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We study the kinetics of the quasiparticle capture and emission process in a small superconducting island
�Cooper-pair box� connected by a tunnel junction to a massive superconducting lead. At low temperatures, the
charge on the box fluctuates between two states, even and odd in the number of electrons. Assuming that the
odd-electron state has the lowest energy, we evaluate the distribution of lifetimes of the even- and odd-electron
states of the Cooper-pair box. The lifetime in the even-electron state is an exponentially distributed random
variable corresponding to a homogenous Poisson process of “poisoning” the island with a quasiparticle. The
distribution of lifetimes of the odd-electron state may deviate from the exponential one. The deviations come
from two sources—the peculiarity of the quasiparticle density of states in a superconductor and the possibility
of quasiparticle energy relaxation via phonon emission. In addition to the lifetime distribution, we also find
spectral density of charge fluctuations generated by capture and emission processes. The complex statistics of
the quasiparticle dwell times in the Cooper-pair box may result in strong deviations of the noise spectrum from
the Lorentzian form.
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I. INTRODUCTION

Properties of a mesoscopic superconducting circuit may
depend crucially on the presence of quasiparticles in its ele-
ments. The operation of a superconducting charge qubit, for
example, requires two-electron periodicity of its charge
states.1–5,7,8 This periodicity may be interrupted by the en-
trance of an unpaired electron into the Cooper-pair box
�CPB� serving as an active element of a qubit. The quasipar-
ticle changes the charge state of CPB from even to odd, and
lowers the charging energy. This trapping phenomenon, com-
monly referred to as “quasiparticle poisoning,” is well-
known from the studies of the charge parity effect in
superconductors.9,10 Quasiparticle poisoning contributes to
the phase relaxation in superconducting qubits.11 For a typi-
cal CPB size and tunnel conductances of the order of unit
quantum, the quasiparticle dwelling times are of the order of
a few �s. This time scale is at the edge of accessibility for
the modern experiments.6 Individual quasiparticle tunneling
events were resolved and the statistics of quasiparticle en-
trances and exits from the CPB box were investigated in
Refs. 7 and 8. The observed statistics of entrances was well
described by a standard Poissonian process.7,8 For the quasi-
particle exits, the results are less clear. In many cases, it may
be well described by the Poissonian statistics.7,8 However,
there are indications of deviation from that simple law for
some samples.12

In this paper, we develop a kinetic theory of quasiparticle
poisoning. We find the distribution of times Nodd�t� and
Neven�t� the CPB dwells, respectively, in odd- and even-
electron states. We also find the spectrum of charge noise
produced by the poisoning processes.

The conventional Poissonian statistics of the quasiparticle
exits would yield an exponential distribution for odd-electron
lifetime in the box. We see two reasons for the distribution
function Nodd�t� to deviate from that simple form. The first
one is related to the thermalization of a quasiparticle within

the CPB. If the rates of energy relaxation and of tunneling
out for a quasiparticle in CPB are of the same order, then two
different time scales control the short-time and long-time
parts of the distribution function Nodd�t�. The shorter time
scale is defined by the escape rate �out of the unequilibrated
quasiparticle from the CPB. The longer time scale is defined
by the rate of activation of equilibrated quasiparticle to an
energy level allowing an escape from CPB. The second rea-
son for the deviations from the exponential distribution con-
trolled by a single rate, comes from the singular energy de-
pendence of the quasiparticle density of states in a
superconductor. Because of it, the tunneling-out rate depends
strongly on the quasiparticle energy. Thus, even in the ab-
sence of thermalization the quasiparticle escapes from CPB
cannot be described by an exponential distribution.

The conventional Poissonian statistics for both entrances
and exits of the quasiparticle would lead to a Lorentzian
spectral density SQ��� of CPB charge fluctuations.13 The in-
terplay of tunneling. and relaxation rates may result in devia-
tions from the Lorentzian function. In the case of slow qua-
siparticle thermalization rate compared to the quasiparticle
tunneling-out rate �out, the function SQ��� roughly can be
viewed as a superposition of two Lorentzians. The width of
the narrower one is controlled by the processes involving
quasiparticle thermalization and activation by phonons,
while the width of the broader one is of the order of the
escape rate �out.

The paper is organized as follows. We begin in Sec. II
with the qualitative derivation and discussion of the main
results. In Secs. III and IV we derive and solve the micro-
scopic master equations for the kinetics of the quasiparticle
capture and emission, and calculate the lifetime distribution
functions in the even- and odd-charge states. In Sec. V we
calculate charge noise spectral density SQ��� for the Cooper-
pair box. In Sec. VI we summarize the main results. Some
technical details are relegated to the Appendix.

PHYSICAL REVIEW B 75, 184520 �2007�

1098-0121/2007/75�18�/184520�13� ©2007 The American Physical Society184520-1

http://dx.doi.org/10.1103/PhysRevB.75.184520


II. QUALITATIVE CONSIDERATIONS AND MAIN
RESULTS

A. Relevant time scales

Dynamics of the Cooper-pair box coupled to the super-
conducting lead through the Josephson junction, see Fig. 1,
is described by the Hamiltonian

H = HC + HBCS
b + HBCS

l + HT. �1�

Here HBCS
b and HBCS

l are BCS Hamiltonians for box and the

lead; HC=Ec�Q̂ /e−Ng�2, with Ec, Ng, and Q̂ being the charg-
ing energy, dimensionless gate voltage, and charge of the
CPB, respectively. The tunneling Hamiltonian HT is defined
in the conventional way

HT = �
kp�

�tkpck,�
† cp,� + H.c.� , �2�

where tkp is the tunneling matrix element, ck,� and cp,� are
the annihilation operators for an electron in the state �k ,�� in
the CPB and state �p ,�� in the superconducting lead, respec-
tively. Here superconducting gap energy is the largest energy
scale, ��Ec�EJ�T. In order to distinguish between Coo-
per pair and quasiparticle tunneling, we present the Hamil-
tonian �1� in the form14

H = H0 + V and V = HT − HJ. �3�

Here H0=HC+HBCS
b +HBCS

l +HJ, and HJ is the Hamiltonian
describing Josephson tunneling

HJ = �N��N�HT
1

E − H0
HT�N + 2��N + 2� + H.c.

The matrix element �N�HT
1

E−H0
HT�N+2� is proportional to

the Josephson energy EJ. �Here EJ is given by the
Ambegaokar-Baratoff relation.� The perturbation Hamil-
tonian V defined in Eq. �3� is suitable for calculation of the
quasiparticle tunneling rate.

Energy of the system as a function of the gate voltage is
shown in Fig. 2. At Ng=1 the electrostatic energy of the
system is minimized when unpaired electron resides in the
CPB. Thus, at Ng=1 the CPB is a trap for a quasiparticle.
The trap depth 	E equals the ground state energy difference
between the even-charge state �no quasiparticles in the CPB�
and odd-charge state �an unpaired electron in the CPB�. For
equal gap energies in the box and the lead, �l=�b=�, the
trap is formed due to the Coulomb blockade effect. In the
case Ec�EJ /2 one has

	E � Ec −
EJ

2
� T , �4�

and only two lowest charge states are important, see Fig. 2.
Also, we assume that there is at most one quasiparticle in the
box in the odd state.15

The transition probability per unit time between odd- and
even-charge states W�p ,k� can be obtained using the Fermi
golden rule �
=1�,

W�p,k� = 2���p,even�V�odd,k��2	�Ep + 	E − Ek� . �5�

Here the state �even, p� corresponds to even-charge state of
the box and the quasiparticle in the state �p� in the reservoir;
the state �odd,k� corresponds to the odd-charge state of the
box and quasiparticle in the state �k� within the box. The
quasiparticle energies in the CPB and lead Ek/p are defined as
Ek/p=��k/p

2 +�2. Matrix elements �p , even�V�odd,k� can be
calculated using the Bogoliubov transformation.16,17 Taking
into account the relation between tunneling matrix elements
and the normal-state junction conductance the expression for
W�p ,k� can be written as

W�p,k� =
gT	l	b

8�
	1 +

�p�k − �2

EpEk

	�Ep + 	E − Ek� �6�

with 	b/l being mean level-spacing in the box-lead, and gT
being dimensionless conductance of the junction.

Using the transition rate �6�, one can calculate the level
width of the state �odd,k� with respect to quasiparticle tun-
neling through the junction to the lead,

FIG. 1. �Color online� Schematic picture of the Cooper-pair box
qubit. The left-hand side superconducting mesoscopic island is the
Cooper-pair box connected via a tunable Josephson junction to the
large superconducting lead �right-hand side�. Gate bias is applied
through the capacitance Cg. The junction is characterized by the
dimensionless conductance gT.

FIG. 2. �Color online�. Energy of the Cooper-pair box as a func-
tion of dimensionless gate voltage Ng in units of e. Solid �red� line
corresponds to even-charge state of the box, dashed �blue� line cor-
responds to the odd-charge state of the box. The trap depth 	E is the
ground state energy difference between the even-charge state �no
quasiparticles in the CPB�, and odd-charge state �an unpaired elec-
tron in the CPB� at Ng=1. �We assume here equal gap energies in
the box and the lead, �l=�b=�.�
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�out�Ek� � �
p

W�p,k�

=
gT	b

4�

�Ek − 	E�Ek − �2

�Ek − 	E�Ek
�Ek − 	E���Ek − Ethd� .

�7�

The Heaviside function ��x� appears in Eq. �7� because
there are no states to tunnel into for a quasiparticle with
energy lower than the threshold energy Ethd, see Fig. 3,

Ethd = � + 	E . �8�

The quasiparticle density of states �Ek� �in units of the nor-
mal density of states at the Fermi level� is given by

�Ek� =
Ek

�Ek
2 − �2

. �9�

Due to the square-root singularity here, the rate �out�Ek� has
square-root divergence at Ek=Ethd, see Fig. 4.

The quasiparticle may enter and subsequently leave the
Cooper-pair box without changing its energy. For such elas-
tic process, the excess energy of the exiting quasiparticle is
equal to its initial energy, and is of the order of the tempera-
ture, i.e., Ek−Ethd�T. Therefore, the corresponding escape
rate is

�out =
gT	b

4�
�T�

	E

	E + �
. �10�

Here for brevity we denote �T���Ek=�+T�. For the sys-
tem with gT�1, volume of the CPB Vb�1 �m3, tempera-
ture T�50 mK and 	E�0.5 K, the typical escape time �out

−1

is of the order of a �s.
To find the average rate �in of quasiparticle tunneling

from the lead to the CPB, we integrate the transition prob-
ability per unit time �6� with the distribution function f�Ep�
of quasiparticles in the lead,

�in = �
p,k

W�k,p�f�Ep� . �11�

Upon elastically tunneling into the excited state in the
CPB the quasiparticle can relax to the bottom of the trap, see
Fig. 3. For that, the quasiparticle needs to give away energy
�	E. At low temperatures the dominant mechanism of qua-
siparticle energy relaxation is due to electron-phonon inelas-
tic scattering rate 1 /��Ek�. At low temperature quasiparticles
are tunneling into the box through the energy levels just
above the threshold energy Ek�Ethd, see Eq. �8�. Assuming
	E��, the typical quasiparticle relaxation time � is given
by18

� � ��Ek � Ethd� � �0	 �

Tc

−3		E

�

−7/2

. �12�

Here �0 is a characteristic parameter defining the average
electron-phonon scattering rate at T=Tc with Tc being super-
conducting transition temperature. In aluminum, a typical
material used for CPB, �0�0.1−0.5 �s.18–20 As one can see
from Eq. �12�, the quasiparticle relaxation rate is a strong
function of the trap depth 	E. Therefore, depending on 	E
there are two kinds of traps—“shallow” traps corresponding
to ��out�1, and “deep” traps with ��out�1. �Note, for shal-
low traps we still assume 	E�T.� The important quantity
characterizing the traps is the probability Ptr for a quasipar-
ticle to relax to the bottom of the trap before an escape,

Ptr =
1/�

1/� + �out
. �13�

B. Lifetime distribution function

Experimentally observable quantity,7,8 which reveals the
kinetics of quasiparticle trapping, is the lifetime distribution
function Nodd�t� of odd-charge states of the CPB. The distri-
bution of lifetimes Nodd�t� depends on the internal dynamics
of the quasiparticle in the CPB, i.e, the ratio of ��out.

We start with the discussion of the long-time asymptote of
the lifetime distribution function. At t�� the dwell-time dis-
tribution Nodd�t� is governed by phonon-assisted activation of
the thermalized quasiparticle in the trap. The phonon adsorp-
tion processes are statistically independent from each other.
Hence, the lifetime distribution exponentially decays with
time

Nodd�t� � exp�− �t� �14�

with the rate

FIG. 3. �Color online�. Schematic picture of the CPB-lead sys-
tem showing allowed transitions for the quasiparticle injected into
the excited state of the box. At Ng=1 the Cooper-pair box is a trap
for quasiparticle.

FIG. 4. The dependence of the escape rate �out�Ek� on energy
Ek.
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� �
1

�

�	E�
�T�

exp	−
	E

T

�1 − Ptr� . �15�

This expression can be understood as follows. The rate of
thermal activation of the quasiparticle from the bottom of the

trap to the threshold energy is 1
�

�	E�

�T� exp�− 	E
T

�, for brevity we

define �	E���Ek=Ethd�. The additional factor �	E� /�T�
here comes from the difference of the quasiparticle density
of states at the bottom of the trap �T� and at the threshold
energy �	E�. The last term �1− Ptr� in Eq. �15� corresponds
to the probability of the quasiparticle escape to the lead upon
activation. Equation �15� allows us to consider limiting cases
of ��out�1 and ��out�1.

In the case of “deep” traps ���out�1� most quasiparticles
upon entering the excited state in the box quickly thermalize.
Therefore, the main contribution to lifetime distribution
function comes from phonon-assisted escapes described by
Eq. �14�, see Fig. 5. The activation escape rate of Eq. �15� in
this limit equals

� f � �out
�	E�
�T�

exp	−
	E

T

 , �16�

since 1− Ptr�out�, see Eq. �13�.
In the opposite limit ��out�1, i.e., “shallow” traps, the

probability for a quasiparticle to relax to the bottom of the
trap is small Ptr�1. Therefore, upon elastically tunneling
into the excited state in the CPB the quasiparticles will pre-
dominantly return to the reservoir unequilibrated. Neverthe-
less, there is a small fraction of quasiparticles ��1/��out�
that do relax to the bottom of the trap, and stay in the box
much longer than unequilibrated ones. Thus, at t�� the

dwell-time distribution function Nodd�t� has an exponentially
decaying tail �14�, see Fig. 5, with phonon-activated escape
rate

�s �
1

�

�	E�
�T�

exp	−
	E

T

 . �17�

At t�� the typical value of the lifetime distribution function
is Nodd�t�����s /��out.

At short times, t��, the lifetime distribution function
Nodd�t� describes the kinetics of unequilibrated quasiparti-
cles. Quasiparticles tunnel into the box through the energy
levels Ek=Ethd+� �here ��0�, and predominantly reside
there until the escape with the rates �out���. For a given
energy level � the lifetime distribution is exponential

Nodd��,t� � exp�− �out���t� . �18�

Note that upon entering into the CPB from the reservoir the
quasiparticles can populate different levels within the energy
strip �T, see Eq. �36�. Therefore, experimentally observable
quantity Nodd�t�, obtained by the statistical averaging over a
large number of the tunneling events, is given by

Nodd�t� � �
0

�

d� exp	−
�

T
− �out���t
 . �19�

Taking into account the singularity of �out��� at small ener-
gies �out�����−1/2, we find that Nodd�t� deviates from the
simple exponential distribution �see Fig. 5�,

Nodd�t� � exp�− 3	�outt

2

2/3� �20�

at times t�1/�out. See also Sec. IV for more details.

C. Charge noise power spectrum

Anomalies in the lifetime distribution, see Fig. 5, should
also lead to a specific spectrum of charge fluctuations. We
define the spectral density of charge fluctuations SQ��� in the
Cooper-pair box as

SQ��� = �
−�

�

dtei�t��	Q�t�	Q�0�� + �	Q�0�	Q�t��� �21�

with 	Q�t�=Q�t�− �Q�. The variance of the fluctuations of
charge Q in the CPB,

�	Q2� = �
0

� d�

2�
SQ��� , �22�

is a thermodynamic, not a kinetic, quantity, and is known
from statistical mechanics. The kinetics of the system is re-
flected in the dependence of the noise spectrum �21� on the
frequency �.

In the limit of fast relaxation ��out�1 the escapes from
the CPB are given by one time scale �16�. The quasiparticle
entrances into and exits from the CPB are random, and can
be described by Poisson processes. Thus, SQ��� is given by
the Lorentzian function corresponding to random telegraph
noise,13

FIG. 5. �Color online� �a� Schematic picture of the lifetime dis-
tribution function for “deep” traps ���out�1�. �b� Schematic picture
of the lifetime distribution function for “shallow” traps ���out�1�.
Inset: Deviations of Nodd�t� from exponential distribution at short
times.
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SQ��� � 4e2�̄odd�1 − �̄odd�
�eff

���eff�2 + 1
. �23�

Here �̄odd is an equilibrium average occupation of the odd-
charge state in the CPB �0��̄odd�1�, see Eq. �75� for de-
tails. At low temperature �T�	E� the box is predominantly
in the odd-charge state, i.e., �1− �̄odd��exp�−	E /T�. The rate
of activated quasiparticle escape processes has the same
small exponent, therefore the width of the Lorentzian �23� is
mainly given by the transitions from even- to odd-electron
state,

1

�eff
� �in. �24�

See Eq. �83� for the full result.
In the limit of slow relaxation ���out�1� the charge noise

power spectrum SQ��� deviates significantly from the
Lorentzian. These deviations stem from the fact that a qua-
siparticle may escape from the box before or after the equili-
bration, which results in two characteristic time scales for the
escapes,21 see Fig. 5. Consequently, the function SQ��� can
be roughly viewed as a superposition of two Lorentzians,
and is similar to carrier concentration fluctuations in semi-
conductors due to trapping.22 The “narrow” Lorentzian de-
scribes the dynamics of slow fluctuations due to phonon-
assisted trapping of quasiparticles

SQ
�1���� � e2 �̄odd�1 − �̄odd��eff

���eff�2 + 1
,

1

�eff
�

1

�

�in

�in + �out
.

�25�

The width �eff
−1 here is determined by the probability of qua-

siparticle trapping per unit time. �Like above, we assume
here T�	E and neglect activated escape rate.� The second
�quasi� Lorentzian function SQ

�2���� is associated with fast
charge fluctuations reflecting the kinetics of unequilibrated
quasiparticles. Assuming ���out��in the asymptote of
SQ

�2���� is

SQ
�2���� � e2 �̄odd

�out
exp�− 	E/T�	�out

�

2

. �26�

The width of SQ
�2���� is determined by the typical escape rate

of unequilibrated quasiparticles from the box �out defined in
Eq. �10�. Similar to the lifetime distribution, see Fig. 5, we
predict deviations of SQ

�2���� from the Lorentzian function at
���out due to the peculiarity of the quasiparticle density of
states.

The high-frequency tail of SQ��� is provided by Eq. �26�.
However, the contribution of SQ

�2���� to the sum rule �22� is
much smaller than that from SQ

�1����. In other words, the
main contribution to the noise power comes from slow fluc-
tuations. It resembles the case of the current noise in super-
conducting detectors.23

In the rest of the paper, we provide detailed derivation of
the results discussed qualitatively in this section.

III. LIFETIME DISTRIBUTION OF THE EVEN-CHARGE
STATE

Let us assume that the system switched to the even state
at t=0, and introduce the probability density Neven�Ek , t� for a
quasiparticle to enter the CPB for the first time through the
state Ek. Then, the probability density for the CPB to reside
in the even state until time t is

Neven�t� = �
k

Neven�Ek,t� . �27�

Neven�Ek , t� is given by the conditional probability of quasi-
particle entering the CPB into an empty state Ek during the
interval �t , t+dt� times the probability that any quasiparticle
has not entered into any state in the CPB during the preced-
ing interval �0, t�,

Neven�Ek,t�dt = �
p

W�k,p�f�Ep�

�	1 − �
k�
�

0

t

dt�Neven�Ek�,t��
dt . �28�

Summing Eq. �28� over states k and solving for Neven�t� one
finds

Neven�t� = �in exp�− �int� , �29�

which corresponds to a homogenous Poisson process. The
quasiparticle tunneling rate from the lead to the CPB �in is
given by Eq. �11�.

Recent experiments by Aumentado et al.2,7 indicate that
the density of quasiparticles nqp

l in the lead exceeds the equi-
librium one at the temperature of the cryostat. The origin of
nonequilibrium quasiparticles is not clear, but it is plausible
to assume that quasiparticle distribution function in the lead
f�Ep� is given by the Boltzmann function

f�Ep� = exp	−
Ep − �l

T

 �30�

with some effective chemical potential and temperature, �l
and T, respectively. The chemical potential �l is related to
the quasiparticle density by the equation

nqp
l =

1

Vl
�

p

f�Ep� . �31�

Here Vl is the volume of the lead. We consider the density of
quasiparticles nqp

l and their effective temperature as input
parameters here, which can be estimated from the experi-
mental data.2,7,8 Taking into account Eq. �30� we can evalu-
ate the right-hand side �rhs� of Eq. �11� to obtain

�in =
gTnqp

l

4�F
�	E�

	E

� + 	E
. �32�

Here F is the normal density of states at the Fermi level.
The average waiting time in the even-charge state is
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�Te� = �
0

�

Neven�t�tdt = �in
−1. �33�

This result is expected for the conventional Poisson process.

IV. LIFETIME DISTRIBUTION OF THE ODD-CHARGE
STATE

A. Master equation for survival probability

The distribution of dwell times for odd-charge state is
more complicated than for even-charge state due to the in-
ternal dynamics of the quasiparticle in the CPB. Upon tun-
neling elastically into the box the quasiparticle enters into the
excited state with typical excess energy 	E above the gap in
the island. The dwell time of the quasiparticle in the box
depends whether upon tunneling into the excited state it re-
laxes to the bottom of the trap or tunnels out unequilibrated,
see Fig. 2. In order to describe the physics of quasiparticle
tunneling we develop a formalism similar to the rate equa-
tions theory. We will include electron-phonon collision inte-
gral into our equations to account for the internal dynamics
of the quasiparticle inside the CPB. The experimentally ac-
cessible quantity is the probability density Nodd�t� of leaving
an odd state in the time interval �t , t+dt� assuming that the
quasiparticle resided continuously in the box during the time
interval �0, t�. The object convenient for evaluation is the
conditional probability Sodd�t� �or survival probability� for a
quasiparticle to occupy a given level, under the condition
that the unpaired electron continuously resided in the box
over the time interval �0, t�. The lifetime distribution Nodd�t�
can be easily obtained from Sodd�t�,

Nodd�t� =
d

dt
�1 − Sodd�t�� = −

dSodd�t�
dt

. �34�

Probability Sodd�t� is simply related to the conditional
probability S�Ek , t� for a quasiparticle to occupy level Ek at
the moment t in the box assuming that a quasiparticle entered
CPB at t=0 and resided continuously in the box during the
time interval �0, t�,

Sodd�t� = �
k

Sodd�Ek,t� . �35�

We assume that in the initial moment of time the quasi-
particle has just entered the state Ek in the box. Therefore,
the initial probability Sodd�Ek ,0� of the occupation of the
level Ek in the box is determined by the tunneling rate into
the state Ek,

Sodd�Ek,0� =
1

�in
�

p

W�p,k�f�Ep� . �36�

The normalization of Sodd�Ek ,0� is chosen to satisfy Sodd�0�
=�kSodd�Ek ,0�=1. According to Eq. �36� the initial condi-
tional probability Sodd�Ek ,0� is zero below the threshold en-
ergy Ek�Ethd, and is proportional to Gibbs factor above the
threshold Ek�Ethd. This reflects out-of-equilibrium quasipar-
ticle distribution at t=0.

The conditional probability Sodd�Ek , t� consistent with ini-
tial conditions �36� satisfies the following master equation:

Ṡodd�Ek,t� + �out�Ek�Sodd�Ek,t� = −
Sodd�Ek,t� − Sodd

eq �Ek,t�
�

.

�37�

The second term on the left-hand side �lhs� corresponds to
the loss from the state Ek due to the tunneling through the
junction to the lead with the rate �out�Ek� of Eq. �7�. Note
that unlike in the theory of the rate equations there is no
“gain” term in Eq. �37�. This is due to the condition that the
box is occupied at t=0 and remains occupied continuously
until some time t. The rhs of Eq. �37� corresponds to the
electron-phonon collision integral in the relaxation time ap-
proximation with � of Eq. �12� and

Sodd
eq �Ek,t� = Sodd�t��odd

b �Ek� .

Note that Eq. �37� is nonlocal in Ek due the dependence of
the collision integral on Sodd�t� �see Eq. �35��. The collision
integral in Eq. �37� describes the phonon-induced relaxation
of the trapped quasiparticle to an equilibrium,

�odd
b �Ek� =

exp�− Ek/T�
Zodd

. �38�

Here T is the quasiparticle temperature in the box. �For sim-
plicity, we assume that the effective quasiparticle tempera-
ture in the lead is the same as in the box, Tl=Tb=T.� The
normalization factor Zodd at T�T* is given by

Zodd =��

2

�

	b

�T

�
exp	−

�

T

 . �39�

B. General solution for Sodd„t…

Using Laplace transform,

Sodd�Ek,s� = �
0

�

dtSodd�Ek,t�e−st, �40�

we reduce the differential equation �37� supplied with the
initial conditions �36� to an algebraic one

	s + �out�Ek� +
1

�

Sodd�Ek,s� =

Sodd
eq �Ek,s�

�
+ Sodd�Ek,0� .

�41�

Equation �41� can be solved for Sodd�Ek ,s�. Then, by sum-
ming that solution over momenta k and utilizing Eqs. �35�
and �36� we find the survival probability Sodd�s�

Sodd�s� =
B�s�

1 − A�s�
. �42�

Here functions B�s� and A�s� are defined as

B�s� =
1

�in
�

k

f�Ek − 	E��out�Ek�
s + 1/� + �out�Ek�

,
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A�s� =
1

�
�

k

�odd
b �Ek�

s + 1/� + �out�Ek�
. �43�

At T�	b one can take the thermodynamic limit and replace
the sums with the integrals in Eq. �43�. Further simplification
of the denominator in Eq. �42� is possible if one splits the
integral in A�s� into the intervals �� ,Ethd�, where �out�Ek�
=0, and �Ethd ,��. Then, Eq. �42� becomes

Sodd�s� = 	s +
1

�

 B�s�

s + X�s�
�44�

with the functions B�s� and X�s� defined as

B�s� =
1

�in
�

Ethd

� dEk

	b
�Ek�

f�Ek − 	E��odd�Ek�
s + 1/� + �odd�Ek�

,

X�s� =
1

�
�

Ethd

� dEk

	b
�Ek�

�odd
b �Ek��odd�Ek�

s + 1/� + �odd�Ek�
. �45�

The inverse Laplace transform is given by

Sodd�t� =
1

2�i
�

�−i�

�+i�

dsSodd�s�est, �46�

where � is chosen in such way that Sodd�s� is analytic at
Re�s���. The integral �46� can be calculated using complex
variable calculus by closing the contour of integration as
shown in Fig. 6 and analyzing the enclosed points of nonana-
lytic behavior of Sodd�s�. In general, the singularities of
Sodd�s� consist of two poles and a cut. The latter is due to the
singularities of the function B�s� causing Sodd�s� to be
nonanalytic along the cut s� �−� ,−smin�, where

smin =
1

�
+ min��odd�Ek�� . �47�

The plot of �odd�Ek� is shown in Fig. 4. The function
�odd�Ek� has a minimum at Ek

min=Ethd+	E /2. �For the esti-
mate of the minimum we assumed 	E��.� In addition to the
cut, Sodd�s� has two poles. The poles s1 and s2 are the solu-
tions of the following equation in the region of analyticity of
B�s�:

s + X�s� = 0. �48�

We now analyze the singularities Sodd�s� and find their con-
tribution to the integral �46�.

The contribution from the cut to Eq. �46� corresponds to
the kinetics of unequilibrated quasiparticles. Formally it
comes from the nonanalyticity of Sodd�s� due to the singulari-
ties of the function B�s� itself. The proper contribution to Eq.
�46� can be calculated by integrating along the contour en-
closing the cut,

Icut =
− 1

2�i
�

smin

�

dsest�Sodd�s + i�� − Sodd�s − i��� . �49�

At low temperature T�	E, the discontinuity of the imagi-
nary part of Sodd�s� at the cut is

Sodd�s + i�� − Sodd�s − i�� = 2i	s +
1

�

 Im B�s + i��

s
.

�50�

Substitution of this expression into Eq. �49� yields

Icut =
1

�in
�

Ethd

� dEk

	b
�Ek�f�Ek − 	E��odd�Ek�

�
��odd�Ek�

1 + ��odd�Ek�
exp	−

t

�
− �odd�Ek�t
 . �51�

To simplify the above expression we introduce the dimen-
sionless variable z,

z =
Ek − Ethd

T
, �52�

and write the integral in Icut in terms of z,

Icut =
1

���out�	E�
�

0

�

dz�z��odd�z�
��odd�z�

1 + ��odd�z�

�exp�− z − �odd�z�t − t/�� . �53�

Here and thereafter �odd�z� and �z� are given by Eqs. �7�
and �9�, respectively, with Ek=Ethd+Tz.

We now analyze the contribution to Eq. �46� from the
poles. The pole at s1 may be found from the iterative solution
of Eq. �48� at small s �s�smin�,

s1 � − X�s = 0� , �54�

with X�s� given by Eq. �45�. The contribution from the pole
at s1 can be easily calculated using residue calculus yielding

FIG. 6. �Color online� Contour of integration �red line� chosen
to calculate inverse Laplace transform Eq. �46�. Points of nonana-
lytic behavior of �++�s� are shown. Poles at s1, s2, and a cut
s� �−� ,−smin�.
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I1 = Y�0�exp�− X�0�t� . �55�

Equation �55� describes the kinetics of thermalized quasipar-
ticles. At low temperature X�0��exp�−	E /T�, which justifies
the approximation used in Eq. �54�, see also next section.
The function Y�0� depends on ��out, and is approximately
given by

Y�0� �
1

��
�

0

�

dz
exp�− z�
�z + ��out

. �56�

Here we used small z asymptote �z�
	E
2T

� for the escape rate,

�out�z� �
�out

�z
. �57�

The second pole s2 is given by the solution of Eq. �48� at
large s. At small temperature T�	E one can show that the
contribution of the second pole s2 to Eq. �46� is small, and
thus can be neglected. �For details, see Appendix in Ref. 11�.

C. Results and discussions

Combining all relevant contributions to the inverse
Laplace transform, Eqs. �53� and �55�, we obtain the solution
for the survival probability

Sodd�t� = Y�0�exp�− �t� + F�t� . �58�

The first term here corresponds to the kinetics of the quasi-
particle that relaxed to the bottom of the trap. The thermally
activated decay rate �, found with the help of Eqs. �54� and
�52�, is

� =
1

�

�	E�
�T�

exp	−
	E

T

	1 − �

0

�

dz
e−z/�

1/� + �out/�z

 .

�59�

The integral in Eq. �59� reflects the probability for a quasi-
particle to relax to the bottom of the trap �cf. Eq. �13��. The
second term in Eq. �58� describes the kinetics of unequili-
brated quasiparticles with F�t� given by

F�t� =
1

���out�	E�
�

0

�

dz�z��odd�z�
��odd�z�

1 + ��odd�z�

�exp	− z − t�odd�z� −
t

�

 . �60�

In the next paragraphs we will analyze Sodd�t� for fast and
slow relaxation limits.

In the fast relaxation limit ��out�1 �“deep” trap�, the
leading contribution to the survival probability Sodd�t� comes
from the first term in Eq. �58�, the second term in Eq. �58� is
proportional to ��out, and can be neglected. Consequently,
the survival probability is given by

Sodd�t� � exp�− � ft� . �61�

Using Eq. �34� we find the lifetime distribution function

Nodd�t� = � f exp�− � ft� , �62�

cf. Eqs. �14� and �16�. As discussed qualitatively in Sec. II in
the fast relaxation limit the majority of quasiparticles enter-

ing the CPB into the excited state Ek�Ethd relax to the bot-
tom of the trap and stay in the box until they are thermally
excited out of the trap by phonons with the rate � f of Eq.
�16�. Finally, using Eq. �61� we find the average lifetime of
the odd-charge state

�Todd� = �
0

�

Sodd�t�dt = 1/� f . �63�

In the opposite limit of the “shallow” trap, ��out�1, the
majority of quasiparticles tunnel out unequilibrated to the
lead �Ptr�1/��out�. The expression for the survival probabil-
ity �58� in this limit becomes

Sodd�t� = F�t� +
1

����out

exp�− �st� . �64�

Note that in addition to the first term describing the kinetics
of unequilibrated quasiparticles the survival probability has a
tail corresponding to the small fraction of quasiparticles that
do relax to the bottom of the trap. These quasiparticles reside
in the box until they are thermally excited by phonons. In the
slow relaxation limit the activation exponent �59� can be
reduced to

�s �
1

���

�	E�
�T�

exp	−
	E

T

 . �65�

�Rigorous evaluation produces a difference in the numerical
factor here compared to Eq. �17�.� The tail of the distribution
function �64� describes the processes that are much slower
than 1/�out, thus it must be retained despite its small ampli-
tude, see also Eq. �71�.

The function F�t� defined in Eq. �60� can be evaluated
using small z asymptote of �odd�z�, see Eq. �57�. This ap-
proximation substantially simplifies F�t�,

F�t� �
1

��
�

0

� dz
�z

��out

�z + ��out

exp	− z −
t�out

�z
−

t

�

 .

�66�

Here we assumed that the main contribution to the F�t�
comes from the small z region, z�	E /2T, which limits the
applicability of Eq. �66� to t��out

−1 � 	E
2T

�3/2. The asymptotic
expression for F�t� in Eq. �64� can be obtained using the
saddle-point approximation

F�t� �
2
�3

��out

��out + 	1

2
�outt
1/3 exp�− 3	�outt

2

2/3

−
t

�
� .

�67�

The integral �66� can be also expressed in the analytic form
in terms of the Meijer’s G-function.28 As one can see from
Fig. 7 at low temperature T�	E there is a time window

1

�out
� t �

1

�out
		E

2T

3/2

, �68�

in which the survival probability deviates from the exponen-
tially decaying function. We assumed in Eq. �68� that the
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upper limit is more restrictive than t�
1

�out
��out��3 so that the

�-dependent term in the exponent of Eq. �67� can be ne-
glected.

The fractional power 2/3 in Eq. �67� stems from the pe-
culiarity of superconducting density of states at low energies.
Assuming the quasiparticle distribution in the lead is given
by Eq. �30�, every time a quasiparticle tunnels into the box it
may occupy a different energy level, which is reflected in the
initial conditions, Eq. �36�. However, due to the singularity
of the escape rate �out�Ek� at Ek�Ethd, this results in a strong
energy dependence of the dwell time of a quasiparticle.
Therefore, averaging over many such events leads to the de-
viation of F�t� from the simple exponential function, as
shown in Fig. 7.

At t�
1

�out
� 	E

2T
�3/2 the minimum of the exponent in �66� is

beyond the limit of applicability of the small z approximation
for the rate �out�z� given by Eq. �57�, and instead of Eq. �66�
one should use Eq. �60�. Since at z�	E /2T the escape rate
�out�z� is a smooth function, F�t� decays exponentially,

F�t� � exp	−
	E

2T
− �out�zmin�t −

t

�

 . �69�

Here �out�zmin��
gT	b

2�
�	E

� .
The lifetime distribution function Nodd�t� for the odd-

charge state can be obtained from Sodd�t� by substituting Eq.
�64� into Eq. �34�. Under conditions of Eq. �68� the lifetime
distribution function Nodd�t� will deviate from the exponen-
tial distribution

Nodd�t� �
24/3

�3

�out

��outt�1/3 exp�− 3	�outt

2

2/3� . �70�

The average lifetime of the odd-charge state �Todd� in the
slow relaxation case is

�Todd� = �
0

�

Sodd�t�dt �
1

����out�s

=
1

� f
. �71�

Despite the quasiparticle having small probability of relaxing
to the bottom of the trap, the main contribution to the aver-
age dwell time �Todd� is given by the tail of Sodd�t�. This is
because once the quasiparticle is trapped in the CPB it stays
there for an exponentially long time, see Eq. �65�. As ex-
pected �Todd� is the same for fast and slow relaxation cases
since the average lifetime determines the thermodynamic
probability to occupy a given charge state.

V. CHARGE NOISE

The complex statistics of capture and emission processes
discussed in the preceding section also manifest itself in the
spectral density of charge fluctuations of the Cooper-pair
box. In this section we study the charge noise power spec-
trum for “deep” ���out�1� and “shallow” ���out�1� traps.

The kinetic equations for occupational probabilities of
odd- and even-charge state have the form11

Ṗeven�Ep,t� + �
k

W�p,k��Peven�Ep,t� − Podd�Ek,t�� = 0,

Ṗodd�Ek,t� + �
p

W�p,k��Podd�Ek,t� − Peven�Ep,t��

= −
1

�
�Podd�Ek,t� − Podd

eq �Ek,t�� . �72�

Here Podd
eq �Ek , t�=�odd

b �Ek��odd�t� with �odd�t�=�kPodd�Ek , t�,
and the quasiparticle transition rate W�p ,k� is defined in Eq.
�6�. Assuming that the lead is a heat bath of quasiparticles we
can write even-charge occupational probability as
Peven�Ep , t�= f�Ep��even�t� with f�Ep� being the distribution
function of the quasiparticles in the lead, and �even�t�
=�pPeven�Ep , t� being the occupational probability of the
even state. This allows us to reduce Eqs. �72� to

�̇even�t� + �
k,p

W�p,k��f�Ep��even�t� − Podd�Ek,t�� = 0,

Ṗodd�Ek,t� + �
p

W�p,k��Podd�Ek,t� − f�Ep��even�t��

= −
1

�
�Podd�Ek,t� − Podd

eq �Ek,t�� . �73�

One can see that Eqs. �73� satisfy the normalization condi-
tion

�even�t� + �odd�t� = 1. �74�

The stationary occupational probabilities �̄even and �̄odd are
given by the Gibbs equilibrium state. Assuming that f�Ep� is
given by Eq. �30�, we obtain

�̄even =
1

1 + nqp
l Vb exp		E

T

 , �̄odd = 1 − �̄even. �75�

Here nqp
l is the quasiparticle density in the lead, see Eq. �31�,

and Vb is the volume of the CPB.
The fluctuations around this equilibrium state can be

taken into account within the Boltzmann-Langevin approach,
which assumes that the occupational probabilities fluctuate
around the stationary solution �75� due to the randomness of
the tunneling and scattering events as well as partial occupa-
tions of the quasiparticle states.25 The kinetic equations for
the charge fluctuations can be derived by properly varying
Eqs. �73� and adding Langevin sources corresponding to the
relevant random events,24

FIG. 7. �Color online� Deviation of F�t� �solid blue line� defined
in Eq. �60� from the exponentially decaying function at �outt�1.
�We assumed �=� here.�

KINETICS OF QUASIPARTICLE TRAPPING IN A… PHYSICAL REVIEW B 75, 184520 �2007�

184520-9



	 d

dt
+ �in
	�even�t� = �

k,p
W�p,k�	Podd�Ek,t� + �

p

�p
T�t� ,

	�t + �
p

W�p,k� +
1

�
	Podd�Ek,t�

= −
	�even�t�

�
�odd

b �Ek� + �
p

W�p,k�f�Ep�	�even�t� + �k
T�t�

+ �k
ph�t� . �76�

Here the relation 	�even�t�=−	�odd�t� was taken into ac-
count. The Langevin sources �p�k�

T �t� and �k
ph�t� correspond to

quasiparticle tunneling from/to the state �p� / �k� through the
junction, and inelastic electron-phonon scattering, respec-
tively. �Note that �p�p

T�t�=−�k�k
T�t� and �k�k

ph�t�=0.� These
random processes are considered to be Poissonian with the
following correlation functions:

��k
T�t��k�

T �t��� = 2	�t − t��	k,k��
p

W�p,k�f�Ep��̄even

= 2	�t − t��	k,k��out�Ek�f�Ek − 	E��̄even,

��k
ph�t��k�

ph�t��� = 	�t − t��
2Podd

eq �Ek�
�

		k,k� −
Podd

eq �Ek��

�odd



= 	�t − t��
2�̄odd�odd

b �Ek�
�

�	k,k� − �odd
b �Ek��� .

�77�

The latter expression is consistent with the collision inte-
gral in the relaxation time approximation and conservation of
the probability �odd�t� by the electron-phonon scattering.26,27

The spectral density of charge fluctuations in the CPB is
defined as

SQ��� = 2e2�	�even���	�even�− ��� , �78�

and can be obtained from Eqs. �76� and �77�. The solution of
the second equation of the system �76� in the frequency do-
main is

	Podd�Ek,�� =

�out�Ek�f�Ek − 	E� −
1

�
�odd

b �Ek�

− i� + �out�Ek� +
1

�

	�even���

+
�k

T��� + �k
ph���

− i� + �out�Ek� +
1

�

. �79�

Substituting this expression into the equation for 	�even���
we find

L���	�even��� = �
k

	i� −
1

�

�k

T��� + �out�Ek��k
ph���

− i� + �out�Ek� +
1

�

,

�80�

where the function L��� is given by

L��� = − i� +
1

�
�

k

�odd
b �Ek��out�Ek�

− i� + �out�Ek� +
1

�

+ �
k

f�Ek − 	E�
�out�Ek�	− i� +

1

�



− i� + �out�Ek� +
1

�

. �81�

Finally, using Eqs. �78� and �80� we can find the correla-
tion function �	�even���	�even�−���, and obtain charge noise
power spectrum SQ���,

SQ��� =
2e2

L���L�− �� �
k,k�

	�2 +
1

�2
��k
T����k�

T �− ��� + �out�Ek��out�Ek����k
ph����k�

ph�− ���

	− i� + �out�Ek� +
1

�

	i� + �out�Ek�� +

1

�

 . �82�

Upon substituting correlation functions �77� into Eq. �82� the
general solution for SQ��� can be obtained �after cumber-
some but straightforward calculations, see the Appendix�.
Rather than going through the full derivation, we study here
SQ��� in the limiting cases ��out�1 and ��out�1, which can
be derived from Eqs. �77�, �81�, and �82�.

We first consider fast relaxation limit ��out�1. In this
case one can neglect the second term in the numerator of Eq.
�82�. For ���1 one can simplify Eqs. �81� and �82� further.

After straightforward manipulations one finds that the lead-
ing contribution to the noise is given by Eq. �23� with the
rate

1

�eff
= � f + �in, �83�

which includes all processes changing the population �̄even.
The first term in Eq. �83� corresponds to the rate of thermal
activation of the quasiparticles by phonons from the bottom
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of the trap to the lead, see Eq. �16�; the second term is the
rate of quasiparticle tunneling from the lead to the box given
by Eq. �11�, also cf. Eq. �24�.

In the opposite limit ��out�1, the charge noise power
spectrum SQ��� can be roughly viewed as the superposition
of two Lorentzians, see Fig. 8. The first one corresponds to
the processes involving quasiparticle thermalization and ac-
tivation by phonons, and is dominant at low frequencies. The
second �quasi� Lorentzian describes the fast processes ��
��out� associated with the escape of unequilibrated quasi-
particles from the box.

At low frequencies ���cr, see Fig. 8, the noise power
spectrum is well approximated by the Lorentzian function.
This can be obtained by neglecting the first term in the nu-
merator of Eq. �82�, and keeping the leading terms in 1/��out
and � /�out in Eqs. �81� and �82�, see the Appendix. After
straightforward manipulations one finds

SQ��� � 4e2�̄odd�1 − �̄odd�
1 − D

1 + C

�eff

���eff�2 + 1
. �84�

The constants C and D here are defined as

C =
1

��

�in

�out
and D =

1
��

�	E�
�T�

exp	−
	E

T

 . �85�

The width of the Lorentzian �84� is given by

1

�eff
=

1

�

�in

�in + ���out

+ �s

���out

�in + ���out

. �86�

The first term here corresponds to the transitions from
even-to odd-charge state involving the relaxation of a quasi-
particle to the bottom of the trap �cf. Eq. �25�; difference in
the numerical coefficients comes from rigorous solution of
Eqs. �77�, �81�, and �82��. It is determined by the quasiparti-
cle relaxation rate 1 /� times the portion of the time the un-
equilibrated quasiparticle spends in the box. The second term
in Eq. �86� describes the transitions odd to even state involv-

ing the escapes of a thermalized quasiparticle from the CPB
by phonon activation. It is proportional to the phonon-
assisted quasiparticle escape rate from the box to the lead �s
times the probability to find an empty trap upon the escape of
the thermalized quasiparticle. This probability is determined
by the portion of the time the trap spends in the even state
upon the escape of the thermalized quasiparticle, and is de-
termined by the fast processes involving �out and �in.

At high frequencies, ���cr, the dominant is the first term
in the numerator of Eq. �82�. Then, in the leading order in
1/��out the power spectrum becomes

SQ��� �
4e2

�out
·

CZ1����̄even

�1 + CZ2����2 + 	 �

�out

2

�CZ1����2

.

�87�

Here the sums over momentum k in Eq. �82� are replaced
with the integrals �T�	b�. In terms of the dimensionless
variable z �52� these integrals are denoted as Z1��� and
Z2��� �see Appendix�,

Z1��� � �
0

�

dz
e−z�z

��/�out�2z + 1
,

Z2��� � �
0

�

dz
e−z

��/�out�2z + 1
. �88�

As shown in Fig. 8, in the frequency window �cr����out
the noise power SQ��� becomes flat with the amplitude

SQ��� �
2��e2

�out

C�̄even

�1 + C�2 . �89�

At higher frequencies ���out and C�1 the noise power
spectrum �87� can be approximated by

SQ��� �
4e2

�out
CZ1����̄even �90�

with Z1��� given by Eq. �88�. At these frequencies the charge
noise power spectrum SQ��� describes charge fluctuations
due to the tunneling of the unequilibrated quasiparticles from
the box to the lead. By taking a Fourier transform of Eq.
�90�, one can notice that the noise power spectrum in time
domain has the same functional form as F�t� of Eq. �67�.
Therefore, charge noise power spectrum also reveals the de-
viations from the conventional Poisson statistics due to the
singularity of the quasiparticle density of states at low ener-
gies. The deviations of the charge noise power spectrum �90�
from the Lorentzian function at ���out are illustrated in
Fig. 9. At higher frequencies ���out charge noise power
spectrum SQ��� decays as 1/�2, see Eq. �26�.

VI. CONCLUSIONS

In this work we studied the kinetics of the quasiparticle
trapping and releasing in the mesoscopic superconducting
island �Cooper-pair box�. We found the lifetime distribution

FIG. 8. �Color online� Spectral density of charge fluctuations
generated by quasiparticle capture and emission processes in the
Cooper-pair box for the slow relaxation case ���out=103�. Here
�cr���out /� is a crossover frequency between two different re-
gimes governed by Eqs. �84� and �87�.

KINETICS OF QUASIPARTICLE TRAPPING IN A… PHYSICAL REVIEW B 75, 184520 �2007�

184520-11



of even- and odd-charge states of the Cooper-pair box. We
also calculate charge noise power spectrum generated by
quasiparticle capture and emission processes.

The lifetime of the even-charge state is an exponentially
distributed random variable corresponding to the homog-
enous Poisson process. However, the lifetime distribution of
the odd-charge state may deviate from the exponential one.
The deviations come from two sources—the peculiarity of
the quasiparticle density of states in a superconductor and the

possibility of quasiparticle energy relaxation via phonon
emission. The odd-charge-state lifetime distribution function
depends on the ratio of the escape rate of the unequilibrated
quasiparticle from the box �out and quasiparticle energy re-
laxation rate 1 /�.

The conventional Poissonian statistics for both quasipar-
ticle entrances to and exits from the Cooper-pair box would
lead to a Lorentzian spectral density SQ��� of CPB charge
fluctuations.13 The interplay of tunneling and relaxation rates
in the exit events may result in deviations from the Lorent-
zian function. In the case of slow quasiparticle thermaliza-
tion rate compared to the quasiparticle tunneling out rate
�out, the function SQ��� roughly can be viewed as a super-
position of two Lorentzians. The width of the first one is
controlled by the processes involving quasiparticle thermali-
zation and activation by phonons, while the width of the
broader one is of the order of the escape rate �out.
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APPENDIX A: POWER SPECTRUM OF CHARGE NOISE

Combining Eqs. �77�, �80�, and �81� we obtain the expres-
sion for the charge noise power spectrum,

SQ��� =
4e2

L���L�− ����
k

	�2 +
1

�2
�out�Ek�f�Ek − 	E��̄even + �out�Ek�2�odd
b �Ek�

�̄odd

�

��2 + ��out�Ek� + 1/��2�
+

�̄odd

� ��k

�out�Ek��odd
b �Ek�

− i� + �out�Ek� +
1

�
�

2� .

�A1�

Here the product L���L�−�� is given by

L���L�− �� = �2	1 −
1

�
�

k

�odd
b �Ek��out�Ek�

�2 + ��out�Ek� + 1/��2 + �
k

f�Ek − 	E��out�Ek�2

�2 + ��out�Ek� + 1/��2
2

+ 	1

�
�

k

�odd
b �Ek��out�Ek���out�Ek� + 1/��

�2 + ��out�Ek� + 1/��2

+ �
k

f�Ek − 	E��out�Ek���2 + 1/�2 + �out�Ek�/��
�2 + ��out�Ek� + 1/��2 
2

. �A2�

Equation �A1� can be simplified in the thermodynamic limit
by introducing functions Z1��� and Z2���,

Z1��� =
�out

D
�

k

�odd
b �Ek��out�Ek�

�2 + ��out�Ek� + 1/��2 �A3�

and

Z2��� =
1

D
�

k

�odd
b �Ek��out�Ek�2

�2 + ��out�Ek� + 1/��2 . �A4�

Here C and D are given by Eqs. �85�. Substituting Eqs.
�A2�–�A4� into Eq. �A1� one can obtain the general expres-
sion for SQ���,

FIG. 9. �Color online� The deviations of the charge noise power
spectrum SQ��� from the Lorentzian function at high frequencies
���out. Blue solid line corresponds to SQ��� given by Eq. �90�,
red dashed line is the normalized Lorentzian function with the
width �out.
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SQ��� =
4e2

�out

�	 �

�out

2

+ 	 1

��out

2�CZ1����̄even + DZ2���

�̄odd

��out
− D2 �̄odd

��out
�	Z1���

��out
+ Z2���
2

+ 	 �

�out

2

Z2
2����

	 �

�out

2	1 −

D

��out
Z1��� + CZ2���
2

+ �D + C

��out
Z2��� + �C	 �

�out

2

+
C + D

���out�2�Z1����2
. �A5�

The functions Z1��� and Z2��� can be written in the form
of the dimensionless integrals

Z1��� =
�odd

�	E��0

�

dz
e−z�z��odd�z�

�2 + ��odd�z� + 1/��2 , �A6�

and

Z2��� =
1

�	E��0

�

dz
e−z�z��odd

2 �z�
�2 + ��odd�z� + 1/��2 . �A7�

The dimensionless variable z here is defined in Eq. �52�.
Assuming that at low temperature the main contribution to
the integrals �A6� and �A7� comes from the small z region,

z�	E /2 T, one can simplify Z1��� and Z2��� using Eq. �57�
to obtain

Z1��� � �
0

�

dz
e−z�z

��/�odd�2z + �1 + �z/��odd�2

and

Z2��� � �
0

�

dz
e−z

��/�odd�2z + �1 + �z/��odd�2
.

In the slow relaxation case ��odd�1 functions Z1��� and
Z2��� are approximately given by Eqs. �88�.

Finally, by taking the appropriate limits in Eq. �A5� one
can recover Eq. �23� for “deep” and Eqs. �84� and �87� for
“shallow” traps, respectively.
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