PHYSICAL REVIEW B 75, 184522 (2007)

Ginzburg-Landau equations with consistent Langevin terms for nonuniform wires

Jorge Berger*
Physics Department, Ort Braude College, P.O. Box 78, 21982 Karmiel, Israel
(Received 5 June 2006; revised manuscript received 4 April 2007; published 22 May 2007)

Many analyses based on the time-dependent Ginzburg-Landau model are not consistent with statistical
mechanics, because thermal fluctuations are not taken into account correctly. We use the fluctuation-dissipation
theorem in order to establish the appropriate size of the Langevin terms, and thus ensure the required consis-
tency. Fluctuations of the electromagnetic potential are essential, even when we evaluate quantities that do not
directly depend on it. Our method can be cast in gauge-invariant form. We perform numerous tests, and all the
results are in agreement with statistical mechanics. We apply our method to evaluate paraconductivity of a
superconducting wire. The Aslamazov-Larkin result is recovered as a limiting situation. Our method is nu-
merically stable and the nonlinear term is easily included. We attempt a comparison between our numerical
results and the available experimental data. Within an appropriate range of currents, phase slips occur, but we
found no evidence for thermally activated phase slips. We studied the behavior of a moderate constriction. A

constriction pins and enhances the occurrence of phase slips.
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I. INTRODUCTION

Almost a century ago Langevin' proposed a “complemen-
tary” stochastic force in order to enable the description of an
individual Brownian particle in terms of Newton’s second
law. This approach gave origin to the field of stochastic dif-
ferential equations.

Among the many widely used stochastic differential equa-
tions, we will focus on the time-dependent Ginzburg-Landau
equations (TDGL), which are used to describe a supercon-
ductor out of equilibrium.> The TDGL equations may be
written in the form

Yhop=—[a+ Bl +|a| &GV - 27A/D) 1y, (1)

gd,A = 2hce/m)Re[ (i V — 27A/Dy) ]
—(P4m)V XV XA, (2)

where ¢ is the order parameter; A the electromagnetic vector
potential; ¢ the time; & the coherence length; ®y=hc/2e the
quantum of magnetic flux; a, B, and y are material param-
eters; o is the normal electrical conductivity; ¢ is the speed
of light; e the absolute value of the electron charge; m the
mass of a Cooper pair; and the asterisk denotes complex
conjugation. 8 and v are positive, whereas a is positive
above the critical temperature and negative below it. The
product |a|&=7%%/2m does not depend on the temperature. In
these equations the gauge choice eliminates the scalar poten-
tial.

In order to cope with fluctuation problems, Schmid added
a Langevin term to these equations.? Precisely, he added to
the right-hand side of Eq. (1) a random function of position
and time f(r,7) such that

(e, f(x’ 1))y =20k vk TS —x') 8t —1'), (3)

where (- - -) denotes ensemble average, () is the volume of the
sample, kp is Boltzmann’s constant, and 7 is the temperature.
Since then the use of a Langevin term has become almost a
standard practice in the numeric solution of the TDGL equa-
tions; some miscellaneous examples are in Refs. 4—10. Gen-
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eralizations of Eq. (3) to various classes of models were
reviewed in Ref. 11.

We shall be particularly interested in wires with nonuni-
form cross section. This interest is motivated by previous
works,'>'* which found that nonuniform superconducting
wires may behave qualitatively differently than a uniform
wire, especially near the transition temperature. We are
therefore interested in a numeric scheme that can enable us
to investigate nonuniform wires in the region in which ther-
mal fluctuations are important. For this purpose we would
like to integrate the TDGL equations by means of Euler-
Maruyama iterations. As we will discuss after Eq. (16), the
existing literature does not provide an explicit procedure for
evaluating the size of the fluctuations of the order parameter
in each computational site; in particular, it is not mentioned
that this size depends on the volumes of the computational
cells.

Moreover, the addition of a Langevin term to Eq.
(2),1015.16 which can take into account fluctuations of the
electromagnetic field, is the exception rather than the rule.
We shall see that this omission is not self-consistent, even if
only the values of the order parameter are of our concern. We
are unaware of the initial motivation for including fluctua-
tions in the order parameter only; a belated argument could
be the result!” that charges of an isotropic superfluid are
irrelevant for 7é=<1 K cm, but this result does not refer to
the 1D situation that we consider.

An early review on fluctuations near superconducting
phase transitions was written by Skocpol and Tinkham.'® The
voltage-current characteristic in quasi-one-dimensional su-
perconductors was extensively studied'®~2° and reviewed?’-?8
several decades ago. The most salient feature is the presence
of voltage steps, which are attributed to “phase slips” in
which the order parameter vanishes at a point and releases a
winding from its phase. In recent years there has been a
renewed interest in this topic,?>=* fueled by the availability
of long nanoscopic superconducting wires. Among other fea-
tures, it has been possible to investigate the existence of
quantum phase slips and the behavior under fixed voltage.
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In this article we build the equations for the evolution of a
nonuniform superconducting wire, as appropriate for a finite
difference numeric treatment. For this purpose we first dis-
cretize the TDGL thermodynamic potential and then invoke
the fluctuation-dissipation theorem® to evaluate the self-
consistent Langevin terms.

Our method is developed in Sec. II. Expressions for the
noise term at each computational element are obtained and
we find a convenient way to determine how the Johnson
noise affects the order parameter. Section III compares the
results of our method with those of statistical mechanics for
simple situations in which analytic results can be obtained.
In Sec. IV our method is used for situations in which analytic
results are not available. Appendix A provides numerical de-
tails that contributed to the success of our algorithm.

II. OUR METHOD
A. The fluctuation-dissipation theorem

For our purposes, the theorem may be stated as follows.
We consider a system with energy G that depends on several
variables, one of which is x. Let the system be in thermal
contact with a heat bath at temperature 7 and let x be a
classical variable, i.e., a real function of time. Let x obey on
the average the macroscopic equation

dx/dt = —TdGlox. (4)

Let 7 be a macroscopically short period of time. Then the
microscopic change of x, x(t+7)—x(¢), will be =I'7dG/dx on
the average and its variance will be

() =2TkyTT, (5)

where n=x(t+7)—x(t)+I'79G/ dx.

The physical idea behind this theorem is the same as in
the original Langevin article, i.e., the same interactions of the
variable x with the heat bath, that give origin to its micro-
scopic fluctuations, are those that lead to its macroscopic
evolution in Eq. (4).

Several assumptions are necessary for the validity of this
theorem. One of them is that the distribution of the coordi-
nates of the heat bath that interact with x remain described by
the canonical ensemble. There are also conditions on the size
of 7; it has to be macroscopically small, quantitatively ex-
pressed by 7<kgT/T(dG/dx)? and 7<1/T'#G/dx*. On the
other hand, 7 has to be microscopically large, explicitly,
much larger than the autocorrelation time of the Langevin
term and also large enough to allow for a classical treatment
of x. From the numerical point of view, taking a value of 7
that is too small may be a waste of resources but, in prin-
ciple, should not affect the results. Indeed, if we take a time
step 7/K rather than 7, the average and the variance of the
change in x will decrease by the factor K, so that, if 7 has
Gaussian distribution, after K steps the ensemble of results
will be the same as if the time step were 7.

B. Ginzburg-Landau energy

In this model the energy of a superconducting wire can be
written as
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G= | Tl + ot + el 7 - 2mAsg
+1Alcw]dV, (6)

where the integral is over the volume of the wire. Here I is
the current that flows along the wire, w is its cross section,
and the last term in the integrand takes into account the en-
ergy provided by the power source. We consider a wire with
a cross section that is much smaller than the square of the
magnetic penetration depth, so that the induced magnetic
field can be neglected. In this situation we are also allowed
to take the electromagnetic potential A in the direction of the
wire. Likewise, we will assume that the width of the wire is
small compared to the coherence length and varies slowly
with the arc length; for the superconducting-insulator bound-
ary condition these assumptions imply that V may be re-
placed with the derivative with respect to the arc length.
Let us now discretize this energy. We denote the length of
the wire by L and divide it into N segments of length L/N.
Each segment has to be sufficiently short, so that the order
parameter, the electromagnetic potential and the cross sec-
tion may be considered to remain uniform within it, and we
denote their values by ¥, A, and w; for the kth segment.

Defining the grid-dependent dimensionless variables £
=N&/L and A=27LA/N®,, we may write

L ~ -
=y > Wk{ aly* + Bl |2 + %gzﬂ(l +iA) Y — |
~ 1P —
+](=1+iA) Y + ¢k+1|2]} + e LY A, (7)
mc

The intuitive meaning of £ is “the number of consecutive
segments over which the order parameter remains approxi-

mately uniform.” In numeric calculations E has to be of the

order of 1; if Eis too small the discretized model does not
represent the physical sample and, if it is too big, the calcu-
lation becomes inefficient.

Discretization of the local terms in Eq. (6) is quite natural,
but discretization of the term with the gradient is somewhat
arbitrary. Since the term (iV-27A/®,) ¢ requires the values
of the vector potential and of the derivative of ¢ at the same
site, it is usually convenient to use a staggered approach, in
which A and ¢ are defined at alternating overlapping sites.
However, since in Eq. (6) |(iV-27A/®)y|? is multiplied by
the cross section of the wire, which may not be uniform, the
use of overlapping sites is problematic. It is tempting to re-
place the term in square brackets in Eq. (7) with |,

— 1 +2iA|?/2. Unfortunately, even in the limit N> 1,
this form would lead to two separate sublattices (k odd and k
even) such that there is no penalty for changing their relative
phases; this feature does not represent the original continu-
ous model.

We decompose ¢, into real variables i, =u;+iv,. The de-
rivative of the discretized energy with respect to u;, may be
written as
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G Lw k

n =y Rel2ati+ 2Blu i+ |80+ AD
Uy N

= (1 +iAY) gy — (1= iA ey +wi i [
— (1= A )i ] + wir [t = (1 + A ) Y T
(8)

The derivative with respect to vy involves the imaginary part
of the same expression, which is actually 290G/ (91,0;.

The derivative of the energy with respect to A is
G 1®, N|a|&w,
S U e A

~ =5 3 (g1 = Vg + 2gkuk)uk
dA, e

= (g1 = gy = 2A0)0,]. )

Noting that the term in square brackets is proportional to a
discretized version of the superconducting current density

and substituting |a|&=%2/2m, Eq. (9) reduces to
G Iyd
—=2—" (10)
9A, 2mc

where I is the normal current along the wire.

C. Evolution equations

Comparison of Ohm’s law with Eq. (10) gives the macro-
scopic equation

dAJdt = =T 4 IGl3A,, (11)
with
4¢%L
Cy=—. 12
Ak tho_wk ( )

Equation (8) has to be compared with the evolution of the
order parameter in a wire.'* Using superconductor-insulator
boundary conditions and our notation, this evolution is given
by

Yhop=— (a+ Bl + |a|E{(id, - 2mAIDy)* +i[w' (s)/w(s)]
X (id, — 2wAID) ) if, (13)

where s denotes the arc length. Assuming that w, ¢ and A
can be differentiated twice, Eq. (13) is obtained as the limit
of

dbtk/df: - F¢’kaG/aMk, (14)
and an analogous equation for v;, with
N
Fpy=777—7. 15
"k ook Lw, (15)

The macroscopic evolution of u; and v, can be described by
the complex equation dis/dt=-2I",,;,0G/ .

We close this section with a summary of our basic nu-
merical algorithm. Let ¢, and gk be known at a certain in-
stant. Then, after a time step 7 their new values will be
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JG ]
Ue— e — 21"1%,(7'? + 7+ 17y,
Wi

— ~ G
Ap— A =Ty 7 —+ 74, (16)
JA,

where 7,, 7,, and 7, are random numbers with Gaussian
distribution, zero average, and variances (nﬁ}:(%)
=21 ikgT7, (m3)=204ksT7, with the derivatives of G
given by Egs. (8) and (9) and the I"’s given by Egs. (12) and
(15). It should be emphasized that I'y , and I, depend on
the length and the cross section of the kth segment.

In order to use algorithm (16), (7]3’0,/4> must be known.
Nevertheless, practically all the literature limits itself to men-
tioning the continuum-style relation (3). Neither the expres-
sions nor the procedure for evaluating <77§,U, 4 are provided.
To our knowledge, the only exceptions are in Refs. 4 and 5.
The expressions provided in these references neither coin-
cide with those we have obtained nor among themselves.
According to us, the expression in Eq. (16) of Ref. 4 should
vanish for a truly infinitely long sample; expression (18) in
Ref. 5 seems to depend on the volume of the entire sample
rather than the volume of the computational cell. Reference 6
just quotes Refs. 4 and 5 (although the size of the noise is
essentially regarded as a free computational parameter), and
Ref. 9 relies on Ref. 6. Many studies (e.g., Ref. 8) do not
require the variance of 7, , 4, because algorithm (16) is ac-
tually not used. A possibility for avoiding use of Eq. (16) is
working in Fourier space, but this approach is not useful for
a nonuniform wire.

D. A gauge-invariant method

For a one-dimensional wire the electromagnetic potential
can be gauged out of the evolution equation by means of an
appropriate transformation. Defining a gauge function

2 (°
U(s) =exp<ﬂj A(s')ds’) (17)
@ Jg
and the gauge-invariant order parameter Ws)=U(s)Y(s), the

term |(iV-27A/®y)y| in Eq. (6) reduces to |dy/ds|. We
discretize U as

k=172
Uk=exp(i2 A}), (18)
j=1

where the sum up to a half-integer number is understood to
contain the term A;, but multiplied by % Once U, is defined,

we can write a’/7k=uk¢k. A discretized version of the energy
can then be written as

L - - ~ -
G= N > {Wk(a'| il + Blun]*12) + %é(wk + Wi )|

- I ~
_'//k|2}+2_ﬂ_22Ak, (19)

where wy, is understood as 0 for k=0 and k=N+1.
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Although (Zk is physically more meaningful than
(|dlZ/ ds| is proportional to the velocity), it is not a “canoni-
cal” variable, i.e., dzzk/dtsﬁ —ZF&G/&JZ. Instead, we have

~ k=172~
dipp  diy -~ dA;
—=U—+ —. 20
dt *dr “/,kgl dt (20)

Noting that
d dG 9
ﬂ=—2F¢,k ~*iﬁ, (21)
dt i, Iy

the first term in Eq. (20) takes the value —2I' ,,dG/ é’LZZ, ie.,
its contribution is what we would obtain if zzk were a canoni-
cal variable. In order to obtain the evolution of A j» We ex-

press the energy in Eq. (19) in terms of ¢ rather than {Z and
then use Eq. (11). This gives

dA; 1D, |a|LE — -
T-FM(TMWlmﬂwf—ﬁwﬂ%—l%
+(Wj+wj+1)';z;‘7/j+l]): (22)

which is the discrete version of Ohm’s law required by Eq.
(19). Substituting these results into Eq. (20) we obtain the

macroscopic evolution of . This evolution can be followed
without any knowledge about A.

We now investigate the influence of fluctuations. 17/k is the
same as ¢y, rotated in the complex plane; therefore, its fluc-
tuations arise from those of ¢y and from those in the angle of
rotation. Since the size of the fluctuations of the real and the
imaginary part of i, are the same and since they are not

correlated, their contribution to the fluctuations of zjfk has the
same distribution as ,+i7,. The influence of the fluctua-
tions in the angle of rotation can be taken into account as

follows. When integrating the evolution of #, in Eq. (20) we
require the macroscopic change of A " TdA ;/dt. To this mac-

roscopic change, we have to add the fluctuation of A ; during
the period 7, 7,, which is still described by (73)
=21y jkgTT.

Our algorithm for the evolution of J/k consisted of com-
pound steps. The first stage of a step, that corresponds to the
first term in Eq. (20), looks the same as the evolution of i in
Eq. (16), with A, set to zero. The second stage takes care of
the last term in Eq. (20); instead of a standard Euler step we
multiply by a phase, i.e.,

k=112 ~

- ~ A

o— e 11 exp(iz7'+ i77A,j>, (23)
1

where the meaning of the upper limit is that the argument of
the exponential for j=k is divided by 2. To first order in 7
and 7, ; this method is equivalent to an Euler step but, since

it keeps || unchanged, is numerically more stable.
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E. Dimensionless parameters

In addition to £ and A, which were defined before Eq. (7),
it will be convenient to define the following dimensionless
quantities. a=a/kgT provides a conveniently normalized

value of the condensation energy. L=L(2mkyT)"?/# is the
length of the wire divided by the “thermal wavelength,” ex-

cept for a factor V. We also define R =4e?yL/how,, where
wy is some typical cross section of the wire. For a wire of

uniform cross section, R is the normal resistance of the wire
multiplied by 277y and divided by the quantum of resistance

h/(2¢)%. R is proportional to the ratio between the relaxation
times of the order parameter and the electromagnetic poten-
tial. 7= a7/ yh is the effective size of the iteration steps; it is
not dictated by the physics of the problem and we expect
that, provided that 7 is significantly smaller than 1 and sig-
nificantly larger than the inverse of the number of iterations,
the results should not depend on it. Some additional quanti-
ties, which are useful when B# 0, will be defined in Sec.
IVC1.

III. TOY MODELS

In order to test our method, we would like to compare its
results against quantities that can be evaluated exactly. For
this purpose, the following sections consider simplified mod-
els.

A. Uniform A

We drop the last term in Eq. (7), that causes the energy to
be unbounded from below, and also set 8=0, so that the
problem becomes linear in the order parameter. In order to
keep G bounded from below, we must set «>0. As addi-
tional simplifications we will consider a uniform wire wy
=wg for k=1,...,N, and a uniform value Xk=X for all the
segments. With these simplifications the energy becomes

L 2 -
G= % 2wl + %H(l +iA) i — Y|

+](= 1 +iA) g+ et (- (24)

We also have to specify boundary conditions at the extremes
of the wire. Let us consider periodic boundary conditions
o=Yn: Ynri=1.

For a fixed value of A, G can be diagonalized by a Fourier
transformation. We define ¢,=N"'2 i.e~>™*"/N and, for sim-
plicity of notation, we will take even values of N. The in-
verse transformation can be written as

NP2
b= 2 e, (25)
n=-N/2+1
Substituting Eq. (25) into Eq. (24) we obtain
NI2

G= aLWO E
n=—N/2+1

+4 sin* 7n/NTJ}. (26)

| a1 + E[(A + sin 27m/N)?

184522-4



GINZBURG-LANDAU EQUATIONS WITH CONSISTENT...

The ensemble average of any quantity Q is given by
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Q)= f 0(e, M) e P -+ dPoypdA / J TP e -+ dPoypdA, (27)

where A varies over R and @, over R2. If Q is a polynomial, the integrals over ¢, are easily evaluated. For example, the

denominator in Eq. (27) (the partition function) is

* (kT aLwo)NdA

7=

NI2—-1

T+ 2@+ 4)] T1 {1+ &(A +sin 2mm/N)? + 4 sin* mn/NT}

n=1-N/2

This last integral may be either evaluated numerically or col-
lecting the residues at A=sin 27mn/N+i(£2+4 sin* 7m/N)"2.

Note that, since the dependence on A factors out in the
integrand of Eq. (28), it contributes just a multiplicative con-

stant to the partition function. Therefore, Ais a degree of
freedom that makes no contribution to the heat capacity. For

the same reason, the expectation value for any function of A
is independent of the temperature.
In our calculations using algorithm (16) we started from

ukzvkzg =0 and let these variables build up from fluctua-
tions. We performed N, iterations to achieve a “typical”
situation and then averaged the quantities of interest during
N,, additional iterations.

Figure 1 compares the averages of several quantities, as
obtained with our method for N=4, with those expected from
Eq. (27), for a wide range of values of &/L. If the fluctuations

of A are ignored, we obtain the results in the lower part. As
expected, ignoring the fluctuations of A yields a variance of

A (not shown in the graph) that is much lower than its en-
semble value, but we see in the lower part that also the

averages of quantities that do not directly involve A turn out
to be incorrect.

The upper panel in Fig. 2 compares the averages {|¢,|*)
obtained with our method with those expected from Eq. (27)
for N=10, and the lower panel repeats the comparison while
ignoring fluctuations of A. We see again that the symbols in
the lower panel deviate from Eq. (27), but this time the dis-
agreement is smaller than in the case N=4. The reason is that

the variable A is driven by the other variables u; and v;; when
&/ L is sufficiently large, the variance of A is practically in-
dependent of whether or not its fluctuations are considered.

This is a feature of our toy model, in which there are 2N
degrees of freedom for the order parameter and only one for

A; in the original model with N degrees of freedom for Zl- the
influence of the fluctuations of the electromagnetic field
should not decrease with N.

B. Gauge-invariant formalism

We still take /=8=0 and uniform cross section w;=w,
but use of the formalism developed in Sec. II D enables us to

(28)

release the requirement of uniform A. We consider two

boundary conditions. One of them is J(O):(Z(L):O, which
corresponds to contacts with a conductor that strongly sup-
presses superconductivity. In a discrete model, these condi-
tions are approximated by IZO=—1Z1 and IZN+1=—IZN. In this
case we write

0.01 0.03 0.1 0.3 1
/L

FIG. 1. Averages of several quantities as functions of the coher-
ence length. The symbols correspond to values calculated using our
method (upper part) and the lines are ensemble averages. The pa-
rameters used in the calculation were N=4, 7=3X107, R
=16 000, N,y=2 X 108, N,o,x=6 X 107. The parameter & factors out.
®: GLw(|p/*)+0.25 (the constant 0.25 was added for visibility);
ki @lwoll@_1|)+0.25 and @Lw(|¢|?)+0.25; +: aLwy(|e,|*
-0.25; A (@Lwe)X|eo®: O (@Lwe)X|et: O
(@Lwo)X| @0l @1|2); X: 0.5 10og;o(A%). Upper part: fluctuations of A
were included; lower part: fluctuations of A were ignored. We have
drawn an oblique straight line that separates the “upper” and
“lower” parts.
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Lwoox <\<pn\2>/kBT
o

0.01 0.03 0.1 0.3 1
/L

FIG. 2. Variances of the Fourier components of the order param-
eter as functions of the coherence length, for the case of ten seg-
ments. The curve for n=>5 sits at its true position; for visibility, the
other curves have been raised by (5—|n|)/10. Other than N, the
parameters are the same as in Fig. 1. @: n=0; %: n=+1; A: n
=+2;[0: n=+3; ¢:n==x4; X: n=5. Upper panel: fluctuations of A
included; lower panel: fluctuations of A ignored. For visibility, only
the region above 0.6 is shown.

N

- . . onk=1/12)m

=2 @) sin —— = (29)
n=1

with

n(k—1/2)mw

N
2-90, ~
¢ = ——"2 i sin (30)
N k=1

where & is Kroneker’s symbol. Expression (19) then assumes
the diagonal form

N
G=alw,>, (1+ 5,,N)|(pf,|2(l +2& sin’ "—7T>. (31)
s 2 2N
The other boundary condition we consider is that in which
dz?f/ ds vanishes, which corresponds to contacts with an insu-
lator. In a discrete model, we require zzozzzl and tZN+1=17/N.
In this case we write

N-1

- . nk=1/2)7
P= 2 @ cos ———— (32)
n=0 N
with
2284 n(k—1/2)m
- — ©no ~ -
c—1 _— 33
=y 2 deos T (33)

and Eq. (19) reduces to
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Lwoa <|@n|?>/kgT

FIG. 3. Variances of the Fourier components ¢, and ¢! of the
gauge-invariant order parameter i, for N=6. The dashed lines de-
scribe <|<Pf,|2> according to Eq. (31) (1Z=O at the boundaries) and
have been raised by 0.4(6—n). The solid lines describe (/¢S] ac-
cording to Eq. (34) (d«Z/ ds=0 at the boundaries), and have been
raised by 0.4(5.5—n). Note that (|@5|?) does not depend on ¢ The
symbols describe the values obtained using the method developed
in Sec. IID. @: (|¢|*), n odd; %: (|} [*), n even; A: {|¢f|?), n odd;
O: (|¢5|*, n even. Other than N=6 and 7=10">, the parameters are
the same as in Fig. 1. Upper panel: fluctuations of A included; lower
panel: fluctuations of A ignored. In order to avoid clutter, only the
cases n=0, n=1 and n=4 are shown in the lower panel.

N-1
I - nim
G=al o + 02(—+22'2—) . (34
alwol I + 2 (¢ 5 +28sin* 0] 0. (34)

Figure 3 shows values of (|¢’|*) and (|¢S|*) obtained from

Eqgs. (30) and (33) after following the evolution of lZ accord-
ing to Sec. I D. We see that, in spite of the fact that the
vector potential gk has been gauged out and the macroscopic
evolution of  can be described in closed form by means of
Egs. (20) and (22), the fluctuations of A, still remain essen-
tial.

Inspection of the lower panel in Fig. 3 (including seven
additional curves that are not shown) suggests the following
trends. (i) Omission of the fluctuations of A yields values of
(|¢,|?) that are larger than the true values for small n and
smaller than the true values for large n, i.e., the order param-
eter appears to be flatter than it should. (ii) The largest de-
viations of {|¢,|*) from its true values occur for coherence
lengths of the order of the length of the wire; for higher
harmonics, the largest deviation tends to occur at smaller
coherence length.

Trend (i) might be understood if we consider the mecha-

nism by which fluctuations of Xk influence the order param-
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TABLE I. 10*@Lw(|@,|?) for several values of the number of elements N and the wave number n. We
have taken a coherence length equal to the length of the sample, and the other parameters are as in Fig. 1.

N=8 N=16 N=32 N=64

n a b c a b c a b c a b c

0 10000 9994 30533 10000 10771 47427 10000 11249 71936 10000 9750 1.03X 107
1 256 258 137 250 251 128 248 250 125 247 247 122

2 78 78 49 66 66 37 64 63 34 63 63 33

3 46 46 37 32 32 20 29 29 17 28 28 16

4 39 39 39 19 20 14 17 17 10 16 16 9

dStatistical average.
PEvaluated with the method of Sec. III C.

‘Method of Sec. III C, without fluctuations in gk.

eter. For a bulk superconductor, the currents generated by
these fluctuations induce magnetic fields that are felt by the
order parameter; this is the mechanism considered, e.g., in
Ref. 36. For a very thin wire, the induced magnetic field is
negligible. However, since the total current has to be uniform
along the wire, the Johnson current forces a superconducting
counter current, which in turn forces a phase gradient. There-

fore, fluctuations of Xk force the order parameter to be
rougher than it would be in their absence. Note that at a very
small scale, which is beyond the scope of our model, elec-
troneutrality is not a realistic assumption. Trend (ii) may be
qualitatively understood, since higher harmonics probe
shorter lengths.

C. The continuous limit

We consider now the limit N—o. In this limit 'y —0,
and we might expect that the fluctuations of gk become un-
important. As in the previous section, we drop the nonlinear
term, take a uniform cross section, and use the gauge-
invariant order parameter . This time we will consider the
periodic boundary condition i, =, which physically cor-
responds to a ring that encloses a magnetic flux that equals
an integer number of quanta. The case of a ring that encloses
a noninteger flux will be considered elsewhere. For this
boundary condition we cannot take /=0; instead, / becomes a
Lagrange multiplier. Numerically, the effect of this current
amounts to the subtraction of a uniform term from every A;,
so that 2A,(r) remains constant. Since éxN, dy/dt diverges
in the limit N—oc; in order to overcome this difficulty we
used the method described in Appendix A 1.

Defining &,=N"'2 e >™*"/N the statistical average of
{|@,?) can be obtained by setting A—0 in Eq. (26). From

here we obtain {|@,|2)=kgT/ aLw[1+4&sin*(nr/N)]. Table
I compares this statistical average with the values obtained

with and without fluctuations of Ak for several values of N
and n. For the parameters considered, we see that the larger
the number of elements into which we divide the sample, the
more severe the error of the results obtained when the fluc-

tuations of gk are ignored.

Since the disparity between the rows a and ¢ in Table I
grows as the grid resolution is increased, one should ask
whether this effect is due to the necessity of resolving small-
scale features, or just due to the lager number of computa-
tional cells. In order to answer this question, we repeated our

calculations for N=32, but increased 13, L/ & and n by a factor
of 4. In principle, one should recover the results obtained for

N=38, and this is indeed found when the fluctuations in gk are
taken into account. In row ¢, we recover the values for N
=8 for n#0 (i.e., these harmonics behave as “intensive”
quantities), but the value obtained for n=0 is roughly multi-
plied by 4 (behaves as “extensive”).

It might be suspected that our numerical method breaks
down for large N. This is very unreasonable. First, practically
the same results were obtained for different values of 7. Sec-

ond, if the results without fluctuations in gk were numeri-
cally wrong, one would need a miracle to correct the results
by taking these fluctuations into account.

D. Nonuniform ring

We finally consider a case with nonuniform cross section.
We use the gauge-invariant description in Eq. (19), with 8
=0 and consider a ring with just N=3 elements. For simplic-
ity, we also take £=L/3. We take periodic boundary condi-
tions, as in Sec. III C. We denote the cross sections by w;
=uw, and wo=w3=w,. This is an artificial model and clearly
we cannot regard its boundary as a smooth surface, but the
important feature for the present purpose is that it is a self-
consistent model.

The energy can be diagonalized by a linear transformation
=01+ @+ @3, 3= = (u/2)(@r+@3) £ v(@y—@3), Wwith
v= %[(4+ Ru+7u?+u?)/(T+w)]?. This transformation
gives G=(aLwy/6)2+w)[2]@ >+ 2+5u+u) (@,
+¢39)].

As in Sec. III C, the current becomes a Lagrange multi-
plier. Since I‘A‘kocwzl, this time we have to subtract a uni-
form term from every wkgk in order to keep a constant value
of EA'](

Figure 4 shows the statistical averages of |<p1,2,3|2 and of
some powers of the energy that are obtained for this model
using the method developed in Sec. II. For comparison, we
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FIG. 4. Statistical averages of several fluctuating quantities as
functions of uniformity. For a ring with uniform cross section u
=1. The lines were obtained using statistical mechanics; the empty
symbols were evaluated using fluctuations with the sizes dictated by
Egs. (12) and (15) and the filled symbols were evaluated using
fluctuations of the same size for the three elements. A: @Lw(|¢|?);
O: aLw|@23?) (@123 as defined in Sec. I D); ©: (G)/2kpT; O:
(G?'2/2kpT. Other than N=3 and §=§, the parameters are the
same as in Fig. 1.

also evaluated these averages using fluctuation sizes that are
independent of the local cross section; for the purpose of this
comparison we replaced w;, in Egs. (12) and (15) with the
geometric average of the cross section u'”?wy,.

E. Paraconductivity under constant electric field

Tucker and Halperin?! evaluated the supercurrent along a
thin uniform wire when a longitudinal electric field is ap-
plied. The strongest assumption of their model is that the
electric field remains constant in time and position, and is not
influenced by . An unphysical feature of this model is that
the total current is not uniform along the wire. The supercur-
rent is defined by its spatial average, as in Eq. (B1). An
additional assumption was that the length of the wire is infi-
nite. The main effort of Ref. 21 was focused on the influence

of the term B|¢|* in Eq. (6), but at this stage we keep B=0.
Their result was

kT [~ v\ 3
Isc=,TBJ dyymexp{—<_o) y="=1 (35)
Nmh Jo

where V is the applied voltage and Vy=aL/yeé. Isc is an
increasing function of V; for V>V,, Is- approaches
2ekgT/N3h=1.15¢kpT/h.

In order to reproduce this model, we follow just the evo-
lution of i, whereas A,() follows from dA,/dt=—2eV/Nt.
We take periodic boundary conditions for ¢, i.e., IZNH

=exp(—2ieVi/);, and the condition of infinite length re-
quires L> . The results are shown in Fig. 5 for several cases
in the range 0.3<§¢=<3L. There is good agreement with the
prediction of Ref. 21 but, surprisingly, the requirement of
large L seems to be unnecessary.

PHYSICAL REVIEW B 75, 184522 (2007)
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FIG. 5. Average of the superconducting current as a function of
the applied voltage under the assumption that the electric field is
constant and uniform, in spite of the fluctuations of the supercon-
ducting order parameter. The line corresponds to Eq. (35). In all
cases 7=3 X107, §=21 and, unless stated otherwise, N,,=2 X 108,
Nyeax=6 X 107, and @=10. A: é=L, @=4; O: é&=0.3L; O: £é=L; X:
E=3L, Npy=3 X 108, Nypax=9 X 107.

IV. APPLICATION: PARACONDUCTIVITY

A. Voltage-current characteristic of a uniform wire
above the critical temperature

1. Fixed voltage

We are now in a position that enables us to evaluate self-
consistently the average current (/) along a superconducting
wire when a fixed voltage V is applied. The procedure is
similar to that of Sec. III E, but this time the evolution of A~k
is given by Eq. (16). The instantaneous total current / has to
be such that in every step SA, decreases by 2eVr/f. (I) is
obtained as the average of I over N,, iteration steps.

The dashed lines in Fig. 6 show the values obtained for
(D(V) in the range 107'<I#h/ekzT<10*? and 40<R
<25 000. For R=40 these values are scarcely below the cur-
rents that would be present in a normal material (in a loga-
rithmic scale); this means that supercurrents are small com-
pared to the normal currents. For larger values of R, Ohm’s
law is approached in the large current extreme, whereas in
the low current extreme (/) is not proportional to V. It might
be argued that (/) could become proportional to V for still
lower currents; we did not attempt to evaluate (I) for lower
currents, because Eq. (B5) predicts fluctuations of Igch/ekpT
of the order of V&/L for a single step and, since the number
of independent values of I is of the order of N,,7~ 103, we
should at best expect (I)fi/ekyT to be accurate to the order of
1072,

2. Fixed current
Another experimental situation is prescribed by keeping a
fixed current /. In this case we are interested in the average
value of the voltage. The evolution of ¢ and A is the same as
in Sec. III C, except for an additional term R7h1/ 2NaekyT in

the increment of each Xk in every step. The boundary condi-
tions are dictated by the experimental setup; in the absence
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FIG. 6. Voltage-current characteristic. Filled symbols (dashed
lines) stand for (/)(V) and empty symbols (continuous lines) for
(V)(I). The straight lines correspond to Ohm’s law in the normal
state. Unless stated otherwise, N=21, Nyon=3, Npw=2X 108, Nyoux
=6x 107, @=10, &=L/V10, and 7=1075. The values of R are
marked next to the curves in the large-current regime. The lines
with the rhombs correspond to R=1000 and @=3; for visibility,
they have been lowered by half a unit. For R=25 000, several points
of (I)(V) were evaluated using 7=3 X 107 and several points of
(V)(I) were evaluated using 7=3 X 107, N, =10%, Nygae=3 X 107;
these changes of computational parameters do not produce notice-
able changes in this figure.

of experimental details we shall just assume that the coupling
between i, and ¢, (and between ¢y and y,,) can be ne-
glected. In order to avoid a significant influence of the
boundary conditions at the “contacts,” we adopted a “four-
probe technique,” i.e., the voltage was measured between the
segments 1+ N, and N—N_, and the result was multiplied
by N/ (N_ZNcont)'
The average voltage drop (V) is given by
ye(V) N

a ~
—_ AA,, 36
kBT N- 2'Ivcont 2]\111\/5:2 ‘ ( )

where Mk is the increment of gk in a step and the sum is
over the segments 1+N ., <ks=N-N_, and also over the
N,, iteration steps.

The continuous lines in Fig. 6 show our results for
(V)(I). For large and intermediate currents (V)(I) coincides
with (I)(V) in the scale of the graph, but for low currents we
see that they are different curves. This difference reflects the
fact that a situation in which 7 is kept fixed and V fluctuates
is not equivalent to a situation in which V is kept fixed and /
fluctuates. This time we do reach a small current regime
where (V) is proportional to I, with an effective resistance
that is smaller than L/wyo. The difference between (V)(I)
and (I)(V) has been dramatically observed in recent
experiments.3233

B. Low current limit

Let us denote by ¢’ the contribution of the supercurrent to
the electric conductivity. Taking the limit V—0 in Eq. (35)
we obtain

PHYSICAL REVIEW B 75, 184522 (2007)
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FIG. 7. Superconducting contribution to the electric conductiv-
ity, evaluated as described in Sec. IV B and displayed as a function
of the contribution that would be obtained according to Eq. (37).
The line is an empiric function. In all cases N,,=2X 10® and
Nielax=6 X107, For o4, <100, 7=0.003@/R; otherwise, 7
=0.03@/R. A: R=5000, é=0.2L, N=14, Noy=2; [): R=20, &
=0.2L, N=14, Nyyp=2; O: R=100, £=0.1L, N=28, Ny =4; X:
R=5000, §=0.3L, N=14, N.,,=3.

o' = oR&BaL. (37)

This result was initially obtained by Aslamazov and Larkin®’
and the value of ¢’ according to Eq. (37) will be denoted by
oL It can also be written as

oaL=RoLX(&20)*=Ro/8@*L=Ke?,  (38)

where e=(T-T,)/T,, T, is the critical temperature and K
=me’£(0)/16hw,. The last form of Eq. (38) neglects terms of
order € /> and assumes a=8kyz(T—T,)y/ .

We will now evaluate ¢’ taking the electromagnetic fluc-
tuations into account. This will be done by fixing a small
current I, evaluating the average voltage (V) as discussed in

the previous section, and then ¢’ will be given by

o' RhllekyT

—=——-1. (39)

o 4ve(V)lkgT
The choice of I as the nonfluctuating quantity is based both
on Fig. 6 and on the fact that most experiments are per-
formed under this condition.

The current has to be sufficiently small in order to yield a
voltage proportional to it. Our requirement was Igc
=<0.lekgT/#. This value was inspired by Figs. 5 and 6 and is
in agreement with experiments,®*" that required
=<3ekgT/h. For experiments that used larger currents, the
conductivity was current dependent in the interesting
range.*! Our requirement is translated into the condition /
=<0.1(1+0/0')ekgT/#. Since o’ was not known in advance,
we used I=0.1(1+0/ou)ekgT/h, which turned out to be
appropriate in all cases. In several cases we doubled / and
verified that (V) was indeed doubled.

Figure 7 shows the results obtained for o', for several
values of R and &/L, while @ is varied over typically four

orders of magnitude. Most of the results sit on a universal
curve. The line in the graph is
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o' lo=[(oa /o)™ + (415)(oa /o) BT (40)

and seems to fit the results reasonably well in this range. The
results for §£=0.3L are too high. We suspect that for this large
&/ L ratio the conductivity is influenced by the boundary con-
ditions; it is known that when ¢ is of the order of the length
of the wire, qualitatively different behavior is obtained.*> Far
from the critical temperature Eq. (40) coincides with the
Aslamazov-Larkin result, but close to the critical tempera-
ture the conductivity increases at a slower rate, even in the
case B3=0.

C. Inclusion of the nonlinear term

Until now we have neglected the term with higher order
in ;.. This can be done for temperatures that are sufficiently
above the critical temperature. We are now interested in the
region close or below the critical temperature and we there-
fore set B#0. Except for the general treatment in Sec.
IV C 1, this section will consider a wire with uniform cross
section wy. In the general case, w stands for a typical cross
section.

1. Normalized evolution equations

We start by defining some useful quantities. ¢ and &g are
defined by requiring By/*woés=ksT and Byt &y=H*/2m. The
implication of these requirements is that ¢ will be an esti-
mate of the size of the order parameter at the critical tem-
perature, and §z will be an estimate of the coherence length
at this temperature. Solving these two equations gives

= 2miky T Bh*w)'°, (41)

Eg=(h*wo/4Bm°kgT)"". (42)
In terms of more directly measurable quantities we can write
&= (wody/32m kD)7, (43)

where « is the Ginzburg-Landau parameter; for a wire of
cross section wy~ 107! cm?, critical temperature 7~1 K
and k~0.1, §B~ 7 X 10~* cm. We also define the normalized

order parameter ¥g= i/  (and similarly, lzﬁk= i/ ), the
normalized step size Tg= 7By vh and the ratio o’ =a/ By’

=&(§BZ/L)2; if « is a perfectly linear function of the tem-
perature, then o’ =[£4/£(0)]%€.
With these notations, the “macroscopic” increments of

(Zﬁk and Xk during a time step T are
Amac'jfﬁk =-T4{(a’ + |17/ﬁk|2) Jfﬁk +(NEYL*2wy) ™!
X [(wy+ Wk+1)(‘Zﬁk - ‘Zﬁkﬂ)

+ (Wi + Wk—l)(Jfﬁk - Jﬁk—l)]}’ (44)

AmacAy = = (FgRI2w) (€LIL)Y (wo/N) (Il ek T)
+ (&g/L)Im[ (wy_; + Wk)‘ZZk_l J/Bk

+(we+ Wk+1)lZ;klZBk+l]}- (45)

PHYSICAL REVIEW B 75, 184522 (2007)
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FIG. 8. Average amount of superconducting pairs as a function
of a close to the critical temperature. Empty symbols stand for
(lg*)(@’) (lower abscissa) and are fitted by Eq. (46); filled sym-
bols stand for (|LJ/B|2>(<I§C>) (upper abscissa) and are fitted by
(Is)=2.61(£5/ L) VX ) 8ekpTIh. N=21, Neo=2, Ny=4
X107, Nygay=1.2X 107, £5=0.2L, L=10, 75=5X107%. A: R=0.1;
O: R=3; ©: R=100.

The numerical details for the integration of these equations
are discussed in Appendix A.

The fluctuations in the increment of gk have a variance
ZEFB(WO/NWk)(fBZ/L)Z; the fluctuations of J/Bk are taken
into account by adding to the real and to the imaginary part
terms with variance N7gw,€g/wiL and then modifying the
phase according to Eq. (23).

2. Basic results for low currents

Figure 8 shows the average value of |z,bﬁk 2, obtained using
Egs. (44) and (45) and Eq. (A3) for a wire of uniform cross
section and in a region that includes the critical temperature,

as @ and R were varied. |(/1Bk|2 was averaged over N,, itera-
tion steps and also over k in the range 1+N ., <ks=N
—Ngoni- In several cases a@ was swept downwards and then
upwards, in order to check for hysteresis; for the parameters
we studied, no evidence for hysteresis was found. As could
be expected from Eq. (44), the values of {|y/4|*) are a univer-
sal function of a’. We also evaluated (|i4*) for different
values of £5/L and L (not shown in Fig. 8), and the results lie
on the same curve.

In the considered range, (|#p|?) can be fitted by the em-
piric expression

<|lr//[3|2> == 144[6(,/2 - loge(] + ea’/2)]

—0.70[a’ —log,(1 +e*)]-1.93/(1 + ¢*).
(46)

As in Ref. 43, our results have a hardly visible inflection
point near o’ ~—2.5; our fit (46) is not sufficiently accurate
to reproduce this feature. As a test for linear response, we
evaluated <|¢ﬁ|2) in several cases for zero current and for /
=0.1ekpT/1i; the current caused a decrease of (|l of the
order of 0.2%.
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FIG. 9. Superconducting contribution to the electric conductiv-
ity in a region where the order parameter is not small. The symbols
were evaluated using Eq. (39). The line was evaluated using Eq.
(48). Unless stated otherwise, N=21, Ny =N/7, Nu=2X 108,
Nielax=6 % 107, £3=0.2L, and L=100. 7g=10"* for R<30 and L
<400; otherwise, = 1075, 1 =0.lekgT/h, except for the two left-
most squares, for which 7=0.2¢kgT/h. OI: R=0.1; A: R=3; @: R
=30; +: R=2, L=200; %: R=3, L=400; X: R=3, £&=0.1L, N
=42; O: a'=-1.146 ({|¢g)=1); O: a’'=-2.

We also evaluated (/5.) for zero total current and various

values of o/, §B/L, Z, and R. Some of the results are shown
in Fig. 8.
Figure 9 shows the superconducting contribution to the

electric conductivity for several values of ﬁ, Z, and §ﬁ, with

a' in the range —2<a’=<2. The results were fitted by a

modification of Eq. (40). Writing K’ =1$§%Z2/ L?, we defined
the quantity
o-ﬁAL = (K,O'/S)[a, + <|¢B|2>

+0.3488 tanh(0.734(| g H' )2, (47)

which is a generalization of o, and reduces to it in the limit
thg—0. {|ihg*) was evaluated using Eq. (46). Finally, the fit
used for ¢’ was

o'lo=[(opar/0)™ +1.205(0par /o) O] (48)

3. Voltage distribution

In the previous sections we have evaluated the time aver-
age of the voltage. In this section we investigate how the
voltage fluctuates over time steps. We define L'=(1
—2N o/ N)L, the length of the wire excluding the contact
regions, and the dimensionless normalized voltage 1%
=vyeV/By?. For a single step, the normalized voltage drop
over L' is Vz—EkN;f\ff;’,'leAgk/ 27g.

Figure 10 is a set of histograms for the values of V ob-
tained in every step, for several values of «a’'. V has contri-
butions from A,,.A, in Eq. (45) and also from the fluctua-

tions of gk. Since the fluctuations of gk are known to be
Gaussian, the results we present take into account the contri-

bution from Amacgk only. These histograms have been fitted
by Gaussian distributions.
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FIG. 10. Distribution of the voltage drop along the wire, evalu-
ated for single steps. L'=3.2&5, I=ekgT/h, L=10, R=1, N=30,
Neon=3, Tp=5X107", Npy=3X10%, Ny =6X107. The solid
line is the Gaussian distribution [27((V2)—(V))T 2 exp{—(V
—(WHR2((P—(VI] A: o' =-04; @: o' =-3; O: o’ =—16. For
visibility, the line and symbols for a’=—-0.4 (respectively, —3) have
been shifted 5 units to the right (left).

From Fig. 10 we might conclude that the voltage distri-
bution is approximately Gaussian, but such a conclusion
would be misleading, since the voltage drops for steps that
are close in time are correlated. A more informative distribu-
tion is that of the “consecutive phase change,” which we
define as follows. For every step we check the sign of the
macroscopic  contribution to the phase increment

SN-Neemt AA, and add all the consecutive increments until
cont

the sign is reversed. Note that in order to decide when to stop
adding increments and start evaluating the next phase change

we monitored only the macroscopic contribution to EMk,
but in order to evaluate these increments we took into ac-
count the microscopic fluctuations as well. The results are
shown in Fig. 11. Within statistical accuracy, all the curves
decay monotonically. Although the sizes of typical voltage
drops in a single step increase when a’ becomes more nega-
tive, we see that the probability of large phase excursions
decreases with |a'|. We also see that the probability of large
negative phase changes is greater than that of large positive
phase changes, and this explains the average voltage drop.

i
>
= 10 *@
n
= *
Q
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L RN
5‘1 Cn 2 “AAA
51070 e 055.%%&%;“‘«“
— Os A,
o 8o B, haay,
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"8 Re BN taa s,
1Y) ¢ ‘e MA Agh,
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v 280 4a 4l
O oo IN
0 7T 27

|consecutive phase change|

FIG. 11. Distribution of the absolute values of “consecutive
phase changes.” Empty symbols represent positive changes of the
phase and filled symbols negative changes. The parameters, includ-
ing symbol identity, are the same as in Fig. 10.
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TABLE II. Voltage drop and its variance, per unit length of the wire. L’ is the length (excluding the

contact regions) over which V is evaluated. The parameters used are R/L=0.033, 1=0.3ekpT/h, &g
=720/ \2mkpT, Neon=3, N=6+3.6L"/ €5, Tg=5 X 107%, Npy=2 X 108, Nyej =6 X 10”.

10°(ye/kgT)Eg(V)/L' 10%(ye/ kgT)*€g((V2)=(V)))/L!
a’ L,=25§B L’=]O‘f’3 L’=30§B L’=25§,3 L,=10§B L’=3O§B
-0.5 8.48 8.87 8.97 1.52 1.58 1.75
-1 5.89 6.31 6.42 2.11 2.15 2.23
-2 1.26 1.31 1.30 4.35 448 4.52

According to the Langer-Ambegaokar-McCumber-
Halperin (LAMH) scenario,'® the voltage drop is due to
phase slips, in which the phase decreases by 2. Accord-
ingly, we expected to find a relatively large probability den-
sity near 277 in Fig. 11, but we did not obtain support for this
view. It might seem that this negative result contradicts posi-
tive evidences, such as the observations by Lukens and
Goodkind* or the simulations in Ref. 8 but these evidences
correspond to a closed ring setup, and not to a fixed current.
It has been further claimed that for a long wire the existence
of phase slips ought to be insensitive to the boundary condi-
tions (p. 1088 in Ref. 18), but this is not the situation studied
here. Phase slips will be reconsidered in Sec. IV C 5.

4. Scaling with length

In the previous sections we have tacitly assumed that the
voltage drop along a uniform wire is proportional to its
length. We have taken advantage of this assumption and con-
sidered short wires, that do not require large computational
resources. In this section we check this assumption. We have
evaluated the voltage and its variance for several values of

o' and several lengths, while intrinsic quantities such as R/L
are kept at a fixed value. The results are summarized in Table
II. The average of the voltage per unit length, and its vari-
ance per unit length, which should in principle be indepen-
dent of L', seem to increase slightly with L'; in the case of
(V)/L', this trend seems to saturate within the considered
range. For the parameters in Table II the deviations from the
proportionality (V) L’ are most likely due to the finite sizes
of the elements of the computational grid and of the contact
regions; on the other hand, this proportionality breaks down
completely when additional length brings about an additional
phase-slip center.?”

5. High-current phase slips

The phase slips in the LAHM scenario are assumed to be
caused by thermal fluctuations. We unsuccessfully looked for
them in Sec. IVC3. On the other hand, -early
experiments’*?® show steps in the voltage-current character-
istic, that have been attributed to phase slips. These steps
appear at currents that are much larger than the current that
characterizes the scale for thermal fluctuations ekzT/h. Mod-
ern versions of these experiments are the subject of recent
investigations.>>33 A numeric study using the same simple
TDGL model as in the present paper was performed by
Kramer and Baratoff.?*

According to the basic phase-slip idea, there are moments
at which ¢ vanishes at places called phase-slip centers.
When this happens, the order parameter releases part of its
winding by changing by 27 the phase difference across this
center. This phase change is equivalent to a change in the
electromagnetic potential A, and gives rise to a voltage pulse.
According to typical models, phase-slip centers are located at
fixed positions.

Figure 12 shows the ratio between the average voltage
and the voltage that would be obtained for the same current
if the wire were in the normal state. The continuous line was
obtained when thermal fluctuations were ignored, i.e., 7,,
and 7, were set equal to zero. In this case we find hysteresis.
The symbols were obtained using the actual values of 7, 4
required by the fluctuation-dissipation theorem. For the pa-
rameters used, the inclusion of fluctuations leads to results
that are independent of history.

We denote by |, (and similarly |4|,;,) the minimum
value of || among the elements N g+ 1 <k<N-N_,, for a
given time step. The inset in Fig. 12 shows, as expected, that
the region of fast increase of the average voltage is the same
as the region of fast decrease of (|¢B|r2mn). In the absence of
fluctuations, the smallest values of || appear always in the
middle of the wire, but, when fluctuations are included, the
positions of the minima are widely spread.

If phase slips give a considerable contribution to the av-
erage voltage, then we expect that the voltage will be large

1
0.8
3 10
§0.6 58
= 4 g
~ «Q
2 0.4 'S > 4
2 Z 2
0.2 Y550785796795 100
Ih/ekgT
0

60 80 100 120 140 160 180 200
Ih/ekgT

FIG. 12. Voltage-current characteristic for high currents. V,qmal
stands for L'I/owg and (- --) is the average over N, steps. The line
(with the hysteresis loop) is obtained when fluctuations are ignored
and the symbols take fluctuations into account. The inset shows the
minimum value of the order parameter as a function of the current.
a'=-16, L'=3.2&5 L=10, R=1, N=30, Nyp=3, T3=5X107,
Noy=Nrelax =6 X 10,

184522-12



GINZBURG-LANDAU EQUATIONS WITH CONSISTENT...

)

2
min

)/ (]

2
min

(V]

60 80 100 120 140 160 180 200
Ih/ekgT

FIG. 13. The ratio (V|42 )/{V){||2; ) measures the correlation
between the voltage and the minimum size of the order parameter.
This ratio has to be less than 1 if phase slips contribute to the
voltage. The inset shows the region where correlation is significant.
The parameters are the same as in Fig. 12. ¢ : Fluctuations properly
taken into account; ¥ size of fluctuations divided by 2.

for steps that have small |, since ideally |#],;,=0 when a
phase slip occurs. It follows that V and |]%, will be nega-
tively correlated and (V|i|2, Y/{V){|#42,,) will be less than 1.
Figure 13 shows this ratio as a function of the current and we
see that there is indeed a region where (V|42 )/{V)| 42,
<1. We expect that this is a region where phase slips occur.
The position of the minimum of (V|¢{2. }/(V)|i{%,) nearly
coincides with the current at the lower vertex in the hyster-
esis loop shown in Fig. 12, but the dip extends to currents
beyond the hysteresis region. The inset in Fig. 13 is a close
up at the dip region. In order to appreciate the influence of
fluctuations, (V|y2. )/ (VX|#2,) was also evaluated with
Tuv.a Set to half their actual values. We see that fluctuations
extend the dip region in both directions, but mainly towards
lower currents.

Figure 14 shows the distribution of consecutive phase
changes, as defined in Sec. IV C 3, for If/ekzT=92. We ex-
pect from Figs. 12 and 13 that for this current phase slips
will be present. Most of the consecutive phase changes are

close to zero and have been chopped in the figure. However,

0.002

0.001

probability density

=37 -27 -7 0
consecutive phase change

FIG. 14. Distribution of consecutive phase changes for
Ih/ekpT=92. The parameters are the same as in Fig. 12. The peak
near zero has been chopped in order to make phase slips visible. < :
Phase changes restricted to the region above —37; : phase
changes below —37 were brought into the region between —37 and
—mr by the addition of the appropriate integer multiple of 2.
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there is also a significant amount of cases for which the
consecutive phase change is close to —2r, as predicted.

For this large current, the sign of the phase change is not
necessarily reversed between phase slips. Therefore, the con-
secutive phase change may involve more than one phase slip
and the consecutive phase change should ideally equal an
integer multiple of —27. In order to take this possibility into
account, we added integer multiples of 27 to phase changes
that were smaller than -3, until we brought them to the
region between —37 and —m. The results obtained in this
way are shown by the stars in Fig. 14.

6. Comparison with experiments

It is usually accepted that different models are required
for the description of the electric conductivity in several tem-
perature ranges in the vicinity of the critical temperature.
Above the critical temperature, conductivity is believed to be
dominated by the exchange of “cooperons” between normal
electrons.®> Very near the critical temperature, a promising
method is the Hartree-Fock approximation to TDGL.?>' Be-
low the critical temperature, but not too near it, the LAMH
model gives good fits.!” For still lower temperatures there is
a “foot” which in some cases has been attributed to the
contacts*® and in others to macroscopic quantum
tunneling.3'* Moreover, the parameters we have studied in
Sec. IV C 2 differ by several orders of magnitude from those
of the available experimental data. In spite of this situation, it
is instructive to check how well our naive formalism can fit
the experimental data.

We analyzed samples of aluminum,*® indium,?® and tin*"
in a temperature range where 1020 < ¢’ <10'0. We chose
the samples so that they could be considered as one-
dimensional, sufficient data in the analyzed range were avail-
able and all the required properties of the sample (e.g.,
length) were reported. We denote by 7. the temperature that
the experimenters considered to be the critical temperature.
The data for aluminum are above 7. and the others below T7.
The normal resistance of the tin sample was smaller by more
than three orders of magnitude than those of the other
samples; this was due both to its larger cross section and to
its longer mean free path. The current passed through the tin
sample was slightly above the linear range.

The properties of a sample were estimated as follows. The
length was measured by means of a microscope; the cross
section was either estimated from microscopic observation or
from the critical current. Assuming the geometry is known,
the mean free path can be obtained from the normal
conductivity.*” The BCS coherence length and the London
penetration depth are assumed to be the same as in bulk
material, in spite of the fact that the critical temperature is
significantly different than that in bulk. £(0) and « can be
obtained from these values and the mean free path,46 and 55
from Eq. (43). T' is either assumed equal to the critical tem-
perature of a reference sample with large cross section, or is
taken from a fit to some model. For y we take the value
wh?/16kgT.m&0)>.

We denote by AT=T.—T, the difference between the criti-
cal temperature estimated by the experimenters and that re-
quired by our model. We fitted the experimental data using
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0.01 0.03 0.1 0.3
(T_T'c)/Tlc

FIG. 15. Paraconductivity of an aluminum microwire as a func-
tion of the temperature above 7. The dots are experimental data
and the curve is a fit using Eqs. (46)—(48).

our phenomenological Eqs. (46)—(48), with £(0), &, and AT
as free parameters. The results are shown in Figs. 15 and 16;
there is semiquantitative agreement, but the fitting functions
are too concave.

The values of the fitting parameters &(0), &g, and AT are
displayed in Table III. They cannot be taken too seriously,
because it is possible to increase or decrease simultaneously
the three parameters in a wide range without bringing about
a clear difference in the goodness of the fit; moreover, the
values of these parameters depend on the selected range. In
all cases, T, is reasonably close to Té; for comparison, for the
In microwires 7., differs by ~800 mK from the critical tem-
perature in bulk.

£(0) and &g enter our equations in two ways. One of them
is through o', and in this case only their ratio £5/&(0) is of
influence. In all cases, the experimental and the fitted ratio
differ by less than half an order of magnitude, a factor that
can be attributed to the coarse estimates, both in the experi-
ment and in the fit. £(0) or £z themselves enter through K’,
which in turn depends on the assumption 7y
=7h?/16ksT.m&0)%; in this case it seems that £0)™ and fgt
are too big. This might indicate that the theory for 7 is inap-

T-T'c (K)
-0.15 -0.1 -0.05 0

1

0.3
o
~
m

0.1

-0.75 -0.5
T-T'. (mK)

-0.25 0

FIG. 16. Resistances of indium microwires (upper scale) and a
tin whisker (lower scale) as functions of temperature. R is the re-
sistance of the sample and R,, is its resistance in the normal state. A:
Sn, wy~2X107 cm?, @: In, wy~1.7x 107" cm?, O: In, wy
~52x 107" em?
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TABLE III. Parameters used in Egs. (46) and (47) for the theo-
retical lines in Figs. 15 and 16. “exp” stands for the values esti-
mated in the experiments and “fit” corresponds to the present fit. AT
is the difference between the critical temperatures estimated in the
experiments and those required here. The lengths £(0) and &5 are
expressed in wm. &0)*P is not the same for the thin and the wide In
wires, because they have different mean free paths.

AT mK) &0 &0 &7 &
Al 22 0.15 1.1 3.1 5.8
In (thin) 83 0.042 0.33 1.0 3
In (wide) 55 0.071 0.42 3.1 5.6
Sn 0.355 0.22 14 20 1870

propriate and a more elaborate theory might be required.*

D. A constriction

We now deal with the case for which the present formal-
ism has been designed, namely, a wire with nonuniform
cross section. Denoting the arclength by s, we consider a
wire such that its cross section is uniform in segments of
length N, L/N at each extreme, assumes the value w,
Fwq at the position s=s., Neonl/N <SS <L—=N,onl/N,
and is linear in s for N, L/N<s<s, and s,,<s<L
— N onll/N. We denote by w the average cross section in the
examined region N, L/N<s<L-N_,L/N, i.e., the cross
section in the contact regions has to be 2wo—w,. If wy,
<wy there is a constriction, and in the opposite case there is

a widening. We still use the notations R=4e2yL/ fiowy, &g
=(h*wy/4Bm’kgT)". In the discretized version we identify
w; with the cross section at s=(i—1/2)L/N.

1. Conductivity
With these notations, Eq. (39) has to be replaced with

a _ (N = 2N, o, ) RAIw,/e n 2w = Wer L 49)
o 8N76< V>(WO - Wctr) Wetr

where V is the potential drop excluding the initial and the
final N, elements.

Figure 17 compares the conductivities of a uniform and
two nonuniform wires, as functions of the temperature. As
the temperature decreases, the conductivities of the nonuni-
form wires increase at lower rates. An intuitive reason could
be that in the thinner parts of the wire fluctuations are more
effective in breaking superconductivity. Several evaluations
of o’ were repeated for different currents and we verified
that our results correspond to the linear regime.

2. Phase slips

We repeat our study of Sec. IV C 5, but this time the wire
has a constriction in the middle. The results are shown in
Fig. 18. Our results for (V|42 Y/{(V){|¢f2;,) indicate that the
constriction enhances the influence of fluctuations and the
phase-slip region is both enlarged and shifted to lower cur-

rents. A shift to lower currents was also found in Ref. 33. A
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o/ B

FIG. 17. Contribution of superconductivity to the conductivities
of a uniform and two nonuniform wires, as functions of the tem-
perature. L=10, R=100, s,=0.5L, £3=0.2L, [=0.1ekT/h, N=21,
Neon=3, Tg=5X 107, Npy=2X 108, Nygj0 =6 X 10. For visibility,
the symbols have been joined by straight segments. @: Uniform
wire; A: wey=0.2wg; O: wee=1.8wy.

curious effect is that, for currents slightly below this region,
the voltage and the minimum size of the order parameter are
positively correlated.

The inset shows the probability density for consecutive
phase change, for a current in the phase-slip region. As ex-
pected, the constriction promotes the occurrence of phase
slips: the probability density near —2 is much larger than in
the case of a uniform wire, and also drops faster away from
—2. Also, when the order parameter vanishes during a
phase slip, it now happens almost exclusively at the constric-
tion.

3. Charge accumulation

As a last test for statistical mechanics, we disconnect the
current source and connect a capacitor C between the points
s=0 and s=s. This capacitor will be charged with a charge

A,
AA BN

FIG. 18. Normalized voltage and voltage-order parameter cor-
relation as functions of the current. s.,=0.5L, w.,=0.2wy, N=31;
the other parameters as in Fig. 12 (for I=<25ekgT/h we took higher
values of N,,). @: V/ Vo At (V2 /()92 Inset: distri-
bution of consecutive phase changes for I /ekgT=50, as defined in
Sec. IV C 3. $: Includes only phase changes restricted to the re-
gion above —37; %: phase changes below —37 were added after
being brought into the region between —37r and —7r, by addition of
the appropriate integer multiple of 2.
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TABLE 1V. Average value of |Q|" according to statistical me-
chanics and to the method developed here. s.,=0.36L, s-=0.48L,
C=0.019%¢*/kpT; the other relevant parameters are as in Fig. 17.

n 1 2 3 4
2207 (n+1)/2)/\ 7 0.80 1 1.60 3
our simulation 0.81 1.02 1.65 3.14

Q that fluctuates in time. The region 0 <s=<s, will be forced
to sustain a potential drop Q/C and the current /; in this
region will be obtained as a Lagrange multiplier, as in Sec.
III D. The current in the region s-<s<L has to vanish. Dur-
ing each step, the charge in the capacitor increases by the
amount /;7.

From the point of view of the capacitor, the wire is just a

heat reservoir. Therefore, writing 0=0/\ kgTC, the probabil-
ity density for the charge will be proportional to

exp(-Q%/2). From here, we expect (|Q|"Y=2"2T[(n
+1)/2]/\r. Table IV compares this prediction with the re-
sults obtained with our method.

V. SUMMARY

We have developed a formalism that takes into account
the influence of thermal fluctuations in a one-dimensional
superconductor described by the TDGL model. Our method
incorporates the fluctuation-dissipation theorem in the form
required for integration of a discretized stochastic partial dif-
ferential equation by means of Euler iterations. We have
pointed out the relationship between the size of the fluctua-
tions and the volume of the elements into which the sample
is divided; to my knowledge, this relationship has not been
previously addressed in the literature. We have verified that
our method complies with statistical mechanics.

Using a gauged order parameter ( 1,~D) rather than the raw
order parameter (i), we obtain a formalism in which the
electromagnetic potential is not needed in the macroscopic
evolution. Special care is required in the use of this transfor-
mation; although the thermodynamic potential is more natu-

rally expressed in terms of 1;, the variable that permits direct
application of the fluctuation-dissipation theorem is .

As an application, we have evaluated the contribution of
incipient superconductivity to the electrical conductivity.
Significantly above the critical temperature, we recover the
Aslamazov-Larkin result. We have focused on the regime
immediately below the critical temperature. We compared
our results with those of old experiments in this regime, and
the agreement is poor. The lack of agreement was expected
and does not arise from the way we have treated fluctuations,
but rather from TDGL itself; no available theory reproduces
the experimental data in this regime (although the Hartree
approximation has been successful in situations in which
fluctuations may be regarded as effectively one
dimensional®).

Our method enables us to deal with wires with nonuni-
form cross section. In particular, we studied the influence of
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fluctuations and constrictions on the presence and behavior
of phase slips. When a constriction is present, phase slips
appear at lower currents.

Our formalism can be easily generalized to more complex
situations, such as multiply connected topologies where non-
integer fluxes are enclosed, time-dependent applied voltages
or currents, moderate variations in temperature, or different
evolution equations that can be cast in the form of dissipative
equations. Generalization to models that are not purely dis-
sipative (e.g., Ref. 50) is not immediate.
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APPENDIX A: NUMERIC CONSIDERATIONS

A well-known difficulty in the solution of partial differen-
tial equations by means of Euler iterations is that conver-
gence requires quadratically small time steps as the compu-
tational grid becomes dense. The standard way for
overcoming this difficulty is the Crank-Nicolson implicit
scheme. However, we did not find that this scheme is useful
when stochastic noise is present. Our general strategy was to
perform analytically the most important parts of the iteration
and then add a simple Euler iteration for the remaining part.
Our final algorithm was remarkably stable and enabled us to
vary practically all the parameters in our model over several
orders of magnitude.

1. Treatment of the intercell interaction

For a dense computational grid E>1 and the intercell in-
teraction becomes the leading term in Eq. (19). We treat this
term separately. Regarding z/z:(zjfl,...,szN) as a vector, we
have to leading term

ay

I (A1)

=My,
where the matrix M has the elements —Za?/ vh along the

diagonal, a?/ vh when the column and the row number dif-
fer by 1, and zeros everywhere else. The first and the last
rows of M depend on the boundary conditions; for instance,
for periodic boundary conditions M y=My, =a§2/ vh,
whereas for Neumann conditions M y=My;=0 and M
=M yy=—a&/vh. Ignoring the other contributions, Eq. (A1)
can be integrated to give

Yt + 7) = exp(M7) i1).

M has eigenvalues that are either negative or zero, so that the
largest eigenvalue of exp(M7) is 1.

(A2)

We can therefore follow the evolution of (Zk by means of
steps that consist of three stages. The first stage is described

PHYSICAL REVIEW B 75, 184522 (2007)

by Eq. (A2) and the other two are as described at the end of
Sec. II D. When considering the contribution of the first term
in Eq. (20), the leading term is dropped, since it has already
been taken into account. The matrix exp(M7) is the same for
every step, so that it has to be calculated just once.

2. Treatment of the condensation-energy term

The evolution equation (44) contains two contributions to
AmaczZBk: an “internal” contribution —FB(a'+|tsz|2) tzﬁk, that
will be considered here, and an “external” contribution due
to the interaction with the neighboring elements k+1, that
was considered above.

If only the internal contribution is considered, the evolu-

tion equation can be integrated and gives @Bk(t+ 7)

=(a'/{[a’ +| ‘Zﬁk(f)|2]exp(2“' Tp) = | ‘ng(t)|2})”21~ﬂﬁk(l)- Substi-
tuting this expression by a computationally less expensive
Padé approximant we obtain the algorithm

TR N\=
by — 2+ (|¢~'8k| ) )7 'ZBk (A3)
2+(3|¢Bk| +a')7’3

that takes into account the internal contribution.

3. Step size

Let us first consider the case S=0. For the validity of the

algorithm (16) we require 7<kgT/I",(dG/ duy)?. We make

. > yp—

the estimates G/ duy~ awoLE |y | /N and || ~ N/ a@awL.

On the other hand, the fluctuations of Igc, that were esti-

mated in Sec. IV A 1, have to be small compared to (Isc).
Therefore, 7 has to be in the range

400&/N, L <7< E*. (A4)

Similarly, we require 7<kzT/T4(dG/dA,)? and (Isc) has to
be large compared to the Johnson noise. From here we obtain

800@&/N, R <7< Na/RE. (A5)

In addition, we require N, 7> 1.
Our analysis for S#0 is similar to that leading to Eqgs.

(A4) and (A5), but now we use the estimate || ~ . Eq.
(B5) is still qualitatively true, as shown in Fig. 8. With these
estimates we obtain

100£4/N, L < 75 < (LINEp)*, (A6)

B00L*/N, REGL? < 7y < L*NRESL?. (A7)

APPENDIX B: AVERAGE SUPERCURRENT

In this appendix we estimate the characteristic size of su-
percurrents in the absence of voltage. Let us consider a wire
with uniform cross section with periodic boundary condi-
tions. The average of the supercurrent along the wire is

4e aEZL

N
SC= T N2 Woz Im[@j%‘—l], (B1)

which can also be written as
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4ea§ Lwoz 1, |2 in _n

Jor=— B2
sc V- (B2)

The ensemble average of Iy is zero. Its variance is ob-
tained from the square of Eq. (B2),

_ 27n 27’
3 116, P sin 22" sin 27

nn

) (4ea Lwo)
sc= * N)2

(B3)

The expression for the variance is simplified by subtraction
of the null quantity (Igc)*> and noting that for n#n’'

PHYSICAL REVIEW B 75, 184522 (2007)

<|¢i1|2|¢‘n’|2>=<|¢‘n|2><|¢‘n’|2>a whereas <|¢n|4>=2<|¢n|2>2~ We
obtain

(4eBhyT)?'ey  sin®(2am/N)
(21— [1+48& Sil’lz(’iTI’l/N)]z.

(Is0) = (B4)
For N> 1, the sum can be replaced with an integral; if in

addition we assume £>1 and keep only the leading term,
Eq. (B4) becomes

4e2UT2¢

(Ise) = PErs (B5)
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