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We use a driven Monte Carlo dynamics in the phase representation to determine the linear resistivity and
current-voltage scaling of a two-dimensional Josephson-junction array at an irrational flux quantum per
plaquette. The results are consistent with a phase-coherence transition scenario where the critical temperature
vanishes. The linear resistivity is nonzero at any finite temperatures but nonlinear behavior sets in at a
temperature-dependent crossover current determined by the thermal critical exponent. From a dynamic scaling
analysis we determine this critical exponent and the thermally activated behavior of the linear resistivity. The
results are in agreement with earlier calculations using the resistively shunted-junction model for the dynamics
of the array. The linear resistivity behavior is consistent with some experimental results on arrays of super-
conducting grains but not on wire networks, which we argue have been obtained in a current regime above the
crossover current.
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Most theoretical investigations of the vortex-glass phase
in superconductors have considered model systems where
there is a combined effect of quenched disorder and
frustration.1 However, in artificial Josephson-junction arrays,
frustration without disorder can in principle be introduced by
applying an external magnetic field on a perfect periodic ar-
ray of weakly coupled superconducting grains2–4 and simi-
larly on superconducting wire networks.5,6 The frustration
parameter f , the number of flux quantum per plaquette, is
given by f =� /�o, the ratio of the magnetic flux through a
plaquette � to the superconducting flux quantum �o
=hc /2e. It can be tuned by varying the strength of the exter-
nal field. Frustration effects can be viewed as resulting from
a competition between the underlying periodic pinning po-
tential of the array and the natural periodicity of the vortex
lattice.7 At a rational value of f , the ground state is a com-
mensurate pinned vortex lattice leading to discrete symme-
tries in addition to the continuous U�1� symmetry of the
superconducting order parameter. The resistive transition is
only reasonably well understood for simple rational values of
f .

At irrational values of f , the resistive behavior is much
less understood since the vortex lattice is now incommensu-
rate with the periodic array. In early Monte Carlo �MC�
simulations8 the ground state was found to consist of a dis-
ordered vortex pattern lacking long-range order which could
be regarded as some sort of vortex-glass state without
quenched disorder. Glassylike behavior was indeed observed
in these simulations suggesting a possible superconducting
�vortex-glass� transition at finite temperatures. However,
some arguments also suggested that the critical temperature
should vanish.7,9 Simulations of the current-voltage scaling
using the resistively shunted-junction model for the dynam-
ics of the array found that the behavior was consistent with
an equilibrium resistive transition where the critical tempera-
ture vanishes,10 similar to the resistive transition described
by the the gauge-glass model in two dimensions,1,11 but with
different values for the correlation-length critical exponent �.
The linear resistivity is nonzero at any finite temperatures but
nonlinear behavior sets in at a crossover current with a tem-
perature dependence determined by the exponent �. This

zero-temperature transition leads to slow relaxation dynam-
ics where the correlation length diverges as a power law and
the relaxation time diverges exponentially as the temperature
vanishes.

Simulations of the relaxation dynamics12 found a behavior
analogous to relaxation in supercooled liquids with a charac-
teristic dynamic crossover temperature rather than an equi-
librium transition temperature, which is not inconsistent with
the zero-temperature transition scenario. On the other hand, a
systematic study by MC simulations13 of a sequence of ra-
tional values of f converging to the irrational frustration,
using the vortex representation, found two phase transitions
at finite temperatures, a vortex-order transition weakly de-
pendent on f and a vortex pinning transition at much lower
temperatures varying with f , which should correspond to the
resistive transition. These results are in qualitative agreement
with MC simulations using the phase representation of the
same model14 but different ground states were found.

More recently, MC simulations for the the specific heat
and relaxation dynamics found an intrinsic finite-size
effect.15 The corresponding scaling analysis suggested a
zero-temperature transition with a critical exponent � consis-
tent with the value obtained initially from current-voltage
scaling.10 However, a study of the low-temperature configu-
rations for frustrations close to the irrational value by MC
simulations in the vortex representation16 find two phase
transitions consistent with earlier work.13

On the experimental side, some results on arrays of super-
conducting grains at irrational frustration2,3 are consistent
with the scenario of the zero-temperature resistive transition
but on wire networks,5,6 resistivity scaling showed evidence
of a transition at finite temperature. Recently, resistivity scal-
ing suggesting a finite-temperature transition was also ob-
served in arrays of superconducting grains.4

In view of these conflicting results, it seems useful to
further investigate the current-voltage scaling for the array at
irrational frustration by studying both the nonlinear and lin-
ear resistivity with an improved method17 taking into account
the long relaxation times. In fact, as found recently, current-
voltage scaling turned out to be quite reliable in determining
the phase-coherence transition even for a model with
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quenched disorder, such as the three-dimensional XY-spin
glass model.17,18 The main question is therefore if the array
at irrational frustration displays an equilibrium phase-
coherence transition at a nonzero critical temperature into a
state with vanishing linear resistivity or its critical tempera-
ture vanishes and the linear resistivity is finite at nonzero
temperatures.

In this work, we investigate the resistivity scaling of
Josephson-junction arrays at an irrational frustration f = �3
−�5� /2, a golden irrational, using a driven MC dynamics in
the phase representation introduced recently.17 The results
are consistent with a phase-coherence transition scenario
where the critical temperature vanishes, Tc=0. The linear
resistivity is finite at nonzero temperatures but nonlinear be-
havior sets in at a temperature-dependent crossover current
determined by the thermal critical exponent �. The results
agree with earlier simulations using the resistively shunted-
junction model for the dynamics of the array.10 However,
with the present MC method we are able to reach much
lower temperatures and current densities, improving the
analysis of resistivity scaling and the estimate of the critical
exponent �. We also argue that the finite-temperature transi-
tion found in resistivity measurements on wire networks5,6

have been obtained in a current regime above the crossover
current.

We consider a two-dimensional Josephson-junction
square array described by the Hamiltonian

H = − Jo�
�ij�

cos��i − � j − Aij� − J�
i

��i − �i+x� . �1�

The first term gives the Josephson-coupling energy between
nearest-neighbor grains where the line integral of the vector
potential Aij is constrained to �ijAij =2�f around each
plaquette. The second term represents the effects of an exter-
nal driving current density J applied in the x direction. When
J�0, the total energy is unbounded and the system is out of
equilibrium. The lower-energy minima occur at phase differ-
ences �i−�i+x which increases with time t, leading to a net
phase slippage rate proportional to �d��i−�i+x� /dt�, corre-
sponding to the voltage Vi,i+x. We take the frustration param-
eter f equal to an irrational number, f = �3−�5� /2, related to
the golden ratio �= �1+�5� /2 as f =1−1/�. In the numeri-
cal simulations we use periodic �fluctuating twist� boundary
conditions on lattices of linear sizes L and corresponding
rational approximations �=Fn+1 /Fn, where Fn are Fibonacci
numbers �13, 21, 34, 55�, with L=Fn.

To study the current-voltage scaling, we use a driven MC
dynamics method.17 The time dependence is obtained by
identifying the MC time as the real time t and we set the unit
of time dt=1, corresponding to a complete MC pass through
the lattice. Periodic �fluctuating twist� boundary conditions
are used.19 This boundary condition adds new dynamical
variables, u� ��=x and y�, corresponding to a uniform phase
twist between nearest-neighbor sites along the principal axis
directions x̂ and ŷ. A MC step consists of an attempt to
change the local phase �i and the phase twists u� by fixed
amounts, using the Metropolis algorithm. If the change in
energy is �H, the trial move is accepted with probability

min�1,exp�−�H /kT��. The external current density J in Eq.
�1� biases these changes, leading to a net voltage �phase slip-
page rate� across the system given by

V =
1

L

d

dt�j=1

L

��1,j − �L+1,j − uxL� , �2�

in arbitrary units. The main advantage of this MC method
compared with the Langevin dynamics used earlier10 is that
in principle much longer time scales can be accessed which
allows one to obtain reliable data at much lower tempera-
tures and current densities. We have determined the electric
field E=V /L and nonlinear resistivity �=E /J as a function of
the driving current density J for different temperatures T and
different system sizes. We used typically 2	105 MC steps to
reach the nonequilibrium steady state at finite current and
equal time steps to perform time averages with and addi-
tional average over four to six independent runs.

We have also determined the linear resistivity, �L
=limJ−
0E /J, from equilibrium MC simulations. As any
transport coefficient, this quantity can be obtained from equi-
librium fluctuations and therefore can be calculated in the
absence of an imposing driving current �J=0�. From Kubo
formula, the linear resistivity �resistance in two dimensions�
is given in terms of the equilibrium voltage autocorrelation
as

�L =
1

2T
	 dt�V�t�V�0�� . �3�

Since the total voltage V is related to the phase difference
across the system ���t� by V=d���t� /dt, we find it more
convenient to determine �L from the long-time equilibrium
fluctuations11 of ���t� as

�L =
1

2Tt
�
���t� − ���0��2� , �4�

which is valid for sufficiently long times t. To insure that
only equilibrium fluctuations are considered, the calculations
were performed in two steps. First, simulations using the
exchange MC method �parallel tempering�20 were used to
obtain equilibrium configurations of the systems at different
temperatures.21 This method is known to reduce significantly
the critical slowing down near the transition allowing full
equilibration in finite small system sizes. These configura-
tions were then used as initial states for the driven MC dy-
namics process described above, with J=0, in order to obtain
the �L. The initial states are similar to the low-temperature
states obtained previously13,16 including thermal excitations.
In the parallel-tempering method,20 many replicas of the sys-
tem with different temperatures are simulated simultaneously
and the corresponding configurations are allowed to be ex-
changed with a probability satisfying detailed balance. The
equilibration time can be measured as the average number of
MC steps required for each replica to travel over the whole
temperature range. We used typically 4	106 �parallel tem-
pering� MC steps for equilibration which is much larger than
the estimated equilibration time in systems with up to 100
replicas. Subsequent MC simulations for the linear resistivity
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obtained from Eq. �4� were performed using 2	103 time
averages for 2	105 MC steps which is much larger than the
equilibrium relaxation time.

Figure 1 shows the nonlinear resistivity E /J as a function
of temperature for the largest system size. At small current
densities J, the nonlinear resistivity E /J tends to a constant
value, corresponding to the linear resistivity �L, which de-
creases rapidly with decreasing temperature. For increasing
J, the resistivity cross over to a nonlinear behavior at a char-
acteristic current density Jnl, which also decreases with de-
creasing temperature. To verify that the nonzero values ap-
proached at low currents in Fig. 1 correspond indeed to the
linear resistivity �L, we show in Fig. 2 the temperature de-
pendence of �L obtained without current bias from Eq. �4�
for different system sizes. �L decreases with system size but
approaches nonzero values for the largest system size. These
values are in agreement with the corresponding values at the
lowest current in Fig. 1. Since the behavior of the �L for the
largest system size on the log-linear plot in Fig. 2 is a
straight line, it indicates an activated Arrhenius behavior,
where the linear resistivity decreases exponentially with the
inverse of temperature with a temperature-independent en-
ergy barrier, estimated as Eb�1.07. Such activated behavior
suggests that the linear resistivity can be very small at low

temperatures but nevertheless remains finite for all tempera-
tures T
0 and therefore there is no resistive transition at
finite temperatures. However, as will be described below, the
system behaves as if a resistive transition occurs at zero tem-
perature, corresponding to a phase-coherence transition
where the critical temperature vanishes, Tc=0.

The behavior of the linear resistivity can be related to the
equilibrium relaxation time for phase fluctuations. Since the
voltage is the rate of change of the phase, a nonzero �L
requires measurements over a time scale ��1/�L, corre-
sponding to the relaxation time for phase fluctuations. Thus
we expect that � should also have an activated behavior,
increasing exponentially with the inverse of temperature. To
verify this behavior, we have in addition calculated the re-
laxation time � for different temperatures from the autocor-
relation function of phase fluctuations C�t� as

� =
1

C�0�2	
0



dtC�t� �5�

using MC simulations with J=0. The starting configurations
were taken from equilibrium configurations obtained21 with
the parallel tempering MC method.20 The results shown on
the log-linear plot in Fig. 3 are indeed consistent with an
activated behavior of � with an energy barrier Eb=1.18 in
reasonable agreement with the value obtained for the linear
resistivity in Fig. 2.

The behavior in Figs. 1–3 has the main features associated
with a phase transition that only occurs at zero temperature,
Tc=0, similar to the two-dimensional gauge glass model of
disordered superconductors.1,11 In this case the correlation
length � is finite for T
0 but it increases with decreasing
temperature as ��T−�, with � a critical exponent. The diver-
gent correlation length near the transition determines both
the linear and nonlinear resistivity behavior leading to
current-voltage scaling sufficiently close to the critical tem-
perature and sufficiently small driving current. To understand
in detail the behavior of the linear �L and nonlinear resistiv-
ity � we need a scaling theory for the resistive behavior. If
the data satisfy such scaling behavior for different driving
currents and temperatures, the critical temperature and criti-
cal exponents of the underlying equilibrium transition at J

FIG. 1. Nonlinear resistivity E /J at different temperatures T for
system size L=55.

FIG. 2. Temperature dependence of the linear resistivity for dif-
ferent system sizes.

FIG. 3. Temperature dependence of the relaxation time � of
phase fluctuations for system size L=55.
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=0 can then be determined from the best data collapse. A
detailed scaling theory has been described in the context of
the current-voltage characteristics of vortex-glass models1

but the arguments should also apply to the present case. The
basic assumption is the existence of a second-order phase
transition. Measurable quantities should then scale with the
diverging correlation length �� T−Tc−� and relaxation time
� near the critical point. The nonlinear resistivity E /J should
then satisfy the scaling form1

T
E

J
� = g±� J�

T
� , �6�

in two dimensions, where g±�x� is a scaling function. The �
and � signs correspond to T
Tc and T�Tc, respectively. If
Tc�0, then to satisfy such scaling form, the nonlinear resis-
tivity curves on the log-log plot in Fig. 1 should have a
positive curvature at small J, with E /J decreasing with de-
creasing J to a temperature-dependent value for T
Tc while
for T�Tc, the curvature should be negative, with E /J van-
ishing in the limit J→0. The data in Fig. 1 do not show a
change in curvature even for the lowest temperature, already
suggesting the possibility of a resistive transition at much
lower temperatures or at Tc=0. However, a full scaling
analysis of the data is required to show that a transition in-
deed occurs with Tc=0. If Tc=0, then the correlation length
��T−� and the linear resistivity �L are both finite at T
0.
One can then consider the behavior of the dimensionless ra-
tio E /J�L which should satisfy the scaling form

E

J�L
= g� J

T1+�� , �7�

where g is a scaling function with g�0�=1. A crossover from
linear behavior, when g�x��1, to nonlinear behavior, when
g�x��1, occurs when x�1 which leads to a characteristic
current density at which nonlinear behavior sets in decreas-
ing with temperatures as a power law, Jnl�T /��T1+�. The
scaling form in Eq. �7� contains a single critical exponent �
and does not depend on the particular form assumed for the
divergence of the relaxation time �. However, for sufficiently
low temperatures, the relaxation process is expected to be
thermally activated1 with ��exp�Eb /kT�. This corresponds
formally to a dynamic exponent z→, if power-law behav-
ior is assumed for the relaxation time ���z. From the scaling
form of Eq. �6�, the linear resistivity should scale as �L
�1/� and therefore it is also expected to have an activated
behavior, ��exp�−Eb /kT�. In general, the energy barrier Eb

also scales with the correlation length as Eb���, which leads
to a temperature-dependent barrier Eb�T−��. A pure Arrhen-
ius behavior corresponds to �=0. The behavior of the non-
linear and linear resistivity in Figs. 1 and 2 and the relaxation
time in Fig. 3 are quite consistent with these predictions from
the scaling theory of a zero-temperature transition.

If there is a zero-temperature transition, as suggested by
the behaviors in Figs. 1–3, then the data for the nonlinear
resistivity should satisfy the scaling form of Eq. �7�, if finite-
size effects are negligible, and the best data collapse provides
an estimate of the critical exponent �. We expect that finite-
size effects are negligible for the largest system size L=55 in

Fig. 1 since at this length scale the behavior of the linear
resistivity is roughly independent of the size as can be seen
from Fig. 2. Figure 4 shows that indeed the data for the
largest system size satisfy this scaling form with �
�1.4±0.2.

The nonlinear resistivity should also satisfy the expected
finite-size behavior in smaller system sizes when the corre-
lation length � approaches the system size L. According to
finite-size scaling, the scaling function in Eq. �7� should also
depend on the dimensionless ratio L /� and so to account for
finite-size effects the nonlinear resistivity should satisfy the
scaling form

E

J�L
= ḡ� J

T1+� ,L1/�T� . �8�

The scaling analysis of the whole nonlinear resistivity data is
rather complicated in this case since the scaling function de-
pends on two variables. To simplify the analysis22 we first
estimate the temperature and finite-size behavior of the
crossover current density Jnl where nonlinear behavior sets in
as the value of J where E /J�L=C, a constant. Then, from Eq.
�8�, the finite-size behavior of Jnl can be expressed in the
scaling form

JnlL
�1+��/� = g� �L1/�T� . �9�

The best data collapse according to the scaling in Eq. �9�
provides an alternative estimate of the critical exponent �.
Figure 5 shows that indeed the values of Jnl for different
system sizes and temperatures satisfy this scaling form with
��1.4, in agreement with the estimate obtained for the larg-
est system in Fig. 4 size using Eq. �7�.

In addition to the standard finite-size effects, which occur
when the correlation length is comparable to the system size,
already taken into account in the scaling form of Eq. �8�,
there are also intrinsic finite-size effects15 resulting from the
rational approximations used for the irrational value of f .
Since we use rational approximations �=Fn+1 /Fn, where Fn
are Fibonacci numbers �13 21 34 55�, with the system size
set to L=Fn, this amounts essentially to have different values

FIG. 4. Scaling plot of the nonlinear resistivity in Fig. 1 for �
=1.4.
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of the frustration, fL=1−1/�, for different system sizes
which will only converge to the correct value f = �3−�5� /2
in the infinite-size limit. We have assumed that such effects
are negligible in the above scaling analysis but they should
affect our estimate of the critical exponent �. In principle,
this intrinsic effect could be taken into account within the
zero-temperature transition scenario by allowing for a size-
dependent critical temperature Tc�L� in the scaling analysis.15

Alternatively, we could regard it as a crossover from the
critical behavior at the true irrational frustration �infinite-size
limit� to a phase with an additional small frustration �f = fL
− f which should act as a relevant perturbation. In this case,
the scaling function in Eq. �7� should also depend on the
dimensionless ratio �2�f and again a scaling analysis with
more than one variable is required. However, our present
numerical data are not sufficiently accurate to separate this
effect from standard finite-size effects.

The present results for the linear and nonlinear resistivity
of the array at irrational frustration obtained by the driven
MC dynamics agree with earlier simulations of the current-
voltage scaling using the resistively shunted-junction model
for the dynamics of the array,10 where a zero-temperature
resistive transition was suggested and the critical exponent
was estimated as �=0.9�2�. Although the latter model is ex-
pected to be a more realistic description for the dynamics of
the array, the value of the static critical exponent � should be
the same for both models. In general, the dynamic exponent
z may depend on the particular dynamics but since the relax-
ation time � is found to diverge exponentially for decreasing
temperature it corresponds to z→ for both dynamics. The
present estimate of �=1.4�2�, however, should be more reli-
able since it considers much lower temperatures and current
densities and larger system size. Interestingly, similar behav-
ior for the resistive transition has been found both numeri-
cally and experimentally for two-dimensional disordered su-
perconductors in a magnetic field described as a gauge-glass
model1,11 but with a different value for critical exponent �
�2. It should be noted, however, that the actual ground state
at irrational frustration �without disorder� can be quite differ-
ent, as the self-similar structure which has already been
proposed.5,23 As would be expected, the different nature of
ground state leads to the different values of the critical ex-
ponent �.

Although the above scaling analysis is consistent with a
zero-temperature transition, on pure numerical grounds the
data in Figs. 1 and 2 cannot completely rule out a vortex-
order or a phase-coherence transition at temperatures much
lower than T=0.15. In fact, phase-coherence transitions were
found in MC simulations using the Coulomb-gas
presentation13 at temperatures as low as T�0.03 for the se-
quence of rational approximations fL of the irrational f but
since they show considerable variation with fL it is not clear
if it will remain nonzero in the large size limit. However, the
lowest temperature in Figs 1 and 2 is already much smaller
than the apparent freezing temperature Tf �0.25 observed in
earlier MC simulations.8 Below Tf, a nonzero Edwards-

Anderson order parameter q�t�= �S� i�2 was observed, where

S� = �cos � , sin �� and the average was taken over the simula-
tion times t. Although this could suggest a diverging relax-
ation time ���o

q�t�dt near a finite temperature Tc�Tf, such
long relaxation time can also result from a zero-temperature
transition �Tc=0� as suggested by the above scaling analysis
since in this case � diverges exponentially with decreasing
temperature, ��exp�Eb /kT�, as shown in Fig. 3. For low
enough temperatures, � will eventually be larger than any
simulation or experimental measuring time scale and an ap-
parent �time-dependent� freezing transition could occur de-
pending on the particular dynamics and system size.

Some experimental results on arrays of superconducting
grains at irrational frustration2,3 are consistent with the sce-
nario of a zero-temperature resistive transition since even at
the lowest temperatures a zero-resistance state was not ob-
served in these experiments. On the other hand, current-
voltage scaling analysis of experimental data on wire
networks5,6 was found to be consistent with a resistive tran-
sition at finite temperature. We note, however, that although
the equilibrium behavior of wire networks can be described
by the same model of Eq. �1�, the nonlinear dynamical be-
havior may be quite different since the nodes of the network
are connected by continuous superconducting wires, instead
of weak links, leading to additional larger energy barriers for
vortex motion, not included in the model, and consequently
larger phase-coherence length � and relaxation time � when
compared with weak links.24 In this case, the characteristic
crossover current to the linear resistivity regime at low tem-
peratures due to thermal fluctuations, Jnl�kT /�, expected in
the zero-temperature transition scenario, may only occur at
current scales too small to be detected experimentally. Thus
the resistive behavior is observed in a current regime at
higher currents where it follows the mean-field theory
result25 where a vortex-glass transition is possible at finite
temperatures. However, the zero-temperature resistive transi-
tion could in principle be observed in specially prepared wire
networks in the weak-coupling regime where the additional
energy barrier for vortex motion can be minimized.26 Other
effects, such as weak disorder, which is inevitably present in
both experimental systems, should also be considered. It
could provide a possible explanation for the finite-
temperature resistive transition observed recently in arrays of
superconducting grains.4

In conclusion, we have investigated the resistivity scaling
of Josephson-junction arrays at an irrational frustration using

FIG. 5. Finite-size scaling plot of the crossover current density
Jnl with �=1.4, for different system sizes L.
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a driven MC dynamics.17 The results are consistent with a
phase-coherence transition scenario where the critical tem-
perature vanishes, Tc=0. The linear resistivity is finite at
nonzero temperatures but nonlinear behavior sets in at a
crossover current determined by the thermal critical expo-
nent �. The results agree with earlier simulations using the
resistively shunted-junction model for the dynamics of the
array10 and more recent MC simulations taking into account
the intrinsic finite-size effect.15 Although we have only stud-
ied the array at a particular value of irrational frustration, the
golden mean, we believe that the conclusion of a zero-
temperature phase-coherence transition should be valid for
all irrationals but possibly with different values of the ther-
mal critical exponent �. The main advantage of studying the
golden mean value is that it is considered the farthest from
the low-order rationals and so intrinsic finite-size effects
should be smaller. However, other irrational frustrations have
also been studied numerically15,23 and experimentally.5 The
resistive behavior probes mainly the phase coherence of the
system and since we find that phase coherence is only at-

tained at zero temperature, we cannot address directly the
question of the existence of a vortex-order transition at finite
temperatures. In fact, vortex order does not require long-
range phase coherence. Therefore a vortex-order transition at
zero temperature or at finite temperature is consistent with
the present work. However, in view of the results for the
supercooled relaxation12 suggesting an analogy to structural
glasses such transition may be expected at finite temperature
and in fact is consistent with MC simulations indicating a
first-order vortex transition.13,14,16 Thus the interesting possi-
bility arises where the array undergoes two transitions for
decreasing temperature, a finite-resistance vortex-order tran-
sition at finite temperature and a superconducting transition
only at zero temperature. This phase-transition scenario and
the predicted behavior of the linear and nonlinear resistivity
provides an interesting experimental signature for a
Josephson-junction array at irrational frustration.
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