-
sion mode for a hole propagating forward in time and an
electron propagating backward in time� and the transmission

of a pair �an AA transmission mode made of two advanced
Green’s function for a pair of electrons propagating forward
in time� that recombines at x2 by another Andreev process
after a propagation over �x2−x1 � ��.17 The intervention of
the condensate in such loop processes is obvious from noting
that the contribution of weak-localization-like processes to
the crossed conductance couples to a phase gradient in the
superconductor.31 These processes result in an attractive in-
teraction of strength v per carrier injected in the gap, in units
of the Fermi energy �F. This interaction due to quantum in-
terference effects has all the features of a very slow phonon
exchange: it is attractive and retarded by a time 2�� /eVb
�because weak-localization-like processes induces transitions
only at energy ��=eVb�.

As discussed previously, a transmission mode in the lad-
der approximation induces electron-hole conversion due to
scattering on disorder, having the elastic scattering time as a
characteristic time and/or inverse energy scale. Weak-
localization-like loops such as in Fig. 4�b� correspond to the
transport of pairs over a distance comparable to the coher-
ence length � and thus have the superconducting gap � as a
characteristic energy.15 Similar double Andreev processes
were discussed in Ref. 17 in a NISIN three-terminal device
and, interestingly, were introduced previously by Jacobs and
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FIG. 4. �Color online� Schematic representation of transmission
mode self-crossings in the presence of disorder. The circled area is
the Hikami box �Refs. 28 and 29� of dimension set by the elastic
mean free path le in a normal metal and of dimension set by the
coherence length � for subgap transport.
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FIG. 5. �Color online� Representation of �a� the electrical circuit
for crossed transport through a NaSNb trilayer, the electron e �top�
and hole h �bottom� transmitted in electrode Nb by EC and CAR,
and the “bare” transmission mode of wave vector q in the ladder
approximation. The junction has a dimension Ly along the y axis
perpendicular to the figure. The aspect ratio is not to the scale of the
experiment �Ref. 4�, where L�15–200 nm and Lx, Ly �4 and
8 	m. �b� A single weak-localization-like loop in a transmission
mode self-crossing. The normal case is recovered for an AA trans-
mission modes propagating locally over the elastic mean free path.
�c� A compact representation of �b� and of the associated tree. The
four leaves correspond to the four transmission modes making a
weak-localization-like loop. AR �AA� transmission modes are rep-
resented by solid lines �with a cross�. �d�, �e�, and �f� represent the
random-phase-approximation �RPA� diagrams with n=2 loops and
the associated trees.
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Kümmel32 for the time evolution of wave packets. As we
show now, even smaller energy scales are obtained from
many interacting weak-localization-like loops. The link be-
tween an effective dynamical model for a very slow attrac-
tive interaction in addition to the BCS pairing �Sec. III� and
the resummation of many weak-localization-like loops in the
static case �Sec. IV� is shown schematically in Fig. 6.

III. SLOW ATTRACTIVE INTERACTION IN A
SUPERCONDUCTOR

A. Energy scale within the gap

Changing the phase by ±2� during a time interval 2� /�c
requires the time 2� /�c to be smaller than 2�� /eVb, the
retardation in the interactions that prevent the phase from
fluctuating. The BCS case with a phase constant in time cor-
responds to retarded interactions with a Debye energy ��D,
orders of magnitude larger than the superconducting gap �.
In the opposite limit eVb
��c that we consider, the interac-
tion v has to visit and fix the phase of a number of states
N�0���c in the normal metal to rotate the phase by 2�
within a delay 2� /�c, with N�0�=2�LLxLy /�F

3�F the number
of normal states per unit energy and with �F the Fermi en-
ergy and �F the Fermi wavelength �see L, Lx, and Ly in Fig.
5�. By the uncertainty relation v�F�t=�, the effective num-
ber of interactions in a time interval 2� /�c is Nint��c�
=2� /�c�t=2�v�F /��c. The characteristic energy ��c is
obtained by equating Nint��c�=N�0��c:

��c

�F
=� v�F

3

LLxLy
. �2�

The decoupling between ��c and the states at energy larger
than � is justified if ��c��, which we suppose in the fol-
lowing. The superconducting phase fluctuates by ±2� with a
frequency �c, but its average value over a time window
larger than the retardation of interactions 2�� /eVb does not
fluctuate. The Andreev current from the superconductor to
electrode Na vanishes for eVb
��c because the supercon-
ductor chemical potential fluctuates between typical values
±��c. The crossed conductance is then dominated by EC, as

it can be seen from second-order perturbation theory in the
tunnel amplitudes33 �see Fig. 7�.

B. Qualitative behavior of the crossed conductance

We consider now the case eVb���c. The proximity of
the characteristic energy ��c induces pair correlations
among evanescent quasiparticles injected in the supercon-
ductor at bias voltage energies eVb���c. CAR and EC pro-
cesses are described schematically:33 �b�, �c�, and �d� in the
inset of Fig. 8 correspond to acting twice with the tunnel
Hamiltonian, starting from the superconductor in the BCS
ground state for �b� and with a correlated pair in the initial
state for �c� and �d�. The crossed signals due to the EC and
CAR processes �c� and �d� cancel each other out because �c�
involves an extra anticommutation of fermions compared to
�d�. The EC process �c� cancels with a CAR process �not
shown in Fig. 8� in which two electrons at energies −eVb and
eVb in electrodes Na and Nb enter the superconductor as a
pair. Fluctuations by one quasiparticle with spin  in the
superconductor do not couple to the crossed signal because
EC has an opposite sign for the two orientations of . The
remaining contribution to the crossed signal �not shown in
Fig. 8� is due to tunneling of the two electrons of a correlated
pair from the superconductor to electrode Na, leading to a
negative differential crossed resistance, as for local Andreev
reflection above the superconducting gap in a NIS junction.27

From these arguments, we conclude that a change of sign
from a positive EC crossed resistance for eVb
��c to a
negative Andreev reflection crossed resistance for eVb
���c occurs and that the crossed signal disappears at higher
energies, as in experiments.4

Retarded interaction v h ωc
Sec. III Sec. IV

ε 1
Eqs. (3), (4)

DYNAMICS

Crossed conductance

cotunneling
dominated by elastic

STATICS

Chemical potential

h ωc+/−

hωc < ∆

Eqs. (2), (17)

FIG. 6. �Color online� Schematic representation the link be-
tween Secs. III and IV. A characteristic energy scale ��c is obtained
from symmetry breaking between elastic cotunneling and crossed
Andreev reflection ���1� in Eqs. �3� and �4�. The energy scale ��c

is identified to the characteristic frequency for phase fluctuations in
the presence of a very slow attractive interaction, which, in turn,
favors a symmetry breaking in favor of elastic cotunneling.
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FIG. 7. �Color online� Schematic representation the lowest-
order processes for superconductor chemical potentials ��c ��a� and
�b�� larger than eVb or ��c� and �d�� smaller than eVb. The crossed
Andreev reflection �CAR� processes �a� and �c� lead to opposite
crossed currents for superconductor chemical potentials �±��c,
while the elastic cotunneling �EC� processes �b� and �d� result in
additive crossed currents. The crossed conductance with a super-
conductor chemical potential fluctuating between �±��c is thus
dominated by EC.
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IV. RANDOM-PHASE APPROXIMATION FOR WEAK-
LOCALIZATION-LIKE PROCESSES

A. Method and algorithm

1. Crossed conductance and resistance

Now, we start from a static superconducting gap �see Fig.
6� and determine from microscopic theory the analog of Eq.
�2� for a dirty superconductor. We denote by TCAR�R ,�� and
TEC�R ,�� the CAR and EC dimensionless transmission co-
efficients of a superconductor at distance R and energy ��
below the gap corresponding, respectively, to electron and
hole transmissions �see Figs. 1 and 2� described by transmis-
sion modes in the ladder approximation such as in Fig. 3.

We enforce a finite crossed current by breaking the sym-
metry TEC�R ,��=TCAR�R ,�� according to

TEC�R,�� = T0�R,���1 + �� , �3�

TCAR�R,�� = T0�R,���1 − �� . �4�

The crossed conductance per conduction channel,

Ga,b�R,�� = − 2	 e2

h

T2Tch�R,�� , �5�

corresponds to processes of lowest order T2 in an expansion
in the dimensionless interface transmission coefficient 0

T
1, and the charge transmission coefficient of the super-
conductor, Tch�R ,��=TEC�R ,��−TCAR�R ,��, accounts for
the different carriers transmitted by EC and CAR in elec-
trode Na. The resulting crossed resistance per channel is ob-
tained as the inverse of the extra diagonal element of the
inverse of the crossed conductance matrix:

�Ra,a Ra,b

Rb,a Rb,b
� = �Ga,a Ga,b

Gb,a Gb,b
�−1

, �6�

with

Gai,aj
�Va,Vb� =

�Iai

�Vaj

�Va,Vb� �7�

generalizing Eq. �1�, where the entries ai and aj in Eq. �7�
correspond to the labels a and b of the normal electrodes Na
and Nb. We deduce from Eq. �6� the off-diagonal matrix
element of the crossed resistance matrix:

Ra,b = −
Ga,b

Ga,aGb,b − Ga,bGb,a
, �8�

approximated as

Ra,b � −
Ga,b

Ga,aGb,b
, �9�

because of the damping of crossed processes over the coher-
ence length �. The dependence on Va and Vb is not explicit in
Eqs. �8� and �9�. We obtain the following from Eq. �5�:

Ra,b�R,�� � 	 h

2e2
T−2Tch�R,�� , �10�

much larger than for our previous approach for higher-order
processes at the interfaces.15,17

2. Algorithm

The excitations of the condensate, integrated out by the
random-phase approximation34 �RPA� for the transmission
modes, lead to a new value of the crossed conductance cor-
responding to replacing � by �̃�R ,� ,��. We identify the char-
acteristic energy ��c as the divergence in the energy depen-
dence of �̃�R ,� ,��, as for a gap edge singularity. The
symmetry breaking parameter �̃n�R ,� ,�� with n localization
loops is obtained by inverting

T̃EC�n,�� = T̃0�n� + �̃n���T0, �11�

T̃CAR�n,�� = T̃0�n� − �̃n���T0, �12�

with n the number of weak-localization-like loops, and
where the dependence on R and � is not explicit in Eqs. �11�
and �12�. We deduce the value of

Fn�q,�,�� 
�̃n�q,�,��

�
− 1, �13�

where we changed variable from R to the wave vector q by
a Fourier transform.

An algorithm generates the topologically inequivalent
higher-order RPA diagrams for the transmission mode with
the tree structure shown in Figs. 5�c�–5�f�. These diagrams
maximizing the number of imbricated loops for a given num-
ber of branchings are the most relevant for describing inter-
mediate states with a proliferation of Andreev reflections in-
ternal to the superconductor for ���c. In order to reduce
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FIG. 8. �Color online� Scaling plot of Fn����2� as a function of
���2 for diagrams with n=1 �•�, n=2 ���, and n=3 ��� weak-
localization-like loops. The energy �� and the dimensionless sym-
metry breaking parameter � vary over 3 orders of magnitude. The
values of the elastic mean free path le, such that 2�� / le�14 �as
compared to � / le=5–7 in the experiment4�, vary from the dirty
limit to the crossover with the ballistic limit. For clarity, not all
calculated points are shown on the figure. �a� shows one value
2� /�c of the superconductor chemical potential. �b�, �c�, and �d�
show EC and CAR processes for eVb���c with residual pair cor-
relations among evanescent quasiparticles.
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the computation time, we first specialize to a single channel
by restricting to the transverse components �qx� ,qy� ,qz��
= �0,0 ,2�nz /L� of the wave vector q�= �qx� ,qy� ,qz��
= �2�nx /Lx ,2�ny /Ly ,2�nz /L� in the weak-localization-like
loop, with nx, ny, and nz are three integers �see Fig. 5�. The
scaling with the number of longitudinal components is re-
stored afterward.

B. Results

Now, we present the result of RPA resummation. The q
dependence of the transmission coefficients is, up to an over-
all rescaling, the same as for the bare transmission coeffi-
cient, because of the properties of the convolution of expo-
nentials in the corresponding transmission coefficients in real
space. We thus evaluate only the rescaling factor Fn�0,� ,��
that collapses on master curves �see Fig. 8� when plotted as a
function of the dimensionless parameter

���2 = kFL	���

�F

2

�kFle�2�, �14�

according to Fn�0,� ,��Fn����2�, with le the elastic mean
free path such that 2�� / le�14 and with �=1.1±0.1. Sum-
ming the RPA diagrams leads to �̃, the new value of � modi-
fied by the response of the condensate:

�̃��,�� = ��1 + F�����2�� =
�

1 − ���2 . �15�

V. IDENTIFICATION OF THE ENERGY SCALES

A. Characteristic energy of a disordered superconductor

To take into account the large longitudinal dimensions of
the junction, we note that convolutions of the exponential
envelope of the transmission coefficients lead to an enhance-
ment of ���2 by a factor kF

2LxLy for extended interfaces.
More precisely, combining diffusion modes for 0 to x and
from x to L leads to convolutions of the form

�
0

L

exp�− x/��exp„− �L − x�/�…dx = L exp�− L/�� , �16�

where the one-dimensional case with two evanescent diffu-
sion modes is considered for simplicity.

We deduce from Eq. �14� the characteristic energy ��c of
a dirty superconductor:

��c

�F
=

1

���
1

�kFle��

1

�kF
3LLxLy

. �17�

The parameter of interactions v in Eq. �2� is independent of
∆, as expected for a mechanism due to electron-hole conver-
sion below the gap;27 the lowest of the characteristic energy
��c and the voltage eVb, rather than v�F, is an indicator of
the strength of weak-localization-like quantum interference
effect in subgap transport. The form of the transmission co-
efficients puts the constraint �� � 
1. The value �=1 favoring
EC with respect to CAR and minimizing ��c in Eq. �17� for

a static superconducting gap is compatible with the previous
picture of a fluctuating chemical potential �see Fig. 6� and
with the large EC crossed signal measured experimentally at
zero bias in Ref. 4.

B. Comparison with experiments

We use le�2 nm from Ref. 4, �F�5.3 eV, and kF
�1 Å−1 for Nb. In experiments, ��c is limited by l�

�0.1–0.2 	m �as obtained from the inelastic electron-
electron scattering time �e−e�1 ns �Ref. 4��, instead of the
sample dimensions Lx and Ly in Eq. �17�, leading to ��c
�21–10, 11–6, and 6–3 	eV for L�15, 50, and 200 nm,
respectively. Russo et al.4 found experimentally ��c�270
and 50 	eV for L�15 and 50 nm and ��c below the
resolution threshold for L�200 nm. The theoretical approxi-
mation underestimates the experimental ��c in the regime
L�� �L=15 and 50 nm and �=10–15 nm in experiments4�.
The energy scale � is associated with objects of size ��
formed by the accommodated weak-localization-like loops
for L��. The energy scale ��c is thus enhanced by a cross-
over to perturbative effects of weak-localization-like loops,
with ��c reaching �� for L��, as in the absence of weak-
localization-like loops.14,17 The crossover is not captured by
Eq. �17� with L��.

VI. CONCLUSIONS

In summary, intermediate states due to double Andreev
processes induced by a weak-localization-like quantum inter-
ference effect in subgap transport are at the root of a very
slow attractive interaction between evanescent quasiparticles.
The interaction arises in an out-of-equilibrium situation if
quasiparticles are forced to travel through the superconductor
over distances exceeding the coherence length �, which does
not apply to usual Andreev reflection limited by �. The phase
of the mesoscopic superconductor fluctuates with a charac-
teristic time 2� /�c if the bias voltage energy eVb is smaller
than ��c, because of the large retardation � /eVb in double
Andreev processes due to weak-localization-like loops, as
opposed to interactions retarded over the Debye frequency
for a BCS superconductor. The model explains the following
experimental facts: �i� the existence of an energy scale ��c
within the superconducting gap, decaying to zero as the su-
perconductor thickness L increases; �ii� a change of sign
from EC for eVb
��c to CAR for eVb���c and a disap-
pearance of the crossed signal for ��c larger than a few ��c;
and �iii� the coupling of weak-localization-like quantum in-
terference effect to a magnetic field. A challenging issue is to
account for the interplay between weak-localization-like
quantum interference effect discussed here and the coupling
to the electromagnetic field.16
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