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Vortex patterns are determined for a superconducting cylinder with mesoscopic dimensions, namely, larger
than the coherence length and smaller than the London penetration length, using the nonlinear Ginzburg-
Landau theory. The critical fields and matching fields are obtained for field orientation parallel and perpen-
dicular to the cylinder axis. In the latter case, vortex rearrangements are found to occur in the vortex patterns.
Tilting of the field leads to interesting phenomena caused by the small volume-to-surface ratio, as vortex lines
are preferentially oriented along the field direction while they are forced to be perpendicular to the surface.
Vortices can enter and leave the cylinder also by simply rotating the applied field and we study here in detail
the cases up to three vortices. We find the striking result of a single vortex with the lowest free-energy
configuration achieved at a tilted angle.
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I. INTRODUCTION

Mesoscopic superconductors exhibit very peculiar mag-
netic properties when their size is comparable to the coher-
ence length �. The magnetic properties of very thin super-
conducting disks have been experimentally1,2 measured for
several radii and their magnetic properties are in agreement
with theoretical studies.3,4 For a radius R of the order of, or
less than, �, no vortices can enter and only the Meissner state
is possible. Above this limit, and for R�2�, giant vortex
states are allowed, while for R�2� multivortex states be-
come possible, as reported in Ref. 5 and recently observed in
Refs. 6 and 7. Theoretical studies have been done in the
context of the phenomenological Ginzburg-Landau theory,
able to predict many novel properties of the vortex patterns
in mesoscopic superconductors not found in the bulk. For
example, in a thin superconducting square with side 2�, it
was theoretically predicted8 that the vortex pattern symmetry
follows the O4 group, resulting in induced antivortices for
certain values of the applied field.9 However, these studies
are limited to the so-called thin thickness limit with the ap-
plied field oriented perpendicularly to the flat geometry. In
such situations the sample thickness D is much smaller than
the coherence length, D��, the complex order parameter is
integrated along the thinnest direction reducing the problem
to a flat surface, and consequently, to a lower dimensionality.

The thin disk under the condition D�� was intensively
studied.3,4 Beyond the thin disk limit, the wirelike
geometry10 and samples with a constriction11 were consid-
ered with field oriented parallel to the cylinder major axis, a
problem that in some limits is discussed in text books.12,13

The thin-film limit was also applied to the study of hollow
spheres.14 The fact that all these studies rely on some dimen-
sional reduction of the problem prevents them from address-
ing some interesting questions associated to the truly three-
dimensional properties of the superconductor. For instance,
some mixed-state properties vary according to field orienta-
tion with respect to sample geometry, and vortex patterns
stable under some field orientation may be unstable under
another orientation.

In this paper we investigate three-dimensional mesoscopic
superconductors. We consider two different mesoscopic cyl-
inders with distinct diameter-to-thickness ratios situated be-
tween the limits of a disk and a long cylinder. Both have the
same radius R=4.0� but different heights, namely, D=4.0�
and 8.0�. Hereafter, we refer to them as short-ratio and
equal-ratio cylinders, because they respectively have height
to diameter aspect ratio less than and equal to 1. Their thick-
ness falls in the limit D��, and for an applied field not
oriented along the cylinder’s major axis, it is not possible to
use symmetry arguments to determine the vortex patterns.
Thus a cylinder under an arbitrarily tilted field demands a
genuine three-dimensional treatment of the Ginzburg-Landau
equation, and of its three-dimensional borders through the
insulator-superconductor boundary condition. Figure 1
shows a pictorial view of a cylinder under an arbitrarily tilted
field, where the rotation angle � is measured with respect to
the major �z� axis: H=H0 cos �. For �=0° the comparison
with the well-known studied case of a very thin disk is
possible.3,15 The plane of rotation is referred to as the y-z
plane, and we introduce the rotation for fields oriented par-
allel and perpendicular to the major axis: H� �H��=0° � and
H��H��=90° �, respectively.

We will determine several properties of vortex patterns
for equal-ratio and short-ratio cylinders, in the case of field
orientations H� and H�. We report on matching fields, mag-
netization, and free-energy curves for H�. We find structural
vortex transitions in the case of an equal-ratio cylinder that
consist of a sudden rearrangement of vortex positions inside
the cylinder. In the case of a tilted field we restrict the
present discussion to the case of zero, one, two, and three
vortices inside the short-ratio cylinder. These field regimes

FIG. 1. Schematic view of the system.
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are rich in interesting phenomena, due to the three dimen-
sionality of the system. Their field windows, �H� and �H�,
are quite distinct and this leads to different transitions upon
field rotation. Even the Meissner phase has distinct proper-
ties in both field orientations, as shown by a fitting function
obtained here. A well-known fact is that vortices emerge per-
pendicularly to the surface.16 Simultaneously they tend to
remain oriented along the applied field. For a mesoscopic
system these two demands are conflicting as surface and vol-
ume effects become comparable. We have obtained the
length of a vortex line directly from our numerical simula-
tions and compared it to simple models, and found that sur-
face effects are fundamental in determining the total vortex
length. Curiously, we found in the short-ratio cylinder that
for some fixed applied field the tilted ��=43° � single vortex
configuration has lower energy than the straight vortex ori-
ented along the major axis ��=0° � which also corresponds to
a local-energy minimum.

This paper is organized as follows. In Sec. II we present
the theoretical approach and discuss the numerical proce-
dure. In Sec. III we study and characterize the vortex patterns
for short-ratio and equal-ratio cylinders in the case of two
special orthogonal applied field directions, namely the paral-
lel ��=0° � and the perpendicular ��=90° � orientations. We
obtain the critical fields, the matching fields, and the field
range that renders a particular vortex pattern as the actual
ground state. In the next section, Sec. IV, we analyze the
general case of an oblique field for the short-ratio cylinder in
the special case of zero-to-zero �Sec. IV A�, one-to-zero
�Sec. IV B�, one-to-one �Sec. IV C�, two-to-one �Sec. IV D�,
three-to-one �Sec. IV E�, and three-to-two �Sec. IV F� vortex
transitions. In the following section, Sec. V, we analyze the
length of one tilted vortex and compare its growth with sim-
plified models. In Sec. VI we conclude and summarize our
results.

II. THEORETICAL APPROACH

Our theoretical study of the superconducting mesoscopic
cylinder, immersed in an insulating medium, and under an
oblique field is done using the full three-dimensional
Ginzburg-Landau approach �see Refs. 17 and 18 for more
details�. We will assume that the penetration depth is longer
than the sample dimensions, i.e., ��D ,R, which is satisfied
for strong type-II superconductors. Within this approxima-
tion we can neglect the screening currents in the system.
Under this approximation the Ginzburg-Landau equation
stems from minimization of the following free-energy func-
tional with respect to the order parameter 	:

Fc =� dv
V
�− 
�	�2 +

1

2
�	�4 + 
�2�	�� −

2�i

�0
A�
	�2� .

�1�

The three-dimensional continuous 
�r�� function is equal to 1
inside the superconductor and 0 outside. This functional in-
cludes the boundary condition because the 
�r�� function,
multiplied by the covariant derivative, yields the so-called de

Gennes boundary condition for the superconductor, n̂ · ���

− �2�iA� /�0�
�	�s=0, valid on the three-dimensional surface.
The cylinder is surrounded by an insulating medium and
both media are inside a unit-cell box where minimization of
the free energy is done with respect to 	. We chose17 a rep-
resentation for 
�x�� that connects smoothly the cylinder to
the insulator over a distance that is a fraction of �. Other
choices of the 
 function are possible and all render very
similar results as shown in Ref. 19. This free energy is ex-
pressed in units of the condensate energy, Hc

2 /8�; lengths are
in units of the coherence length � and 	 scaled by �−
 /�.
We choose to express all our field results in units of Href

�Hc3
�s , the maximum possible field for the short cylinder, in

the case of parallel orientation. The numerical simulations
are done in a discrete version of the theory, using finite dif-
ferences for the derivatives, such that gauge invariance is
kept in the discrete theory. A cubic mesh, typically of size
48�48�48, is used and the free energy minimized through
the simulated annealing technique. We start at an initial field
value, taking a random initial configuration for 	, and do our
field sweep sequentially, meaning that a previous field value
solution is taken as the initial configuration for the next field.

III. PARALLEL AND PERPENDICULAR FIELDS

In the present section we discuss the effect of a field ap-
plied either parallel or perpendicular to the cylinder axis. We
consider the short-ratio and equal-ratio cylinders and find
that their vortex patterns differ considerably for H� but not
for H�. The different heights of the two cylinders1 do not
produce significant effects under H�, as expected, but do have
a pronounced effect under H�.

For both cases we perform a full field loop sweep, starting
from zero and increasing the field to its maximum, Hc3,
where the normal phase is reached. The loop is closed by
decreasing it from Hc3 back to zero field again. This proce-
dure allows us to observe the hysteretic behavior. A general
noticeable fact20 is that for increasing field the numerical
procedure always finds the lowest energy whereas for de-
creasing field often it finds a high-energy state. This is a
consequence of the Bean-Livingston surface barrier that ex-
ists even in the case of an extreme type-II superconductor.
The Bean-Livingston surface barrier stems from two compet-
ing effects, usually taken as the magnetic-field shielding
�Meissner effect�, that pushes the vortex towards the center
of the sample and the image vortex, located outside the
sample, with opposite vorticity that attracts the vortex to the
edge. Here the magnetic-field shielding is not taken into ac-
count but there are screening currents, leading to the Bean-
Livingston barrier. The screening currents at the edge of the
sample and the currents around the vortex flow in opposite
directions and this makes vortices seek the center of the
sample for increasing field, but not for decreasing field. In
the latter case the Bean-Livingston barrier is weakened by
the surplus of vortices already inside the sample, and so,
unable to act effectively. Consequently high-energy states are
accessible since vortices are arranged away from the funda-
mental state. This hysteretic behavior was discussed in sev-
eral previous papers20,21 in the case of a flat surface �H�� and
here is also found to exist for the lateral surface of a cylinder
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�H��. Throughout this paper we refer to the Meissner phase
as the regime without vortices.

The free-energy vs applied field curves for both cases, H�

and H�, show the same qualitative structure, a fact that de-
mands some consideration. Both curves are a sum of inde-
pendent intersecting lines, labeled according to the topologi-
cal number, or vorticity, L, defined as the number of times
the phase of the order parameter winds around 2� as ones
encircles the maximum area.22 For H� the topological number
is just the total angular momentum, but for H� the situation
is more complicated as there are vortices of different lengths
involved in the problem. Vortices in the center are longer
than those at the edges. This offers no difficulty to our nu-
merical approach as we obtain the vortex patterns without
invoking any particular order-parameter decomposition. Al-
ternative methods, useful to describe the field evolution be-
tween states through the saddle-point approach,5,23,24 are not
applicable here, because they express the order parameter as
a linear combination of angular momentum eigenstates. The
angular momentum is not a good quantum number for H� as
there is no rotational symmetry in this case. However, we
chose to use the same notation L to label states for both H�

and H� cases. The transitions between states with vorticities
L and L+1 are first order, and these states cross each other at
the matching fields HL. Formally, in these points F�HL�
=F�HL+1� and they correspond to a first-order transition.

First, the geometrical properties of the cylinder will be
discussed in order to understand its consequences on the vor-
tex patterns for H� and H�. Under parallel orientation any
rotation around the z axis is an operation of symmetry but for
perpendicular orientation the only invariance left is a � ro-

tation around the y axis. Consequently the density �	�2 for
H� is quite different near the two tangent surfaces, namely,
the bottom-top and the lateral surfaces. Notice that H� is
tangential to the whole bottom-top areas but only to two
straight lines of the lateral surface. We find that the density
�	�2 shows a strong depletion near the lateral surface.

The free-energy vs applied field curves are plotted in Fig.
2 for the short-ratio and for the equal-ratio cylinders. Figures
2�a� and 2�c� �Figs. 2�b� and 2�d�
 show the free energy for
H� �H�
 for the equal-ratio and short-ratio cylinders, respec-
tively. For comparison we use as our field unit the maximum
field along the parallel direction for the short-ratio cylinder,
previously introduced, to express the other critical fields. We
found that Hc3

�s /Href =1.17, Hc3
�l /Href =1.00, and Hc3

�l /Href
=1.16. As expected, Hc3

� is independent of the vortex length,
and so of the height of the cylinder. For the short-ratio cyl-
inder the maximum vorticity Lmax �L=0, . . . ,Lmax� is found
equal to 12 �parallel� and 10 �perpendicular�, whereas for the
equal-ratio cylinder it is 12 for both parallel and perpendicu-
lar orientations.

A rough estimate of the total number of vortices is ob-
tained by assuming that the area occupied by a vortex is that
of its core, ��2, and for a given area one can fit as many
vortex cores until the superconducting state collapses to a
normal state. Thus under a parallel field the maximum num-
ber of vortices is expected to be nmax

� = �R /��2�16, an over-
estimate of our results �12 vortices�. For the perpendicular
field this ratio refers to the effective cylinder area, nmax

�

=2RD /��2: nmax
�s �10 and nmax

�l �20. Thus in the case of H�,
this argument predicts that the equal-ratio cylinder can fit
twice as many vortices as the short-ratio cylinder, which is

FIG. 2. �Color online� Top figures �a�–�d� show the free energy vs applied field for the short-ratio �D=4.0�� and the equal-ratio �D
=8.0�� cylinders with radius R=4.0�. A pictorial view of the cylinder and field orientation are shown as insets. Bottom figures �f�–�h� display
the corresponding magnetization curves. M� refers to either DyyMy and to DzzMz in the case of H� or H�, respectively. The insets in Fig. 2�h�
are enlargements of the magnetization curves that show the discontinuity associated to the structural transition observed for L=2 �left� and
L=6 �right�.
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inconsistent with our results of 10 �short-ratio� and 12
�equal-ratio� vortices. We believe that the lateral density
depletion, where the short vortices are located, is responsible
for rendering nmax

�s and nmax
�l lower than expected from this

argument. This supports the view that the lateral density
depletion is more severe for the equal-ratio than for the
short-ratio cylinder.

The intersecting lines in the free energy gives the parallel,
HL

� , and the perpendicular, HL
�, matching fields for both

heights, as summarized in Table I. Interestingly the matching
fields for HL

� are lower than for HL
� for the short-ratio but not

for the equal-ratio cylinder. The field range over which a L
vorticity state is stable is defined as �HL=HL+1−HL. Table I
shows that for the short-ratio cylinder the perpendicular case
displays wider �HL ranges than the parallel case: �HL

�

��HL
� . This suggests that the perpendicular vortex patterns

are more robust than the parallel ones although the Cooper
pair density is more depleted at the edges for the perpendicu-
lar case than for the parallel one. The maximum number of
vortices for the perpendicular case is smaller than for the
parallel case because the depletion of the order parameter in
the perpendicular case leaves less room for vortices.

The magnetization vs applied field curves are plotted in
Fig. 2. Figures 2�e� and 2�g� are for the short-ratio and equal-
ratio cylinders, respectively, in the case of H�, and similarly,
Figs. 2�f� and 2�h� describe the H� case. The rounded up-
ward part of the curves are obtained by increasing the field
whereas the lower sawtooth behavior follows by decreasing
the field. Thus the red curve is obtained by increasing the
field and the blue curve by decreasing the field. These curves
show that increasing the field gives a stronger magnetic re-
sponse than by decreasing it, a signal that increasing the field
drives the system through its ground state and decreasing it
through excited states. This behavior has been extensively
discussed in previous thin-film studies15 and here we show
that the same picture holds for the perpendicular case.

The highest barrier separating two consecutive states L
and L+1 happens for L=1, for both the H� and H� cases. In

the case of H� this barrier is strong enough to yield a para-
magnetic response, as shown in Figs. 2�a� and 2�c� for short-
ratio and equal-ratio cylinders, respectively. The explanation
for this paramagnetic field relies on the energetic barrier
which prevents the single vortex to be expelled from the
cylinder. This metastable situation lasts to the point that the
vortex current surpasses the shielding current present at the
cylinder surface. The vortex and the shielding currents are
opposite and their sum determines the total magnetization
sign, and for a positive sign the situation is paramagnetic.
Figures 2�f� and 2�h� show that there is no paramagnetic
effect for the perpendicular case as the magnetization is
never positive in any of these figures. This is a clear indica-
tion that the parallel energetic barrier separating the one and
the zero vortex states is higher for the parallel case as com-
pared to the perpendicular case.

In the present extreme type-II limit the magnetization is

directly determined from the supercurrent J��r�� through M�

=const�dvr��J��r��. The parameter const is determined by
imposing that for a small applied field the response is asymp-
totically linear. Notice that the linear behavior is a signal of
the magnetic shielding, or the Meissner effect, which only
exists asymptotically in this hard type-II limit. However, this
linear regime is important because of the two demagnetiza-
tion parameters which are expressed in a tensorial condition
with two independent equations in the y-z coordinate system
whose axis gives

H� + 4�DzzMz = 0, �2�

H� + 4�DyyMy = 0. �3�

From our numerical approach we obtain the ratio between
the two nonzero independent demagnetization components,

TABLE I. The matching fields for cylinders with different
length, in case of parallel, HL

� , and perpendicular, HL
� fields. Field

values are normalized to Hc3
�s .

L→L+1
D=4.0�

H�

D=4.0�

H�

D=8.0�

H�

D=8.0�

H�

0 0.15 0.25 0.15 0.16

1 0.26 0.37 0.26 0.26

2 0.34 0.49 0.34 0.32

3 0.41 0.59 0.41 0.37

4 0.49 0.68 0.49 0.46

5 0.59 0.77 0.59 0.50

6 0.63 0.85 0.63 0.56

7 0.69 0.93 0.69 0.61

8 0.75 1.01 0.75 0.68

9 0.81 1.09 0.81 0.71

10 0.88 0.85 0.76

11 0.96 0.92 0.80

12 0.99 1.15

a) b)

c) d)

FIG. 3. �Color online� Two-dimensional cross-section density
isoplots for the equal-ratio cylinder �D=8.0�� taken in the middle of
the disk for applied field H� /Href equal to 0.226, 0.286, 0.461, and
0.512.
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Dyy /Dzz, equal to 1.7 and 1.0 for the short-ratio and equal-
ratio cylinders, respectively. Known demagnetizing factor
expressions for cylinders25 and also for ellipsoids26 deter-
mine a ratio smaller than 1 for the equal-ratio cylinder. These
results apply for a London cylinder �R ,D���, whereas here
we treat a mesoscopic cylinder �R ,D���. In the former case
the superconductor’s response to the applied field is pro-
duced by surface currents, whereas here the current is totally

volumetric. The present findings imply that the demagnetiza-
tion factor should also depend on the ratio between
Ginzburg-Landau parameters, � and �, to the geometrical
factors, R and D, though this dependence can be safely ig-
nored for macroscopic cylinders.27 Hereafter we normalize
the magnetization to display this linear Meissner phase, and
so, are expressed as −4�DzzMz vs H� and −4�DyyMy vs H�.

We find here that vortex patterns undergo structural phase
transitions for H� but not for H�. The states with total vor-
ticity L=2 and L=6 exhibit this structural transition, related
to an abrupt re-positioning of the vortices in the cylinder.
The left and right insets of Fig. 2�h� show enlargements of
the magnetization curve for the branches L=2 and 6, respec-
tively. Two-dimensional contour plots of the vortex patterns
associated to this transition are shown in Fig. 3. Figures 3�a�
and 3�c� �Figs. 3�b� and 3�d�
 show patterns below �above�
the structural transition. We explain this transition in terms of
the depletion of the Cooper pair density at the edge of the
cylinder in the case of H�. The nucleation of vortices is
energetically favorable near the lateral surface because their
vortices are shorter than elsewhere. However, the lateral sur-
face also brings to the vortices an opposite effect that pushes
them inward. Increasing the field causes the vortices to move
from this lateral surface because there the strong Cooper pair
density depletion renders them less stable than inside. The
structural transition for the simplest case, L=2, means that
below the transition the two vortices are near the lateral sur-
face, whereas above, they are aligned along the bottom-top
direction, i.e., a rotation of 90° of the vortex configuration.

IV. TILTED FIELD

A continuous rotation of the applied field unveils interest-
ing features of the vortex patterns, a fact that we show here
for the mesoscopic cylinder. These features stem from the
different stability regimes of each vorticity �HL taken at the
perpendicular and the parallel field directions. Such differ-
ences are more pronounced for the short-ratio cylinder and
for this reason we concentrate on this case, and show them in
Table II, as deduced from Table I. For a fixed value of the

TABLE II. Field windows are shown here for the stable states of
the short-ratio cylinder. The left column shows expected transitions
upon field rotation. Field values are normalized to Hc3

�s .

Applied
field range
H

Stable no. of
para. vortices

n�

Stable no. of
perp. vortices

n�

Expected vortex
transition
n�→n�

0.00–0.15 0 0

0.15–0.25 1 0 1→0

0.25–0.26 1 1

0.26–0.34 2 1 2→1

0.34–0.37 3 1 3→1

0.37–0.41 3 2 3→2

0.41–0.49 4 2 4→2

0.49–0.56 5 3 5→3

0.56–0.59 6 3 6→3

0.59–0.63 6 4 6→4

0.63–0.68 7 4 7→4

0.68–0.69 7 5 7→5

0.69–0.75 8 5 8→5

0.75–0.77 9 5 9→5

0.77–0.81 9 6 9→6

0.81–0.85 10 6 10→6

0.85–0.88 10 7 10→7

0.88–0.93 11 7 11→7

0.93–1.00 11 7 11→7

1.00–1.01 8

1.01–1.12 9

0 20 40 60 80 100 120 140 160 180
-1.00

-0.98

-0.96

-0.94

-0.92

-0.90

-0.88

-0.86

0 30 60 90 120 150 180
-0.2

-0.1

0.1

0.2

0 30 60 90 120 150
0.00

0.05

0.15

0.20

θ (degree)

F
/F
0

-4
πD
zz
M
z

-4
πD
yy
M
y

FIG. 4. Free energy for the short-ratio cylin-
der vs the angle � between the magnetic field and
the cylinder axis. The applied field is equal to
H /Href =0.103. The insets show the correspond-
ing z and y magnetization.
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applied field the number of vortices along the parallel and
the perpendicular directions do not necessarily coincide,
which implies that upon field rotation vortices freely enter or
leave the sample resulting in first-order transition. Table II
summarizes these transitions achieved by tilting of the ap-
plied field for the short-ratio cylinder.

Here we will discuss the main features we discovered in
our numerical study. In order to limit the complexity we will
concentrate on the cases which involve at most three vorti-
ces. Thus our analysis is restricted to the transitions in the
short-ratio cylinder involving zero-to-zero, one-to-zero, one-
to-one, two-to-one, three-to-one, and three-to-two regimes. A
vortex line connects two surfaces and is in one of the follow-
ing configurations: bottom-top �bt�, bottom-side �bs�, side-
top �st�, or side-side �ss�.

A. Zero-to-zero

Rotation of the applied field in the regime 0.0�H /Href
�0.15 keeps the cylinder in the Meissner phase, according

to the first field window of Table II. Considering that the
Meissner phase is present in the initial and also in the final
states, only geometrical effects are important here. This ap-
parently trivial regime is worth study although it has no vor-
tex nucleation. It turns out that the Meissner phases for par-
allel and perpendicular directions are different. Figure 4
shows zero-to-zero free energy and magnetization vs �
curves, taken at field H /Href =0.103. The free energy associ-
ated with the Meissner state for the two field orientations H�

and H� are shown in Fig. 5. The lower inset of Fig. 5 shows
the average value of the density, ��	�2�, as a function of the
field. Notice that ��	�2��� ��	�2�� throughout the Meissner
phase.

We find here that the angular dependence of the free en-
ergy of the Meissner phase can be fitted by the function

F�,h = F0 + hp�c + dsin2 �
 , �4�

where the constants c and d are adjustable parameters. This
fitting works for the Meissner phase curves of Figs. 4 and 6.
Figure 6 also shows zero vortex free energy and magnetiza-
tion vs � curves �black line�, taken at field H /Href =0.201.
For the following discussion the field h is a short notation for
H /Href. Let us start with a trial function given by F�� ,h�
=F0+a�h�+b�h� sin2���, where F0 is an additive constant
and there are two functions, a�h� and b�h�, that only depend
on the magnetic field. Limiting cases help us to deduce these
functions. For vanishing field the energy becomes � indepen-
dent and equal to its normalized value, which implies b�h
=0�→0, a�h=0�→0, and F0=−1. For a nonzero parallel
field, we have that F�0° ,h�=F0+a�h�, and this last term is
determined from Fig. 2. Similarly, for �=90°, we have that
F�90° ,h�=F�0° ,h�+b�h�. Again, this expression is also
known from Fig. 2. Since F�0° ,h� and F�90° ,h� have the
same shape and can be fairly well described by an exponen-
tial expression proportional to hp, we obtain Eq. �4� in terms
of field-independent constants c and d that follow from the
relation a�h�=c ·hp and b�h�=d ·hp. Since F�90° ,h�
�F�0° ,h� we have the relation c�0 and d�0. In conclu-
sion we find for the short cylinder that c=3.347 and d=
−1.202, which are geometric parameters because they only

FIG. 5. �Color online� The free energy for the short cylinder
vs the applied field for the Meissner phase. The inset shows the
average density ��	�2� vs the applied field. Dashed and solid lines
mean parallel ��=90° � and perpendicular ��=0° � orientations,
respectively.
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FIG. 6. �Color online� Free energy for the
short-ratio cylinder vs the angle � between the
magnetic field and the cylinder axis. The insets
show the corresponding z and y magnetization.
The applied field is equal to H /Href =0.201 and
yields a one-vortex bt �red� and a zero-vortex
�black� state.
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depend on the field orientation with respect to the axis. The
choice of just one single exponent p is sufficiently accurate
to describe both functions a�h� and b�h�. A simultaneous fit
of the parallel and perpendicular curves gives p=1.68.

The Cooper pair density in the Meissner states for H� and
H� is different. For H� , �	�2 is depleted in the lateral surface,
near the contact straight lines, as compared to the bottom and
top surfaces. This depletion somehow increases the density
in the center—the plane of rotation �y-z�. This explains the
lower free energy for H� as compared to H�, as shown in
Fig. 5.

B. One-to-zero

A continuous tilt of the angle starting from �=0°, in the
case of one vortex, is interesting because the vortex must be
expelled at some critical angle where the Meissner phase sets
in. The one-vortex state lives in different field windows, for
the parallel case, 0.15�H� /Href �0.26, and for the perpen-
dicular case, 0.25�H� /Href �0.37, as shown in Table I. No
perpendicular vortex is possible in the ground state for
0.15�H� /Href �0.25, although it may exist as a metastable
state. This is the second field window shown in Table I.

Figure 6 shows for H /Href =0.201 the free energy vs the
direction of the applied field, �. For 0° the one-vortex and
the zero-vortex states correspond to the ground and first ex-
cited states, respectively. Tilting the applied field causes op-
posite effects to these states: the single-vortex state grows in

energy and the zero-vortex state decreases in energy and for
��44° the two lines cross each other. For this angle the
parallel field, H� /Href =0.201 cos�44° �=0.14, falls into the
first range described in Table II, which means that the zero-
vortex state, and not the one-vortex state, is stable. For
angles larger than 60° our numerical procedure is no longer
able to find a metastable �one-vortex� state and only the
ground �zero-vortex� state is obtained. Figure 7 shows three-
dimensional isodensity plots for fixed applied field, H /Href
=0.201, taken at �a� �=0° and �b� 59°. This is the maximum
possible angle before the expulsion of the vortex. These two
points correspond to the first and the last points of the bt
branch of Fig. 6. Notice that the vortex is oriented along the
field in both cases but is deformed in the tilted case. The
vortex must reach the bottom and top surfaces perpendicu-
larly because there should be no current component normal
to the surface.

C. One-to-one

In this small field window, 0.25�H /Href �0.26, the
single vortex remains inside the superconductor upon field
rotation. This apparently straightforward regime reveals two
transitions by increasing the angle, as the vortex line par-
tially hops from a bottom-top line to a side-top line. The
second transition is a hop to a side-side line. Figure 8 shows
the free-energy and magnetization curves, which display re-
flection symmetry around 90°, as expected, and three distinct
branches, associated to bottom-top, side-top, or bottom-side,
and side-side �see Fig. 9�. We have performed a field sweep
ranging from 0° to 180°, with steps of 0.5°, for a fixed ap-
plied field H /Href =0.255. The free energy decreases for in-
creasing angle but this trend is not generally followed for
H /Href =0.255, as shown in Fig. 8. The first free-energy
branch �bt� has a minimum for �=43°, and not for �=0°,
which corresponds to a local maximum, a quite surprising
and peculiar result. A tilted vortex has lower energy than the
straight vortex. The second branch �st� ranges from �=58° to
�=73° and corresponds to a side-top or bottom-side vortex
line configuration. This second branch is stable over an an-

FIG. 7. �Color online� Isosurface of the density taken at �	�r���
=0.2 for an applied field equal to H /Href =0.201 and �a� �=0° and
�b� 59°.
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FIG. 8. �Color online� Free energy for the
short-ratio cylinder vs the angle � between the
magnetic field and the cylinder axis. The insets
show the corresponding z and y magnetization.
The applied field is equal to H /Href =0.255 and
yields a bottom-top �green�, a side-top �red�, or
bottom-side, and side-side �black� state upon
rotation.
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gular range of 15°. Next is the third branch �ss�, the central
region where the side-side vortex state is found. It exhibits
the lowest energy among all the regions. The angular range
for this region is of 34°. Though the central region shows the
lowest energy, the bottom-top region has the largest angular
range of stability. The explanation for the range of stability
of the three branches probably relies on possible ways to
accommodate the vortex upon rotation. In bottom-top, the
vortex has more “space” to change its position than in side-
side.

We interpret the free-energy jumps of Fig. 8 as first-order
structural transitions very much in the sense of the previ-
ously studied transition of Fig. 3. However, the transitions of
Fig. 8 are associated to jumps of the quantum flux. The vor-
tex cannot move continuously from one surface to the other

without producing a discontinuity of the flux in a given sur-
face �see Fig. 9�.

D. Two-to-one

The case of a rotating applied field within the fourth field
window of Table II has two vortices for �=0° and only one
for �=90°. In this regime there are many possible initial
configurations, since any orientation of the plane containing
the two vortices with respect to the y-z plane is possible.
Field rotation along the y-z plane lifts these degeneracies
which means that the free energy vs � is no longer universal.
It is also possible to have a �L=2� giant vortex within the
upper part of this field window. Generally speaking giant
vortex and multivortex states are found in different sectors of
a single L curve. The giant vortex splits into two vortices for
a very small tilt and proceeds from there on as a two-vortex
state.

Figure 10 shows that the two-vortex state �dashed gray
blue line� lasts until the maximum angle of 38°, and from
there on, one vortex exits and only one vortex is found in the
bottom-top, side-top, and side-side configurations. Figure 11
shows three-dimensional isoplots and two-dimensional con-
tour plots �top views� for H /Href =0.28 and the extreme
angles of �=0° �a� and of 38° �b�.

E. Three-to-one

The fifth field window of Table II gives rise to more
elaborate free-energy and magnetization diagrams than the
previous ones. Figure 12 shows the free-energy and magne-
tization curves for H /Href =0.35, which upon rotation decays
according to the sequence 3bt→2bt→1bt+1st→1st+1bs
→1ss. The insets show their respective z and y magnetiza-
tion. Notice that the three-to-one transition state passes
through two-vortex states. Some intermediate states �2bt and
bt+st� show the remarkable feature previously found, of the
local free-energy minimum taking place at some tilt angle
away from the minimum �.

There are many three-vortex states for �=0° and rotation

FIG. 9. �Color online� Density isosurfaces taken at �	�r���2=0.2
are shown here. They correspond to an applied field equal to
H /Href =0.255 and angle equal to �a� 56°, �b� 70°, �c� 88°, �d� 104°,
and �e� 120°, respectively.
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along the y-z plane is slightly different for each one of them
and this produces small energy differences which are not
discussed here.

F. Three-to-two

Higher field windows lead to a wealth of vortex configu-
rations and cascades between them. Figure 13 shows the an-
gular dependency for the free energy for a field that falls in

the sixth window described in Table II. The vortex configu-
ration cascades from �=0° to 90° into a sequence of states
given by 3bt→2bt+bs→st+bt+bs→st+2bs→st+ss+bs
→2ss. Distinctly from all previous cases, here a ss appears
together with a bs or st state, proving their coexistence, as
shown in Fig. 13.

Last we remark that the transitions displayed in Figs. 4, 6,
8, 10, 12, and 13 reflect the diameter-to-thickness aspect ra-
tio of the short cylinder and are expected to change accord-
ingly. For very tall cylinders �D�R� a side-side state is
much less costly than a bottom-top state, just because such a
vortex is much shorter. Consequently one expects a larger
discontinuity separating these two states and smaller angular
windows in this limit.

V. VORTEX LENGTH ANALYSIS

The small volume-to-surface ratio of mesoscopic super-
conductors makes bulk and surface effects important in fix-
ing the length of the vortex line, as shown here. We have
directly obtained the vortex length from our numerical re-
sults and compared it with three simple models that give the
following expressions for the vortex line:

l1��� = D/cos � , �5�

l2��� = D/cos � + 2��1 − 1/cos �� , �6�

l3��� = D�1 + �1 − 2�/D�2 tan2 �
1/2. �7�

The first model consists of a straight line passing through the
center of the cylinder and parallel to the field. Its length l1���
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FIG. 11. �Color online� �a�, �b� Three-dimensional isoplot for
the short-ratio cylinder taken at �	�r���2=0.2 for H /Href =0.28 and
�a� �=0 and �b� 38°. The corresponding contour plots taken at the
top surface are shown in �c�, �d�. The blue to red hue means mini-
mum to maximum density values.
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FIG. 12. �Color online� Free energy for the
short-ratio cylinder vs the angle � between the
magnetic field and the cylinder axis. The insets
show the corresponding z and y magnetization.
The applied field is equal to H /Href =0.35 and
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show three-dimensional isosurface plots in �a� for
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reaches a maximum for �=a tan�2R /D��63.4°, in the case
of the short-ratio cylinder. The second model differs from the
first near the surface because the straight lines break at a
distance � to emerge perpendicular to the bottom and top
surfaces. This line length l2��� is a sum of three segments,
two with size � and the central one with length �D
−2�� / cos���. The third model l3��� is just a straight line
joining the two extremities of the second model line. It
is oriented along �� instead, defined by tan ��= �1
−2� /D�tan �. This is a useful model when regarded as a
vortex line with a vanishing entrance segment, instead of �,
as for the second model. Numerically we determine the
length of the vortex line by first locating the position of the
core in the bottom and top surfaces. Then we proceed to
calculate the length of the vortex in two ways. First, we
consider the �x ,y� position of the minimum of �	�2 in every
layer along the z direction. Connecting the mesh points, a
total of 48 points, we find the length of the vortex. Second,
we connect the vortex cores at the two surfaces and join
them by the shortest straight line. These procedures are
called three-dimensional (3D) length and short length, re-
spectively. We present all the models and numerical curves
in Fig. 14: the reference length �solid blue curve�, the 3D
length �dashed black curve�, and the short length �dotted red
curve�. At low angles, near zero, all curves converge to the
same value, the height of the cylinder, D=4�. In the range
4° ���24°, the 3D length shows a larger growth rate than
the other two basically because of the deformation near the
flat surfaces. For large angles, 32° ���60°, the difference
between the short length and the 3D length is reduced.
Asymptotically, these last two lengths should converge to the
same values at �=90°, but the state bottom-top is not al-
lowed for angles larger than 63.4°. In summary this compari-

son shows very clearly that oblique vortices emerge perpen-
dicular to the surface over a distance characterized by �.

VI. CONCLUSIONS

We have shown, using a three-dimensional approach to
solve the Ginzburg-Landau theory, that vortex patterns for a
mesoscopic superconducting cylinder show unique features
caused by their finite length. Two cylinders with intermediate
ratio to diameter were considered and several of their prop-
erties were determined, such as critical and matching fields
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FIG. 13. �Color online� Free energy for the
short-ratio cylinder vs the angle � between the
magnetic field and the cylinder axis. The insets
show the corresponding z and y magnetization.
The applied field is equal to H /Href =0.40 and
leads upon rotation to 3bt, 2bt+bs �red�, st+bt
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for parallel and perpendicular fields. Structural transitions
were found to exist in the case of a perpendicular field. Be-
low the transition the vortices stay near to the lateral surface
because their length is shorter there, but they are forced to
migrate to the center as their arrangement becomes unstable
due to the density depletion near the lateral surface. The
different field windows of existence of a particular vorticity
configuration makes the rotation of the applied field produce
remarkable features. Because of the small volume-to-surface
ratio the tilted field brings conflicting energetic demands to
the vortex lines, which must remain oriented along the ap-
plied field and emerge perpendicular to the surface. We have
analyzed several transitions found upon tilting in the case of
zero, one, two, and three vortices. Interestingly we have
shown here that for some fixed value of the applied field it is
possible to find a tilted line with lower energy than a line
oriented along the major axis.

We found that with increasing tilt of the magnetic field
away from the cylinder axis �i� first a giant vortex �if it
exists� splits into multiple lines, then �ii� the vortex lines start
to tilt such that in the middle of the cylinder they are aligned
with the applied field. With further tilt of the magnetic field
�iii� a phase transition occurs where one of the vortices
leaves the sample or, depending on the field strength, the
edge of one of the vortices jumps to the side of the cylinder
resulting in a side-top vortex state. Later this vortex will be
aligned to 90°. Subsequently, if other vortices are present,
�iv� the edge of another vortex may jump to the opposite side
of the cylinder resulting in a bottom-side vortex. Then there

are different possibilities, if not more than two vortices are
present, �v� the edge of one of the bent vortices will jump
such that one obtains a vortex that is almost parallel to the
top and bottom surfaces of the cylinder. Depending on the
magnetic-field value it is also possible that before the latter
jump happens one of the vortices leaves the sample. When
more than two vortices are present there is another possibil-
ity which may happen before, namely, �vi� a bottom-top may
jump to a vortex that is almost parallel to the top surface of
the cylinder. The above scenarios are continued until all vor-
tices are directed parallel to the surface of the cylinder. It is
clear that if for �=0° the vorticity is large a very rich series
of possible phase transitions should be experimentally ob-
served by measuring the magnetization of the sample using a
superconducting quantum interference device28 or a micro-
Hall magnetometer29,30 where the whole experimental setup
is tilted with respect to external magnetic field. The stability
of the different tilted vortex configuration can be traced out
by measuring the magnetization with increasing and decreas-
ing tilt of the magnetic field.
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