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Linear response theory, commonly known as the random-phase approximation �RPA�, predicts a rich mag-
netic excitation spectrum for d-wave superconductors. Many of the features predicted by such calculations
appear to be reflected in inelastic neutron-scattering data of the cuprates. In this paper, I will present results
from RPA calculations whose input is based on angle-resolved photoemission data, and discuss possible
relevance to inelastic neutron-scattering data of La2−xSrxCuO4 �LSCO�, YBa2Cu3O6+x �YBCO�, and
Bi2Sr2CaCu2O8+x �Bi2212� in their superconducting and nonsuperconducting phases. In particular, the question
of the universality of the magnetic excitation spectrum will be addressed.
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I. INTRODUCTION

The nature of the magnetic excitation spectrum of the
cuprates is an important topic in its own right. However, it
has many implications beyond this as well. It is of special
relevance to those theories that propose a “magnetic” origin
for cuprate superconductivity.1 And it is of particular interest
to the current debate whether magnetic excitations or
phonons are responsible for certain strong-coupling features
observed in tunneling, infrared conductivity, and angle-
resolved photoemission spectra �ARPES�.2–4

Although there are a large number of theories for explain-
ing the observed magnetic excitation spectrum, to a first ap-
proximation, these theories can be collapsed into two groups.
The first are linear response calculations based on a two-
dimensional �2D� Fermi surface and the presence of a
d-wave energy gap. In this group are included calculations
which go beyond random-phase approximation �RPA� �such
as FLEX �Ref. 5�� and the generalization to the particle-
particle channel of the SO�5� approach.6 The other group are
those based on coupled spin ladders and related
approaches.7–11 They assume phase segregation of the mate-
rial into undoped antiferromagnetic domains separated by
one-dimensional “stripes” containing the doped holes. They
have the advantage of treating the full quantum-mechanical
nature of the spins but have the disadvantage that fermionic
degrees of freedom are neglected.

It is not the intent here to discuss the relative merits of
one approach versus the other. In some sense, both theories
are different limits of a more complex theory which properly
treats spin and charge degrees of freedom. Rather, I wish to
discuss what success linear response calculations have in re-
gard to describing magnetic excitation properties of the cu-
prates, but as well discuss their limitations. In particular, I
wish to address the question of whether there is a “universal”
behavior of the spin excitation spectrum based on the RPA
results. Ultimately, I hope these results will have some rel-
evance to a final understanding of the magnetic behavior of
these fascinating materials.

II. METHODOLOGY

The RPA expression for the interacting susceptibility is

��q,�� =
�0�q,��

1 − U�0�q,��
. �1�

In this equation, �0 is the polarization bubble constructed
from bare Green’s functions, and U is the effective Hubbard
interaction which results from projection onto the single
band subspace �that is, the band that is the antibonding com-
bination of copper dx2−y2 and oxygen px and py orbitals12�.

It is often stated that RPA is a weak-coupling approach,
applicable only to heavily overdoped materials which exhibit
Fermi-liquid-like behavior.13 However, it was shown by
Schrieffer et al.14 that RPA reproduces the superexchange J
and the resulting spin-wave dispersion of the undoped mate-
rial. Obviously, there are important quantum corrections to
these results, but these do not impact the overall correctness
of the approach. One important point to remark is that the
calculation of Ref. 14 was self-consistent in the sense that
the gapless nature of the spin excitations at q= �� ,�� is a
direct consequence of the mean-field equation for the Hub-
bard gap. Such self-consistency is difficult to implement in
the doped case because of the added complication of having
to calculate the screening caused by the doped holes.

There are two ways to proceed for the doped case. Con-
tinue to use bare Green’s functions and replace U by an
effective Uef f which accounts for screening.15,16 Or take the
infinite U limit, replace the Green’s functions by those of the
t-J model, and replace U by Jef f, where Jef f takes into ac-
count the reduction of J by the introduction of doped holes
�in the t-J approach, one is forced to scale J down to prevent
a magnetic instability from occurring17�. An important addi-
tional remark is that the screened interaction is now depen-
dent on transferred momentum q. This is particularly clear in
the t-J model, where J�q�=−J�cos�qxa�+cos�qya�� /2 due to
exchange between near-neighbor copper sites.

One limitation of the RPA approach is the use of bare
Green’s functions as opposed to dressed ones. However, it is
well known that using dressed Green’s functions means that
vertex corrections must be included.16 The neglect of such
vertex corrections typically leads to worse results than the
RPA.

The approach taken in this paper will be somewhat more
phenomenological. The bare Green’s functions will be based
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on dispersions derived from angle-resolved photoemission.
The resulting Uef f will be taken as an adjustable constant,
designed to reproduce the location of the S=1 resonance
mode at q= �� ,��. Calculations have been performed as well
assuming that Uef f has the same q dependence as J�q�. In a
more complete theory, one might work instead within the
context of dynamical mean-field theory and its cluster
generalization.18

The heart of the RPA calculation turns out to be the struc-
ture of the bare polarization bubble �0. For a superconductor,
this is19

�0�q,�� = �
k
�1

2
�1 +

�k�k+q + �k�k+q

EkEk+q
� f�Ek+q� − f�Ek�

� − �Ek+q − Ek� + i�

+
1

4
�1 −

�k�k+q + �k�k+q

EkEk+q
� 1 − f�Ek+q� − f�Ek�

� + �Ek+q + Ek� + i�

+
1

4
�1 −

�k�k+q + �k�k+q

EkEk+q
� f�Ek+q� + f�Ek� − 1

� − �Ek+q + Ek� + i�
	 ,

�2�

where Ek=
�k
2+�k

2. The coherence factors play a critical role
in the results.20 For an s-wave superconductor, the coherence
factor �in term 3 of Eq. �2�� vanishes on the Fermi surface.
The net result is that there are no spin collective modes in
this case. On the other hand, for an order parameter satisfy-
ing the condition ��k+q�=−��k�, the coherence factor be-
comes maximal on the Fermi surface �equal to 2�. As a con-
sequence, the imaginary part of the bubble has a step
discontinuity at threshold, and thus the real part has a loga-
rithmic divergence. This divergence guarantees the appear-
ance of a collective mode below threshold. This collective-
mode energy at q= �� ,�� will be denoted as the resonance
energy.

There is a common misconception that the appearance of
the collective mode requires the presence of a d-wave super-
conducting gap. In fact, the only requirement is that there is
a gap and the coherence factors do not vanish on the Fermi
surface. As an example, imagine that the pseudogap phase is
a phase disordered version of a superconductor. To a first
approximation, we can then set ��k�k+q�=0.21 In this case,
the coherence factor is now unity on the Fermi surface inde-
pendent of the value of k, and one finds a collective mode
below threshold as in the case of a d-wave superconductor.
As the coherence factor is now half that of the supercon-
ductor, then larger values of Uef f are needed to obtain similar
collective-mode energies. In this paper, a d-wave order pa-
rameter of the form ��k�=�0�cos�kxa�−cos�kya�� /2 is as-
sumed, although for some calculations the phase disordered
approximation was invoked as well.

Finally, some technical remarks are in order. Equation �2�
is solved by replacing � by some finite � and doing a simple
sum over the Brillouin zone. The smaller � is, the more k
points are needed in the sum. Results have been generated
for � ranging between 0.1 and 2 meV, with zone meshes
ranging from 400	400 to 4000	4000; but in this paper,
results are shown for �=2 meV �400	400 mesh�. All cal-
culations were performed for a temperature of 1 meV. All

susceptibilities quoted here are states per eV per CuO2 for-
mula unit and should be multiplied by the matrix element
�
g2�B

2�
Sz
�2=2�B
2 to compare to neutron-scattering

data.

III. RESULTS: NORMAL STATE

The most important input into the RPA calculations is the
assumed form of the fermionic dispersion. For instance, a
well studied case is a tight-binding model with just near-
neighbor hopping.6 When considering the response at
q= �� ,��, the threshold for the polarization bubble corre-
sponds to exciting from the node of the d-wave order param-
eter, kN, to an unoccupied state, kN+q, along the zone diag-
onal. As such, the threshold is independent of the d-wave
energy gap. The Fermi surfaces observed by angle-resolved
photoemission, though, differ considerably from those pre-
dicted by a near-neighbor-tight binding model. In particular,
the observed Fermi surfaces are characterized by “hot spots,”
that is, points on the Fermi surface which satisfy the condi-
tion �k=�k+q=0. In this case, the threshold of the bubble at
q= �� ,�� is determined by twice the energy gap at the hot
spots.

When considering the response for a general q, there is
even more sensitivity to the assumed fermionic dispersion.
To illustrate this point, in Fig. 1, I show the real part of the
normal state ��=0� bubble at �=0 for four different disper-
sions along the three symmetry axes of the 2D Brillouin zone
�a summary of the properties of these four tight-binding dis-
persions is listed in Table I�. The first dispersion �tb1� is that
based on an early tight-binding fit to ARPES spectra on
Bi2212.22 Two prominent features are observed �Fig. 1�a��.
First, there is a broad maximum around q= �� ,��. Second,
there are incommensurate peaks along the bond and diagonal
directions which correspond to scattering between the antin-

FIG. 1. Re �0 in the normal state at zero energy along the sym-
metry axes of the zone for �a� tb1, �b� tb2, �c� tb3, and �d� tb4. For
all figures, the zone notation is in � units and the susceptibility is in
units of states per eV/f.u.
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odal sections of the Fermi surface near the �� ,0� points. As
can be seen from the 2D plot in Fig. 2�a�, this scattering
forms a square box around the zone center, with maximum
intensity at the box corners. These peaks in the zero � limit
are logarithmically divergent.23 Although potentially impor-
tant for the charge response, they are probably not so for the
spin response �since J�q� has opposite sign in this region of
the zone�.

The other noticeable feature of Fig. 1�a� is the broad
maximum around q= �� ,��. As a consequence, in the
gapped case, the dominant behavior below the resonance en-
ergy is commensurate.24,25 However, this behavior is actually
the exception rather than the rule. At this point, a discussion
on how the fermionic dispersion is chosen is in order.22 A fit
is performed using a six parameter tight-binding model
which includes real-space lattice vectors of types �0,0�, �1,0�,
�1,1�, �2,0�, �2,1�, and �2,2�. In the original analysis, the fit-
ting variables were �1� the position of the Fermi surface
along �0,0�− �� ,�� �the node�, �2� the Fermi velocity at the
node, �3� the Fermi surface along �� ,0�− �� ,�� �the antin-
ode�, �4� the energy at �� ,0�, �5� the curvature of the disper-
sion at �� ,0� �along the kx direction�, and �6� the energy at
�� ,�� �this last condition is simply for stability of the fit�.
The behavior around q= �� ,�� in Fig. 1�a� is largely a con-
sequence of the fact that the saddle-point energy at �� ,0�,
−34 meV, is close to the Fermi energy. For dispersions
where this is displaced deeper in energy, a minimum is found
in Re �0 at q= �� ,�� rather than a maximum.

To illustrate this, a tight-binding analysis has been per-
formed on the latest high-resolution ARPES measurements
on optimal doped Bi2212.26 These data reveal an isotropic
Fermi velocity with a value of 1.5 eV Å. Fixing this condi-
tion forces the energy at �� ,0� to lie at −119 meV, as com-
pared to −34 meV in the earlier fit.27 This difference �disper-
sion tb2� has a profound effect on the real part of the bubble,
as can be seen in Fig. 1�b�. Now, incommensurate peaks are
observed around q= �� ,�� as well, and as can be seen in Fig.
2�b�, they form a diamond-shaped pattern. This structure is
actually discernible in Fig. 1�a� as kinks, but it is obscured
by the dominant maximum around q= �� ,��. The behavior
of Fig. 1�b� is also found for the t , t� dispersion used in Ref.
28, as the �� ,0� point in that case is at −129 meV.

The incommensurate effects can also be strengthened by
flattening the Fermi surface around the node.17,24 A disper-
sion which incorporates this effect, as well as the presence of
a flat quasiparticle band near �� ,0�, has the Fermi surface
illustrated in Fig. 3�c� �this is dispersion tb3 of Ref. 25 and is
denoted as tb3 here as well�. In this case, the effect of the
enhanced incommensurability and the tendency to have a
maximum at q= �� ,�� due to the small energy of the �� ,0�
point �−10 meV� approximately balance, leading to a net flat
behavior around q= �� ,��, as can be seen in Fig. 1�c�.

One issue is that there is not much inelastic neutron-
scattering �INS� data on Bi2212 because of the small sample
sizes, though this is starting to change.29 A large amount of
data is present for YBCO, but the electronic structure of this
material is complicated because of its strong orthorhombicity
and the presence of metallic chain layers. Instead, I consider
LSCO. This material has the advantage of having extensive
inelastic neutron-scattering data and a simpler electronic
structure �no bilayer splitting�. Recently, Tranquada et al.30

have pointed out that the inelastic magnetic response of non-
superconducting La1.875Ba0.125CuO4 �LBCO� is very similar
to that of superconducting YBCO,31 which makes this mate-
rial of particular interest. Extensive ARPES data exist on
LSCO. Recently, an in depth study was done on underdoped
LSCO �Ref. 32� and revealed a quite striking Fermi surface

TABLE I. Tight-binding dispersions based on angle-resolved
photoemission data. The first four columns list the coefficient ci of
each term �eV�, that is, ��k��=�ci�i�k��. The last column lists the
basis functions �the lattice constant a is set to unity�. Below this are
several properties of these dispersions: the node �kN ,kN�, the antin-
ode �1,kAN� �in � /a units�, the nodal velocity vN, the antinodal
velocity vAN �in eV Å�, the energy at �� ,0�, �M �eV�, the bandwidth
W �eV�, and the value of U needed for resonance at 40 meV in the
superconducting state.

tb1 tb2 tb3 tb4 2�i�k��

0.1305 0.1960 0.1197 0.0801 2

−0.5951 −0.6798 −0.5881 −0.7823 cos kx+cos ky

0.1636 0.2368 0.1461 0.0740 2 cos kx cos ky

−0.0519 −0.0794 0.0095 −0.0587 cos 2kx+cos 2ky

−0.1117 0.0343 −0.1298 −0.1398 cos 2kx cos ky +cos kx cos 2ky

0.0510 0.0011 0.0069 −0.0174 2 cos 2kx cos 2ky

0.365 0.365 0.414 0.440 kN

0.180 0.180 0.100 0.180 kAN

1.63 1.50 1.14 1.77 vN

0.48 1.50 0.24 0.91 vAN

−0.034 −0.119 −0.010 −0.070 �M

1.414 1.291 1.436 1.844 W

0.274 0.563 0.214 0.332 U

FIG. 2. �Color online� 2D zone plots of Fig. 1. The dynamic
range is the same as in Fig. 1.
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�Fig. 3�d��. The Fermi surface is characterized by two
straight sections, one centered about the node, the other
about the antinode. This Fermi surface, and the observed
dispersion �denoted as tb4�, is fitted using the condition �1�
node at �0.44,0.44��, �2� velocity at the node �1.8 eV Å�,
�3� curvature of the Fermi surface at the node �zero�, �4�
antinode at �1,0.18��, �5� �� ,0� energy at −70 meV, and �6�
�� ,�� energy at 1 eV �for fit stability�. The result for the
zero-frequency real response is shown in Figs. 1�d� and 2�d�.
Again, note the strong “boxlike” structure around the zone
center, and the pronounced incommensurate behavior around
�� ,�� due to the flat Fermi surface near the node. In this
context, it should be noted that the boxlike structure near q
= �0,0� is due to nesting of the antinodal regions, but the
diamondlike structure near q= �� ,�� is due to nesting of the
nodal regions. This is in contrast with the alternate stripes
model, where the incommensurability around these two q
vectors has the same origin.

A number of other tight-binding dispersions besides the
four discussed here have been analyzed as well, including
some that account for bilayer splitting.33 The results fall
within the range of behavior discussed for the four disper-
sions here. In addition, bilayer splitting leads to some extra
details in the even �optic� spin response due to differing mo-
mentum locations of features from bonding-bonding and
antibonding-antibonding responses.34 For simplicity, these
details are not discussed here as they do not occur in the
dominant odd �acoustic� spin channel which involves only
the bonding-antibonding response.

IV. RESULTS: SUPERCONDUCTING STATE

The presence of a d-wave energy gap leads to a polariza-
tion bubble which now becomes gapped for all q vectors in
the first zone but two �these vectors being the ones that con-
nect the nodes of the d-wave order parameter�. Because of

the strong anisotropy of the d-wave gap, the lower edge of
the particle-hole continuum also has a strong q dependence.
This continuum edge is plotted along the zone symmetry
axes in Fig. 4 for the four dispersions studied here. The
threshold at �� ,�� corresponds to twice the energy gap at the
hot spots. As one moves away from this wave vector, the
threshold splits28,35 into several ones: two for q� along �� ,x�
and three for q� along �x ,x�. Along �x ,x�, the zero threshold at
q�N=2k�N obviously corresponds to two nodal points, the
analogous minimum along �� ,x� involving only one nodal
point �the other being at k�N+ �� ,x��.

As briefly discussed above, the effect of an energy gap
has a profound impact on the polarization bubble. The pres-
ence of an energy gap, along with the fact that the coherence
factors at threshold do not generally vanish in the d-wave
case, leads to a step jump in the imaginary part of the bubble
at threshold. By Kramers-Kronig, such a step jump causes a
logarithmic divergence in the real part of the bubble at
threshold. As a consequence, any finite value of U will lead
to the presence of a collective mode below threshold. The
exception is in those cases where �k and �k+q have the same
sign, which in the d-wave case can occur for q vectors sig-
nificantly displaced from �� ,��. In addition, for a pole to
occur, then U must have a positive sign �this is relevant to
near-neighbor exchange models, where the positive sign only
occurs for qx+qy ��.

The value of U needed to have a pole at q= �� ,�� at a
particular energy varies significantly among the dispersions
looked at here �the values for 40 meV are also listed in Table
I�. This is a combination of the different Fermi surfaces
shown in Fig. 3, the different energies of the van Hove sin-
gularity at �� ,0� for these dispersions, and the different over-
all bandwidths. This variation of U involves a rather subtle
issue concerning whether one uses a bare dispersion based

FIG. 3. Fermi surfaces corresponding to Fig. 1.

FIG. 4. �Color online� Particle-hole continuum edge along the
symmetry axes of the zone. The maximum d-wave gap is 30 meV.
The dashed line in �d� corresponds to the process involving kN and
kN+q.
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on band theory, or a renormalized �quasiparticle� dispersion,
for �k in Eq. �2� �and also the issue of bilayer splitting�.
Again, the purpose here is to simply look at a range of dis-
persions and contrast their behaviors.

Figures 5–8 show the variation of the imaginary part of
the RPA susceptibility �Eq. �1�� with U tuned to yield a pole
at q= �� ,�� at 40 meV �50 meV for dispersions tb2 and
tb4—the reason for this difference will be discussed below�.

U was treated as a constant, though calculations were also
performed for U=J�q�. A maximum energy gap of 30 meV
was assumed.

Figure 5 shows results for tb1. At low energies, one sees
weak intensity near q�N corresponding to the nodes. As the
energy is raised to exceed the minimum threshold along
�� ,x�, this incommensurate pattern rotates 45°. The prefer-
ence for this rotated pattern was discussed by Schulz17,36 and

FIG. 5. �Color online� 2D zone plots of Im � for tb1 at �a�
10 meV, �b� 30 meV, �c� 40 meV, and �d� 50 meV. The maximum
d-wave gap is 30 meV, and U �0.274 eV� is chosen to give a reso-
nance at 40 meV. Scale is such that the lowest is 0 and the highest
are �a� 0.7, �b� 4.4, �c� 112, and �d� 21.3.

FIG. 6. �Color online� 2D zone plots of Im � for tb2 at �a�
10 meV, �b� 30 meV, �c� 50 meV, and �d� 100 meV. The maximum
d-wave gap is 30 meV, and U �0.508 eV� is chosen to give a reso-
nance at 50 meV. Scale is such that the lowest is 0 and the highest
are �a� 6.3, �b� 20.6, �c� 22.6, and �d� 7.0.

FIG. 7. �Color online� 2D zone plots of Im � for tb3 at �a�
10 meV, �b� 30 meV, �c� 40 meV, and �d� 50 meV. The maximum
d-wave gap is 30 meV, and U �0.214 eV� is chosen to give a reso-
nance at 40 meV. Scale is such that the lowest is 0 and the highest
are �a� 4.0, �b� 101, �c� 112, and �d� 10.6.

FIG. 8. �Color online� 2D zone plots of Im � for tb4 at �a�
10 meV, �b� 30 meV, �c� 50 meV, and �d� 100 meV. The maximum
d-wave gap is 30 meV, and U �0.276 eV� is chosen to give a reso-
nance at 50 meV. Scale is such that the lowest is 0 and the highest
are �a� 1.4, �b� 10.6, �c� 27.1, and �d� 5.5.
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is a consequence of the fact that translation by �x ,x� only
brings the Fermi surface into coincidence in one quadrant of
the zone, but translation by �� ,x� brings it into coincidence
in two quadrants �Fig. 9�. In addition, though, one sees a
global maximum at q= �� ,�� which is a consequence of the
global maximum seen in the normal-state response at zero
energy discussed earlier. Above the resonance energy
�40 meV�, the response becomes incommensurate, with the
displacement of the maxima away from �� ,�� increasing in
magnitude �but the response decreasing in strength� with in-
creasing energy. For a range of energies above resonance
��12 meV�, the incommensurate response corresponds to
damped poles, and mostly has maxima along �� ,x�, but for
some energies the maxima are along �x ,x�. This is due to the
anisotropy of the splitting of the particle-hole threshold as
one moves away from �� ,��. The overall response is best
appreciated by plotting the intensity as a function of energy
along the �x ,x� direction in momentum space as shown in
Fig. 10�a�. In the pole region �40–52 meV�, one sees a mag-
nonlike �quadratic� dispersion. Above this region, the re-
sponse rapidly loses strength and the dispersion becomes
more steep.

I now contrast this behavior with that from the next dis-
persion, tb2. This dispersion, based on ARPES fits to the
bonding Fermi surface in Bi2212, has �1� an isotropic veloc-
ity around the Fermi surface and �2� an energy for the �� ,0�
point which is much deeper than for tb1 �−119 meV as com-
pared to −34 meV�. As a consequence, this dispersion yields
a bubble whose real part has a relatively weak momentum
dependence, and is very typical of many of the dispersions
used in the theoretical literature. In fact, the momentum de-
pendence is so weak that with a constant U, the condition to
yield a resonance at 40 meV at �� ,�� implies the presence
of long-range order �that is, there is a q value at zero energy
where the real part of the bubble exceeds 1/U�. This forces
us to move the resonance condition close to the edge of the
continuum �where the real part of the bubble has a peak� in
order to avoid this problem. And obviously, because of the
weak momentum dependence, the value of U needed to ob-
tain a resonance condition is significantly larger than for tb1.
The results are plotted in Figs. 6 and 10�b�. Below reso-
nance, despite the lack of a commensurate response, the in-
commensurate response is similar to tb1, being dominated by
node-node processes at low energies, and then rotating to a

bond centered response once the minimum of the continuum
edge along �� ,x� is exceeded. The response becomes com-
mensurate at resonance �50 meV�, then one has a weak in-
commensurate response above resonance whose maxima
generally sit along the diagonals. Although this 45° rotation
of the incommensurate maxima is indeed what is seen in
YBCO �Ref. 31� and LBCO,30 the incommensurate response
above resonance still has an overall diamond shape to it un-
like the experiment. This shape is a consequence of 2kF scat-
tering which can be seen as well in the normal state �Fig.
2�b��. The overall behavior is best appreciated in Fig. 10�b�,
where in contrast to dispersion tb1, a very clear “reverse
magnon” dispersion is evident for the resonance mode.
Above resonance, the incommensurate response is almost
dispersionless and seems to follow the steep particle-hole
response involving scattering along the zone diagonal
�dashed red line in Fig. 4�d��. This steepness is due to the
high Fermi velocity along the nodal direction and unlike the
rest of the continuum response, it is independent of the en-
ergy gap.

The next dispersion, tb3, had been designed to enhance
the incommensurability by flattening the Fermi surface
around the node. In Fig. 7, one can see the strong diamond-
shaped incommensurate pattern below resonance that is a
result of the enhanced Fermi surface nesting in the nodal
region. The evolution of the pattern is again a diagonal re-
sponse at very low energies due to node-node processes, a
rotation by 45° to a bond centered pattern once the threshold
along �� ,x� is exceeded, commensurability at resonance
�40 meV�, and then again a complicated incommensurate re-
sponse above resonance due to the anisotropic splitting of the
continuum edge as one moves away from �� ,��. The overall
dispersion of the magnetic response is most visible in Fig.

FIG. 9. �Color online� Fermi surface for tb4 �dashed line� and its
q translated image �solid line� for �a� q= �1,0.76�� and �b�
q= �0.88,0.88��.

FIG. 10. �Color online� Plots of Im � versus energy and �x ,x��
for �a� tb1, �b� tb2, �c� tb3, and �d� tb4. Same conditions as Figs.
5–8. The intensity is on a logarithmic grid ranging from 0.1 to 100.
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10�c�. Note the pronounced downward dispersion of the
resonance which represents a true pole in the RPA suscepti-
bility in this case �this response is below the continuum
edge�. One then sees a weak intensity gap near the node-
node vector due to crossing into the continuum �the so-called
silent band37�. Beyond this, a new pole appears28 on the other
side of the continuum �the edge of which is again controlled
by the high Fermi velocity along the nodal direction�. One
then reenters the continuum, and the response rapidly loses
intensity and the damped polelike response is lost above
55 meV.

I now turn to the last dispersion, tb4. This is based on a fit
to underdoped LSCO ARPES data.32 The Fermi surface in
this case is characterized by strong nesting, both in the nodal
region and also the antinodal one. Putting the resonance con-
dition at 40 meV yields the same reversed magnon disper-
sion, silent band effect around qN �node-node vector�, and
second mode behavior for q�qN that was so prominent for
tb3 �Fig. 11�a��. The one contrast is at higher energies, the
incommensurability is much better defined than for the other
dispersions due to the strong nesting �this high-energy dis-
persion follows the steep dispersion along the nodal direction
shown in Fig. 4�d��.

However, for most of the results presented here, I choose
to show instead the case where the resonance condition is at
50 meV. This is interesting for two reasons: �1� this energy is
where the maximum response was seen in LBCO,30 and �2�
this energy corresponds to the continuum edge at �� ,�� �and
thus where there is a maximum in the real part of the
bubble�. U in this case is adjusted so that it is equal to the
inverse of this maximum value.

The results are shown in Figs. 8 and 10�d�. In this case �as
well as when the resonance is at 40 meV�, the incommensu-
rate response below resonance is much cleaner than for the
other dispersions, with very clear maxima along the �� ,x�
direction once the continuum edge energy along this direc-
tion is exceeded, with x at the lowest energies being given by
the condition k�N= �� /2−x /4 ,� /2−x /4�. One again sees a
clear rotation of the pattern by 45° as one crosses through the
commensurate resonance energy, but as with tb2, the re-
sponse above resonance has an overall diamond shape. Un-
like the other dispersions, a well defined incommensurate

pattern with maxima along the diagonal direction persists to
much higher energies, remaining clearly visible up to
140 meV. Above this energy, the response is less well de-
fined but still incommensurate. Note the very well defined
incommensurability at 100 meV, which is similar to that of
the real part of the bubble �indicating polelike behavior�. The
interesting point about this dispersion, as commented above,
is that the high-energy response typically follows the outer
branch of the dispersive response corresponding to scattering
processes along the nodal direction �dashed red line in Fig.
4�d��. This nodal velocity is set by the renormalized Fermi
velocity along the node, which in RVB-type models is pro-
portional to the superexchange J. This velocity is also essen-
tially constant with doping,38 suggesting a connection be-
tween the universal behavior observed in both ARPES and
INS data.

For this dispersion, calculations have also been performed
in the pseudogap approximation ��k�k+q=0 in Eq. �2��. This
is shown in Fig. 11�b�, and as can be seen, are virtually
identical to the superconducting results shown in Fig. 10�d�.
This indicates that the d-wave phasing relation is not neces-
sary to obtain the results shown in this paper �just an energy
gap—though we again note that for the s-wave supercon-
ducting case, there is no resonance effect�. In this connec-
tion, most of the dramatic findings in INS data are in the
underdoped regime where a pseudogap persists to very high
temperatures.

It is also amusing to present results for this dispersion
when the energy gap is set to zero. This is shown in Fig.
12�b� for the same U as used in the superconducting case in
Fig. 10�d�. The response is always incommensurate and is
bond oriented for ���c and diagonal oriented for ��c
�Fig. 13�. �c is the energy where the constant energy contour
for the dispersion switches from being holelike to electron-
like. Besides the lack of a commensurate resonance response,
and a spin gap due to the energy gap, there are interesting
similarities with the superconducting results.

V. CONCLUSIONS

In conclusion, RPA calculations show a remarkably rich
behavior, in particular, in the evolution of the momentum
response as a function of energy. This behavior becomes

FIG. 11. �Color online� Plots of Im � versus energy and �x ,x��
for tb4 for �a� superconducting state with a resonance at 40 meV
�U=0.332 eV� and �b� pseudogap state with a resonance at 50 meV
�U=0.343 eV�. The intensity is on a logarithmic grid ranging from
0.1 to 100.

FIG. 12. �Color online� Plots of Im � versus energy and �x ,x��
for tb4 for �a� superconducting state and �b� normal state. U is
0.276 eV. The intensity is on a logarithmic grid ranging from 0.02
to 20.
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even richer in the superconducting and pseudogap phases
due to the strong momentum anisotropy of the particle-hole
continuum edge due to the anisotropy of the energy gap.
There is a striking similarity of many of these findings to
experimental INS data in LSCO, YBCO, and Bi2212, in par-

ticular, the reversed magnon behavior of the resonance
mode, and the finding for several dispersions of a rotation by
45° of the incommensurate response when passing through
the resonance energy, which argue for universality in the
magnetic response as has been commented on in regard to
experimental INS data.

On the other hand, there are some differences that need to
be kept in mind. For instance, the incommensurate response
above resonance is generally more variable in the calcula-
tions than indicated by experiment. The fact that this is ap-
parent as well in calculations where the bare Green’s func-
tions are replaced by experimental Green’s functions39

indicates that this is a general issue. The author speculates
that the RPA calculations and alternate ones based on
coupled spin ladders are different limits of a more complete
theory that properly includes the full quantum-mechanical
nature of both the spin and charge degrees of freedom. The
development of such a theory should help shed more light on
the relation of the magnetic fluctuation spectrum and the
existence of d-wave superconductivity.
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