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Methods and results for numerical simulations of one and two interacting rf-SQUID systems suitable for
adiabatic quantum gates are presented. These are based on high accuracy numerical solutions to the static and
time dependent Schrödinger equation for the full SQUID Hamiltonian in one and two variables. Among the
points examined in the static analysis is the range of validity of the effective two-state or “spin-1

2” picture. A
range of parameters is determined where the picture holds to good accuracy as the energy levels undergo gate
manipulations. Some general points are presented concerning the relations between device parameters and
“good” quantum mechanical state spaces. The time dependent simulations allow the examination of suitable
conditions for adiabatic behavior, and permits the introduction of a random noise to simulate the effects of
decoherence. A formula is derived and tested relating the random noise to the decoherence rate. Sensitivity to
device and operating parameters for the logical gates NOT and CNOT are examined, with particular attention to
values of the tunnel parameter � slightly above one. It appears that with values of � close to 1, a quantum CNOT

gate is possible even with rather short decoherence times. Many of the methods and results will apply to
coupled double-potential well systems in general.
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I. INTRODUCTION

In previous work we have described quantum logic gates
based on the rf SQUID. The basic operation involved is an
adiabatic inversion, where the SQUID reverses flux states
under the sweep of an external field �ext. This is equivalent
to the logical NOT.1 When a second SQUID is added whose
flux can add or subtract from �ext, parameter ranges were
found for the two �1

ext ,�2
ext so that the two-SQUID system

undergoes a reshuffling of levels equivalent to the logical
operation CNOT.2,3

In this paper we present a study of these systems by nu-
merical simulations which enable us to examine these pro-
cesses in more quantitative detail. Among the points we can
examine is the validity of the “spin-1

2 picture.” In previous
work we often found good agreement with a simplified
“spin-1

2 analogy� where the two lowest states of each SQUID
are treated as an effective two-state system. This picture is
very useful in understanding and predicting the behavior of
the systems and here we examine its validity by simulations
for the full many-state system.

A further question which can be studied in detail is adia-
baticity. This is the operating principle for our quantum gates
and it is necessary to know under which conditions it holds.

Finally, we can use our programs to study the effects of
decoherence on the quantum gates. We will examine how to
introduce decoherence as a noise signal and study its effects
on our operations.

It should be stressed that our results would have been
difficult if not impossible to obtain without the extensive
system of numerical programs. Due to the sensitivity to the
various parameters and the subtleties of the tunneling prob-

lem, analytic methods would be difficult and uncertain. With
the high accuracy programs, a short run can replace other-
wise long, complicated, and often approximate formulas.

II. ONE-VARIABLE SYSTEM

We begin by shortly reviewing our approach2,3 as applied
to the one variable, one rf-SQUID system, at first without
decoherence. This will allow us to fix the notation and pa-
rameters, and to establish the connection between the full
Hamiltonian and the “spin-1

2 picture.”

A. Squid Hamiltonian

The SQUID Hamiltonian in terms of the capacitance C
and inductance L of the junction is H= −1

2C��0/2��2
�2

��2 +U with

U= � �0

2�
�2 1

L
� 1

2 ���−�ext�2�+� cos ��, where �=
2�LIc

�0
, Ic being

the critical current for the junction.4 The variable � is the
flux � in the SQUID loop in flux quantum units �=�

2�
�0

,
and furthermore shifted by � so that �=0 corresponds to the
maximum at the center of the double potential well U. Simi-
larly �ext is an external field, where due to the shift, �ext

=0 corresponds to a nonzero applied field of size
�0

2 . By
factoring out an overall energy scale E0=1/�LC so that H
=E0H we obtain the dimensionless Hamiltonian

H =
− 1

2�

�2

��2 + V0�1

2
��� − �ext�2� + � cos �	

=
− 1

2�

�2

��2 + ��1

2
��� − �ext�2� + � cos �	 . �1�

With this choice of the factor E0 the “mass” � and the “po-
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tential” V0 are equal, hence the second form in terms of a
common parameter �, whose value is �=�=V0


1030�C/pF
L/pH. In effect the capacitance C and inductance L

have been exchanged for an energy scale E0 and a dimen-
sionless number �. We shall discuss the physical meaning of
� below.

In the following we shall endeavor to express all energies
in terms of the general energy unit E0 and all times in the
time unit 1 /E0. To convert these to dimensional units one
multiplies by

E0 = 6.4 � 10−4 eV � �L/pH C/pF�−1/2

= 1.0 � 1012 radians/s � �L/pH C/pF�−1/2

= 7.7 K � �L/pH C/pF�−1/2

and for the time by 1/E0=1.0�10−12 s� �L / pH C / pF�1/2.5

Thus results with the dimensionless Hamiltonian, Eq. �1�,
which we will use in our computer simulations, are to be
converted to physical energies by multiplying by E0. Typical
values L=400 pH and C=0.1 pF for example, yield E0
=160�109 radians/s=1.2 K and �=16.3, while the time
unit is 6.3�10−12 s. We will use these values for “typical
examples” or when absolute times or energies are needed.
We shall usually work with �=1.19, which for L=400 pH
corresponds to a critical current of about 1 �A.

To carry out calculations with Eq. �1� for the eigenvalues
and eigenfunctions, the numerical method employed a large
basis of harmonic oscillator wave functions and expanded
the cosine as a low order polynomial. Since in the harmonic
oscillator basis polynomials are simple, sparse, matrices, the
problem is reduced to algebraic manipulations and a matrix
diagonalization. It was usually found that an expansion up to
eighth order for the cosine and a basis of 256 oscillator states
gave numerical stability. A typical run with a few hundred
basis vectors on a Pentium 4 machine lasts less than
1 minute and resolves our smallest energy splitting to better
than two significant figures.

B. Parameters of the Hamiltonian

Equation �1� contains three parameters, �ext, �, and �. The
applied flux �ext controls the asymmetry of the potential and
for �ext=0 the potential is symmetric. Figure 1�a� shows an
example with the potential in this symmetric configuration.
In this “level crossing” situation the energy splitting of the
lowest pair of levels is just the tunneling energy 	tunnel and
so is quite small. Here it is 0.0044 and not clearly resolved
on the plot.

Figure 1�b� shows, under the same conditions, an asym-
metric configuration with �ext=0.0020. To produce an adia-
batic inversion or NOT, �ext begins at such a nonzero value
and adiabatically “sweeps” to the opposite value. The level
splitting is now dominated by the shift of the potential and
not the tunneling. The splitting of the lowest pair is 0.060, an
order of magnitude greater than in the symmetric configura-
tion. The wave functions of the energy eigenstates are now
concentrated in the left or right well, while at “level cross-
ing” they were 
 linear combinations of these states.

Turning to the parameter �, raising its value both in-
creases the “mass” and the height of the potential and so will

generally lead to a greater concentration of the wave function
in one of the potential wells, as well as a reduction of the
tunneling. Thus it characterizes how well a flux state is lo-
calized in the � variable, and the rather large values we deal
with mean we have relatively well-defined flux states for our
basis states.

The parameter �, finally, has a strong effect on the tun-
neling since increasing its value both widens and heightens
the barrier. Thus increasing � from 1.19 to 1.35 leads to
three pairs of well-defined states below the barrier, with a
tunnel splitting of only 2.0�10−6 for the lowest pair. In the
other direction, for � somewhat less than 1, there are no
longer any states localized around a definite value of the flux
at all. The most interesting region for the present purposes
appears to be the values of � somewhat greater than 1, and
for most of our simulations we shall use �=1.19. With �
=1.19, �=16.3, the splitting at level crossing is 0.0044, while
the distance to the next set of levels is 0.48. This difference
of two orders of magnitude provides a factor of 10 margin in
manipulating the levels with still a factor of 10 to the next
set. However in studying specific designs it may be of inter-
est to make a careful study of the behavior with respect to
� in the vicinity of 1, and we shall also briefly consider
�=1.14.

FIG. 1. Potential with first four energy levels according to Eq.
�1�, for �=1.19 and V0=�=16.3. �a� The symmetric or “level
crossing” configuration with �ext=0. The lowest line represents a
pair of levels which are not clearly resolved on the plot. �b� An
asymmetric configuration with �ext=0.0020, showing a much
greater pair separation. The horizontal axis represents the reduced
flux � defined in the text. The vertical axis is the energy in units of
6.4�10−4 eV�L / pH C / pF�−1/2.
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Finally, it should be observed that the energy splitting
from our lowest pair of states to the next ones is on the order
of the energy unit, which is E0�1 K. Consequently when
working well below 1 K, which we shall assume, one can
expect only the lowest pair of states to be populated, and the
neglect of thermal over-the-barrier transitions to be justified.

III. IDENTIFICATION WITH A SPIN-1
2 SYSTEM

It is frequently a useful simplification to use the “spin
picture” where we treat two closely separated levels, such as
the lowest pair in Fig. 1, as the two states of a “spin-1

2
system;”8 and for the two-qubit system as two such spins. In
this section we discuss the relation between this picture and
the full Hamiltonian. The spin picture Hamiltonian in the
absence of noise or decoherence is

H = 1
2� · V , �2�

where we drop an irrelevant additive constant.
We wish to use the two lowest states of Eq. �1� as our

qubit, and to identify it with a system which can be effec-
tively described by the simple Eq. �2�. In other words, we
wish to use the two lowest energy eigenstates found from the
exact Eq. �1�, with say �ext=0, to span a two-dimensional
basis to set up the spin picture. We assume that as �ext is
varied over a small range we stay in this Hilbert space and
always deal with various linear combinations of the same
wave functions. This seems a plausible assumption when the
tunneling energy is small compared to the other level split-
tings, and we shall present evidence for it below.

Having made this assumption, the next question is which
linear combinations are to be used as the fixed basis—in the
spin language which linear combinations to choose as “spin-
up” and “spin-down” along an abstract “z axis.” As for the
flavor with neutrinos and K mesons, or the handedness with
chiral molecules,8 we wish to choose these basis states to be
eigenstates of a definite, externally measurable, property of
the system. Here we choose the direction of the flux, i.e., the
current in the SQUID, corresponding to the system localized
either in the left-hand or the right-hand potential well. Due to
the tunneling these states are not energy eigenstates and so
not stationary; they will generally undergo oscillations in
time.

This choice implies that the basis states, those to be iden-
tified with “spin-up” and “spin-down” along the “z axis,” are
chosen to be eigenstates of the flux �. In terms of the full Eq.
�1�, these are wave functions concentrated in one potential
well only. Now in our two-dimensional space spanned by the
two lowest eigenstates, the “position” variable � is a 2�2
matrix. This matrix can be expanded in terms of the Pauli
matrices. Our choice that the basis states are eigenstates of �
means that the abstract axes are defined such that � is pro-
portional to the diagonal Pauli matrix �z,

� � �z. �3�

Furthermore, we can approximately establish the constant
in this relation by using the fact that for the so-defined eigen-
states of �z the wave function is approximately localized. We

then approximately know the value of �, since operating on
one of these states, for example, �R for a state concentrated
in the right well, we expect ��R
�c�R where the number
�c is the value of the variable � where the wave function is
concentrated, say has its maximum value. Since �z operating
on one of the localized states has been defined as ±1, Eq. �3�
becomes

� 
 �c�z. �4�

As may be seen in Fig. 1, �c will usually be roughly 1.
With this identification we now proceed to analyze the

full Hamiltonian Eq. �1�. Since we always take �ext small, it
is a good approximation to write Eq. �1� as

H 

− 1

2�

�2

��2 + ��1

2
�2 + � cos �	 − ��ext� . �5�

Equation �5� represents the total Hamiltonian as the Hamil-
tonian for the case of the symmetric or “level crossing” po-
tential where �ext=0 and an asymmetric term proportional to
�. Evidently, in view of Eq. �4� and the symmetry of the first
part of Eq. �5�, the last term in Eq. �5� is to be identified with
the 1

2Vz�z of the spin Hamiltonian Eq. �2�.
From this observation we can, by using Eq. �4�, identify

the value of Vz in Eq. �2� with the parameters of the full
Hamiltonian Eq. �1� as

Vz 
 2��ext�c. �6�

With �c close to 1, we anticipate Vz
2��ext. Below we
show a more exact calculation of Vz from the numerical re-
sults with the full Hamiltonian.

The quantity from the full Hamiltonian to be associated
with the magnitude V of V in the spin picture is easy to
identify. The eigenvalue splitting of 1

2� ·V is always V. Thus
given a numerical calculation with Eq. �1� yielding the level
splittings, we anticipate

splitting = V = �Vz
2 + Vx

2, �7�

where “splitting” is the energy difference of the two lowest
states. �A Vy does not enter into our considerations since all
quantities are real and �y would involve imaginary quanti-
ties.�

The x-component Vx represents the tunneling energy
	tunnel, or the splitting resulting from the first, symmetric part
of Eq. �5�, the Hamiltonian at “level crossing.” We can there-
fore obtain Vx from the numerical evaluation at �ext�Vz=0,

Vx = 	tunnel = �splitting���ext=0�. �8�

The numerical value of Vz then follows from those for V and
Vx:

A. Energy level behavior

We can test this picture, where Vx and Vz are treated as
approximately independent quantities, by plotting the split-
tings from the full numerical calculation vs �ext to check if
they have the expected form �Vz

2+Vx
2, with Vz proportional to

�ext and Vx a constant. This is shown in Fig. 2. There is an
excellent fit to this form with the fit constant for Vx equal to
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the value at level crossing. In addition the fit coefficient C in
Vz=2C�ext is 14.9, while from the estimate Eq. �6� we would
expect C
V0�c which with �c
1 is 16.3. Or if we adjust
�c to make the identification exact, we need �c=0.91. In-
spection of a plot of the wave function shows that its maxi-
mum is indeed close to this, at about �=0.88.

Table I shows some of these values and also those for
some larger �ext. Deviations from the linear behavior split-
ting ��ext begin to set in at about �ext=0.015, where the
splitting is near one-half unit. As would be expected, this is
on the order of the distance to the next set of levels, as seen
in Fig. 1. Thus, for the behavior of the energy levels at small
�ext, there is quite good agreement between the numerical
calculations with the full Hamiltonian and the “spin-1 /2 pic-
ture.” Experimentally, a plot equivalent to Fig. 2 has been
mapped out to about �ext=0.008.6

B. Rotation angle

As another check on the simple two-state picture, we can
consider two independent ways of finding the angle the
“spin” makes with the abstract z axis. One way is to use Vx
and the magnitude V from the energy splittings. These are
given by Eqs. �8� and �7� and the resulting V from sin V
=Vx /V is given in Table I. A second way, using only the
Hamiltonian at a given �ext, is to find the angle of rotation
from the energy eigenstates to the “�z” eigenstates. If the
angle that V makes with the z axis is , then the eigenstates
v± of the spin Hamiltonian are given in terms of the spin-up,
spin-down states u± as �cos 

2u++sin 
2u−� and �−sin 

2u+

+cos 
2u−�. Thus by finding the rotation from the v to the u

we may determine . Numerically, this is done by computing
the 2�2 matrix of � in the energy eigenstate basis and find-
ing the rotation necessary to diagonalize it. The results are
shown in the table as �. Disagreement between the two
methods begins to appear around �ext=0.01, where the split-
ting is 0.3 energy units. This comparison is perhaps more
sensitive than that using the energy levels alone. However
the disagreement is only significant when the angle is small.

C. Hilbert space completeness

Finally, as another check, we can try to directly see if the
system remains in the same two-dimensional Hilbert space
as �ext is varied. We examine this by comparing the spaces
spanned by the two lowest eigenstates of the Hamiltonians
with different �ext. The worst overlap between the eigen-
states of the Hamiltonian with �ext=0 and those with the
nonzero �ext are listed in the column “Completeness.” The
method will be explained below when the two-dimensional
case is discussed. Significant deviations again appear around
�ext=0.015 and one notes a sudden change as mixing with
the next set of principal states becomes important.

In summary, the two state picture seems to work well with
the parameters used here, up to about 0.01 for �ext, or pair

FIG. 2. Level splitting as a function of �ext for small �ext, from
the numerical calculation with the full Hamiltonian. A good fit with
the “spin-1

2” form splitting=�Vz
2+Vx

2=��2C�ext�2+ �Vx�2 is ob-
tained, yielding Vx=0.0040 and C=14.9. C is in agreement with the
prediction Eq. �6�.

TABLE I. Quantities from the exact numerical simulation for comparison with those of the “spin-1
2

picture.” The energy splittings are to be seen in relation to the distance to the next set of levels, which is
about 0.6 units. The angle V refers to the angle the V vector makes with the z axis, while the angle � refers
to the same angle inferred from the spinor eigenfunctions, as described in the text. “Completeness” charac-
terizes how well the two states in question remain in the same state space as �ext is varied. In general, the
results indicate that the two-state picture holds to about �ext
0.01. Blank spaces in tables imply repetition of
previous values.

� � �ext Splitting sin V V �rad� � �rad� Completeness

1.19 16.3 0.0 0.0044 1.0 1.6 1.6 1.0

0.000030 0.0045 0.98 1.4 1.4 1.0

0.00010 0.0053 0.83 0.97 0.97 1.0

0.00030 0.010 0.44 0.46 0.46 1.0

0.00070 0.021 0.21 0.21 0.21 1.0

0.0020 0.060 0.073 0.073 0.075 1.0

0.0070 0.21 0.021 0.021 0.027 0.99

0.010 0.30 0.015 0.015 0.024 0.99

0.015 0.45 0.0099 0.0099 0.042 0.95

0.019 0.54 0.0081 0.0081 0.59 0.23
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splitting �0.2 energy units, to be compared with the princi-
pal level spitting of �0.6 units. Inside this range, the picture
that we always deal with different linear combinations of the
same two states while the Hamiltonian varies seems to be
justified.

IV. ADIABATICITY

Our gates operate by a sweep of the externally applied
�ext. The speed of a sweep is of course relevant to how fast
a device or a set of devices might operate. Probably more
important than the simple speed, however, is its connection
with the decoherence question. The decoherence is charac-
terized by a rate �our D below�. Therefore fast gates, giving
the decoherence less time to act, are favorable from the point
of view of decoherence.

Although in principle very fast sweeps thus seem desir-
able, this is not possible without violating the adiabatic con-
dition upon which the gate operations are based. It is there-
fore of interest to find out how fast sweeps can be performed
without violating adiabaticity. Using the simulation programs
we can study this point in detail. First we examine the simple
case of the adiabatic inversion or NOT, using one SQUID
without decoherence.

To deal with the time dependent Hamiltonians numeri-
cally, repeated iterations of �1+ iH�t� were employed, ap-
plied to wave functions found by the methods of the static
calculation described above. To save time in such runs the
matrix H was calculated not in the original large oscillator
basis but in a reduced basis of the few lowest energy eigen-
states. The results could be checked by incorporating more
states into this “second cut” basis. Usually, as might be ex-
pected from the arguments around Table I, two states were
sufficient in one variable and four states in the two variable
problem.

According to the estimate given in Ref. 2, adiabaticity is
guaranteed when the sweep time tsweep is sufficiently long
such that

�

tsweep
� 	tunnel

2 , �9�

where � is the initial energy level splitting �same as the initial
difference of the minima of the potential wells to about
10%�. The condition is sensitive to 	tunnel because the viola-
tion of adiabaticity takes place essentially at level crossing.
Violation occurs when the rate of change is too fast; and the
left-hand side of Eq. �9� characterizes this velocity of change
of the system. Note we cannot make the left-hand side
smaller by simply reducing �. If we want to retain a good
definition of the original state as approximately a state of
definite flux, one requires Vz /Vx�1 or ��	tunnel, that is a
substantial initial splitting compared to the splitting at
“crossing.”

We may characterize the “success” of an adiabatic inver-
sion by starting with a wave function which is an eigenstate
of the initial potential, evolving it in time with the changing
potential, and finally comparing it with the stationary wave
function to which it should arrive, namely the eigensolution
for the final potential. In the case of perfect adiabaticity the

two wave functions should be the same. Thus we can gauge
the loss of adiabaticity by the deviation from one of the
scalar products of the evolved wave function with the “tar-
get” wave function. Figure 3 shows the evolution of this
“overlap,” in terms of the scalar product squared. A relatively
fast �tsweep=7500 time units� and a slower sweep �tsweep

=15 000� are shown. While the final overlap is about 0.9 for
the slower sweep, it only reaches 0.7 for the faster sweep.
Table II shows this final overlap for a choice of parameters.

From Eq. �9� one can form the adiabaticity parameter
	tunnel

2 tsweep/�, which is shown in the next-to-last column of
the table. This parameter, which compares the splitting at
“crossing” with the “velocity” � / tsweep of passing through the
crossing, will be recognized as that which arises in the
Landau-Zener theory.7 As would be expected, one observes
that values of the parameter of order one characterize the
transition from adiabaticity to non-adiabaticity, and that simi-
lar values of the parameter give similar results. However,
there appear to be some small deviations �see the 0.90 val-
ues�, showing the usefulness of detailed numerical calcula-
tions. A value of about 4 or greater for the adiabaticity pa-
rameter appears necessary to achieve a 90% success
probability, while a value near one gives the 50% point. With
the typical time unit of 6.3�10−12 s a sweep of thousands of
time units corresponds to some nanoseconds. Table II exhib-
its the great sensitivity of 	tunnel to �, a reflection of the
exponential nature of the tunnel splitting.

In the simulations the sweep is carried out by simply let-
ting �ext vary at a constant rate as it goes from some initial
value to the same value with the opposite sign; that is, the
sweep is simply linear with a constant “velocity.” In more
refined versions of the sweep procedure, it is conceivable

FIG. 3. Study of adiabaticity. The behavior of the “overlap” or
scalar product �squared� between an evolved wave function and the
target eigenstate of the final Hamiltonian. The evolved wave func-
tion is calculated from the Schrödinger equation with the Hamil-
tonian Eq. �1� containing a time-varying �ext that reverses sign.
Two sweeps are shown, one �lower� with tsweep=7500 time units
and one �upper� with tsweep=15 000 units. The time unit is 1.0
�10−12 s� �L / pH C / pF�1/2. “Level crossing” or �ext=0 occurs at
1
2 tsweep. The adiabatic inversion or reversal of the flux state of the
SQUID is more “successful” for the slower sweep. Conditions are
the same as for the �=1.19 case in Table II.
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that special wave forms could be used so as to pass through
the dangerous vicinity of �ext=0 slowly while the overall
sweep is very fast. However, it should be kept in mind that
the decoherence is also most effective in the vicinity of
“level crossing” �see below�. All calculations presented here
are performed with simple linear sweeps.

V. DECOHERENCE

We shall present a simple model for the decoherence suit-
able for numerical simulation and then examine its effects in
various contexts. We first apply the model in the “spin-1 /2
picture” where it can be handled analytically and then com-
pare with numerical calculations with the full Hamiltonian.

A. Introduction

To discuss decoherence it is necessary to introduce the
density matrix �.9 For our present purposes we think of � as
a matrix arising from an average over different wave func-
tions:

� = ��† =
1

N
�
a=1

N

�a�a†, �10�

where each �a is a column vector and so � is a matrix. Our
model will simulate the decoherence as a noise in the Hamil-
tonian, producing different wave functions in the evolution
from an initial time to a final time. We then average over
these wave functions according to Eq. �10� to obtain the
density matrix.

We recall the description of decoherence for the two-state
system when thermal over-the-barrier transitions are
neglected.8 The decoherence is characterized by the param-
eter D arising in the effective “Bloch equation” giving the
evolution of the density matrix. That is, the 2�2 density
matrix is written in terms of the Pauli matrices � is �= 1

2 �1
+P ·��. The information about the state of the system is in
the “polarization vector” P, whose time dependence is given
by

Ṗ = P � V − ḊPT, �11�

where “T” stands for “transverse,” and means the compo-
nents of P perpendicular to the direction in the abstract space
chosen by the external perturbations, here the z axis associ-
ated with the basis states defined earlier. PT then refers to the
x ,y components and represents the degree of quantum phase
coherence between the two basis states u±. The shrinking of
PT induced by D in Eq. �11� signifies a loss of phase coher-
ence between the basis states. The parameter D thus charac-
terizes the decoherence rate of the system. We shall also use
tdec=1/D to refer to the decoherence time.

An important conclusion one can draw from Eq. �11� is
that the major contribution to the decoherence occurs at
“level crossing.” In a sweep passing through a “crossing” the
P vector swings from “up” to “down” so that at “crossing” it
is purely horizontal, with a large PT. If we take the scalar
product with P in Eq. �11�,

1

2

d

dt
P2 = P · Ṗ = − DP · PT = − DPT

2 . �12�

Since the departure of �P� from 1 measures the loss of coher-
ence, the equation shows that the greatest “shrinkage,” i.e.,
loss of coherence, occurs when P is transverse, at level
crossing.

B. Random field in the full Hamiltonian

To simulate the decoherence numerically we adopt a ran-
dom field approach, where we suppose a small random time-
dependent perturbation present in the Hamiltonian. This
gives different realizations a of the Hamiltonian Ha. Starting
with a given initial wave function, we evolve it with Ha�t� to
yield a final �a. Multiple repetitions of this procedure, with
an average over the different realizations �a according to Eq.
�10�, gives the density matrix originating from the initial
pure state. This procedure can be implemented on the com-
puter in a straightforward way.

We shall model the perturbations due to the external en-
vironment as a kind of flux noise, with a random noise N

TABLE II. Tunnel splitting 	tunnel as a function of � and its effect on adiabaticity. One observes a rapid
change in 	tunnel with �. The resulting effect on the “success” of an adiabatic inversion is measured by the
“final overlap” as in Fig. 3. Similar values of the adiabaticity parameter give similar results for the overlap.
With our “typical parameters” 1000 time units is 6.3 ns.

� � Initial �ext � 	tunnel tsweep 	tunnel
2 tsweep�−1 Final overlap

1.14 16.3 0.002 0.055 0.027 1 000 13 1.0

1.14 0.055 0.027 300 4.0 0.90

1.18 0.058 0.0065 10 000 7.3 0.98

1.18 0.058 0.0065 4 000 2.9 0.78

1.19 0.060 0.0044 15 000 4.0 0.90

1.19 0.060 0.0044 7 500 2.4 0.70

1.19 0.060 0.0044 4 200 1.4 0.50

1.21 0.063 0.0019 80 000 4.6 0.90

1.21 0.063 0.0019 40 000 2.3 0.68

1.29 0.075 0.000045 120 000 0.0032 0.016
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added to �ext such that �ext→�ext+Na�t�. The external flux
is of course not the only possible source of noise, in principle
one may envision fluctuations of any of the parameters in the
Hamiltonian. However the flux noise may well be a good
representation of the decoherence, and may also correspond
to the main source of external noise in actual experiments.
Naturally, many of our general conclusions will remain valid
regardless of the specific origin of the noise and/or decoher-
ence.

Neglecting N2 effects, 1
2 ��−�ext�2→ 1

2 ��−�ext�2

−�Na�t�, and the Hamiltonian becomes

Ha =
− 1

2�

�2

��2 + V0�1

2
��� − �ext�2� + � cos �	 − V0�Na�t� .

�13�

C. Random field in the spin picture

To interpret the additional term in Eq. �13� we use the
identification Eq. �4�, relating � to the �z of the spin picture,

− V0�Na�t� 
 V0�cNa�t��z = �zB
a�t� , �14�

where we call the quantity −V0�cN the random field B; the
noise term has the interpretation of an additional random
“magnetic field” B applied to the z component of the spin.

We take this random field to have average value B̄=0.
The Hamiltonian of the spin picture is now

Ha = 1
2� · V + Ba�z, �15�

and the problem can be addressed by considering the random
walk in the phase of the state induced by the Ba. Finding the
resulting drift in PT and comparing with Eq. �11�, yields the
identification

D =
1

t
2�

0

t �
0

t

dt�dt�B�t��B�t�� = 4�
0

�

B�t�B�0�dt , �16�

using standard random noise theory.10 Thus in the “spin-1 /2
picture” D is given by the integral of the autocorrelation
function of the random field. Or, regarding �zB

a as a perturb-
ing energy �E, one can also say D=4�0

��E�t��E�0�dt.
As is evident for a random walk argument, or from the

assumptions used in the original derivation8 of Eq. �11�, it is
assumed that the frequencies of the random perturbations
entering into D are high compared to the slow coherent mo-
tions of P induced by V. In the thermal context, where one
anticipates the perturbing frequencies to be on the order of
the temperature, this means that the energy splittings induced
by V are assumed small compared to the temperature �k
=1 units�. For this reason it is consistent that in Eq. �11� the
density matrix at long times relaxes to the identity and not to
the form that would be given by a Boltzmann factor. Simi-
larly, low frequency instrumental noise in the laboratory
would be better treated as an additional contribution to V
rather than being incorporated into D. In our simulations we
always treat the noise as being of high frequency in the sense
discussed here.

D. Modeling of the noise

A simple noise model suitable for numerical simulation is

N�t� = ��t�� , �17�

where � is a random sign �= ±1, and � is a positive mag-
nitude. Let �t be a certain small time interval during which �
is constant and let the probability that there is a sign switch
for the next interval be psw �and to remain unchanged 1
− psw�. This procedure, in the limit of small psw and �t, leads
to an exponential distribution for the noise pulse lengths and
an autocorrelation function

��t���0� = e−2pswt/�t = e−2�t, �18�

where �= psw /�t. Introducing the noise power to characterize
the frequency content of the noise signal,10 such an autocor-
relation function leads to the noise power spectrum
�0

�dt cos 	t��t���0�=
	c

	c
2+	2 , with 	c=2�=2psw /�t a cutoff

frequency. This spectrum is roughly constant �“white noise”�
up to the cutoff at about 	c and then falls off as 	2 at higher
frequencies. We attain the highest cutoff, the closest approxi-
mation to infinite frequency white noise, by choosing the
switching time �t as small as possible, i.e., equal to the pro-
gram step and with the switch probability psw=1/2. In this
case 	c=1/program step.

For Eq. �16� we need the time integral of the autocorrela-
tion function, which is

�
0

�

N�t�N�0�dt = �2/	c. �19�

Using Eq. �16� and recalling the definition of B in Eq.
�14�, one obtains, finally

D = 4�V0�c�2�2

	c
. �20�

The 1/	c behavior originates in the fact that one is essen-
tially performing a random walk in the phase of the wave
function, and the step length of this random walk is ���t
�� /	c. In the next section we check this prediction from
the spin-1 /2 picture against simulations with the full Hamil-
tonian.

E. Tests of the noise simulation with the full Hamiltonian

We now proceed numerically, using the SQUID Hamil-
tonian Eq. �13�. An initial state is evolved with Eq. �13� with
a given noise realization Na. Repeating this procedure many
times a final density matrix is obtained by averaging over
different realizations according to Eq. �10�. If the two-state
approximation is good, we should observe a decoherence
rate in agreement with Eq. �20�.

The numerical calculations were again carried out by re-
peated iterations of �1+ iH�t�. As few as 30 samples of the
random field often give good �10%� results. A time step �t

1 was usually found sufficient. For higher accuracy more
samples and smaller time steps can be used.

It should be noted that the density matrix arising here
from Eq. �10� has a slightly different significance than in the
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“spin-1 /2 picture.” Since we now work with full wave func-
tions ���� in the “position coordinate” �, all eigenstates of
the SQUID Hamiltonian are potentially present in the wave
function and in the density matrix ���� ,��. Therefore, to
compare with the results of the preceding section we must
specify some basis of wave functions and evaluate the matrix
elements of ���� ,�� in that basis. We shall use either the two
lowest energy eigenstates, or the “up,” “down” basis corre-
sponding to the eigenstates of �z.

F. Damping of PT

In general the evolution of the density matrix will reflect
the simultaneous effects of the internal Hamiltonian and the
external interactions. In Eq. �11�, D gives a damping of the
transverse components of P. Thus the simplest way to see the
effects of the decoherence alone is to start from an eigenstate
of the symmetric, �ext=0, Hamiltonian where V is parallel to
P and purely transverse. In the “spin-1 /2 picture” P would
start in the x direction with value 1 and decay exponentially
with decoherence time 1/D to the value 0.5.

For the numerical simulation of this situation with the full
SQUID Hamiltonian we begin with the lowest energy eigen-
state, obtain the density matrix at a certain time, and take its
expectation value with respect to the starting wave function,
which quantity we call �11. Figure 4 shows the results using
the noise parameters �=0.000 32, 	c=0.05 for N. An expo-
nential fall-off is observed, and a fit gives D=0.0017. From
Eq. �20� with �c
0.90 we predict D=0.0018. This is in
good agreement with the fit. We note that this value of D is
not large in comparison to the energy splitting Vx=0.0044, so
that in Eq. �11� both terms on the right are of the same order

of magnitude. A prediction of the curve from Eq. �11� using
this D and Vx is essentially indistinguishable from the fit
curve. Excitations to higher states were allowed by the pro-
gram �“second cut” =4�, but none are evident in that the
decay of the curve is to 0.5 and not a smaller value. Runs
with two or four states for the “second cut” showed no sig-
nificant differences.

G. Damped oscillations

To exhibit the characteristic two-state oscillations, Fig. 5
gives the results of a simulation run with the same param-
eters, but now with the initial state chosen to be an eigenstate
of �z, i.e., localized in one of the potential wells. The eigen-
state of �z is found by constructing the 2�2 matrix for � in
the two first energy eigenstates and then finding the eigen-
vectors of this matrix.

We anticipate that the wave function will oscillate back
and forth with a damping governed by D, as is indeed seen in
Fig. 5. The quantity plotted is the density matrix element
with respect to the starting state, which has the two-state
interpretation �11= �1/2��1+ Pz�t��. Again we find no percep-
tible difference between runs using a two-state and a four-
state basis for the time evolution, indicating little excitation
of higher states with these parameters.

H. Turing-zeno-watched pot effect

We briefly look at strong damping, which is the limit

D

	tunnel
� 1. �21�

Note that in dividing Eq. �11� by V, one obtains an equation
containing only the scaled time variable tV and the parameter
D /V, so that when using a time variable appropriately scaled
to the oscillation frequency, D /V is the only parameter in Eq.
�11�. With large D /V we enter the regime of the “Turing-
zeno-watched pot effect” where one expects8 that the damp-
ing D inhibits the tunneling strongly; if the system is in one

FIG. 4. Effect of decoherence, as simulated by random noise in
the full Hamiltonian Eq. �13�, for the symmetric case with �ext=0.
The initial state is the lowest energy eigenstate. The pure state at
t=0 is converted to the maximally mixed state. The quantity plotted
is �11 in the basis of energy eigenstates, which for �ext=0 corre-
sponds to 1

2 �1+ Px�. The data is fit to 1
2 �1+e−Dt� yielding D

=0.0017, in good agreement with the prediction D=0.0018 from
Eq. �20�. Noise parameters were �=0.000 32, 	c=0.05. With the
“typical” time unit �L / pH C / pF�1/2�1.0�10−12 seconds=6.3
�10−12 seconds, the decoherence time 1/D=560 corresponds to
3.5 ns. SQUID parameters were �=1.19, �=16.3.

FIG. 5. Same conditions as Fig. 4 but with the initial state cho-
sen as an eigenstate of �z. Since this is not an energy eigenstate
oscillations occur, which are then damped by the decoherence. The
vertical axis corresponds to 1

2 �1+ Pz�. The curve is to guide the eye.
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of the potential wells it tends to remain there. We approach
the “classical” situation where quantum mechanical linear
combinations cease to exist. Figure 6 presents some simula-
tions of this situation. The conditions are as in Fig. 5, but
with increasing �. Runs with other oscillation frequencies,
that is with different �, yield the same results when the time
is appropriately rescaled.

I. Noise frequency

According to Eq. �20�, changing �2 and 	c such that their
ratio remains constant should leave D the same. However,
the higher frequency components of the noise spectrum may
have an independent effect through the excitation of higher
states. Excitations beyond the lowest states would be unde-
sirable, as it represents a nonunitary evolution among the
lowest states, with some probability going to higher states.

On the other hand, if the frequency of the noise is much
less than the frequency corresponding to the distance to the
next set of levels, the adiabatic theorem tells us that the
states remain in the lower set and that such nonunitary ef-
fects are suppressed. Since our principal level splittings are
generally substantial fractions of unity, there should be little
excitation of higher states for noise frequencies 	c�1. In a
plot of the type in Fig. 4, excitation of higher states is mani-
fested by the decay of the density matrix element to a value
less than 1/2, showing population beyond the first two states.

To examine these points, we show in Table III series of
runs at constant �2 /	c, but different 	c. The resulting D as
determined from a fit as in Fig. 4 and the final ��1,1� are
shown. The approximate constancy of D seems to be well
verified. For 	c�1 the decay is indeed to 1/2, but for larger
values there are noticeable departures. In another set of runs
with � reduced by a factor of 2 this effect is almost entirely
absent. With our typical time unit these values of D corre-

sponds to a decoherence time of �1/D��6.3�10−12 s
=3.5 ns and 14 ns. It should be noted that our noise spectrum
has a relatively strong high frequency tail �1/	2 as opposed
to the exponential cutoff one would expect for a purely ther-
mal background.

The actual value of D is of course our great unknown, and
we treat it as simply a phenomenological parameter. For ori-
entation we can keep in mind the estimate D=T / �e2R� which
we have used previously; or measurements by direct obser-
vation of the damped oscillations11 on a similar SQUID sys-
tem. These find a decoherence time 
20 ns at 25 mK. This
corresponds to the reasonable value R=260 k� for the effec-
tive resistance. Our sample values of tdec=1/D�103 in the
dimensionless units, with our typical time unit of 6.3
�10−12 s, would correspond to some nanoseconds or tens of
nanoseconds for tdec.

VI. DECOHERENCE IN THE NOT GATE

Having checked that our noise and/or decoherence simu-
lation has reasonable features, we now turn to some applica-
tions. The one variable or one-qubit problem is the simplest
situation. When �ext is swept �from a relatively large value in
the sense Vz�Vx� to its opposite value, interchanging “up”
and “down,” it represents the logic gate NOT. The under-
standing of the effects of decoherence here is important both
for finding the regime of operation of the logic gate and for
our proposal1 for measuring D via the success or failure of
an adiabatic inversion.

In some applications of the adiabatic idea in quantum
computing a special role is assigned to the ground state, as in
the search for the minimum of a complicated functional.13

However our simple gates are not of this type and both states
of the qubit, either the ground state or the first excited state,
are on an equal footing. Thus in the NOT operation, for ex-
ample, it is equally important that 1→0 or 0→1, and which
of these is represented by the ground state is of no particular
significance.

As in the discussion concerning adiabaticity, we measure
the “success” of a sweep by the value of “final overlap” as in
Fig. 3, where now there is an average over realizations of the
random noise. Table IV shows the effects of increasing
sweep time with fixed noise parameters. The sweeps are suf-
ficiently long, according to Table II, that nonadiabaticity
should be unimportant.

FIG. 6. �Color online� “Watched pot” effect. Same conditions as
in Fig. 5 but with various degrees of strong decoherence
D /	tunnel�1. The “freezing” of the evolution is observed as pre-
dicted �Ref. 8� from Eq. �11� with ��1,1�
1− 1

2 �	tunnel
2 /D�t. The

time interval shown would correspond to about seven undamped
oscillations. The different values of D were produced by varying �
from 0.01 to 0.002 and calculated from Eq. �20�.

TABLE III. Values of D and final ��1,1� for runs as in Fig. 4,
with varying 	c but constant �2 /	c. The prediction of an approxi-
mately constant D, as well as the value for D, are in agreement with
Eq. �20�. The relaxation to a value below 1

2 for the larger � and 	c

values indicates excitation of the third and fourth levels.

	c � D, fit D, Eq. �20� Final ��1,1�

2.0 0.0020 0.0017 0.0018 0.35

0.50 0.0010 0.0017 0.40

0.11 0.00045 0.0018 0.48

0.050 0.00032 0.0018 0.50

0.025 0.00023 0.0019 0.50
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Interestingly, although the noise parameters have been
chosen to give a decoherence time of 29 000 time units,
Table IV shows decoherence not fully setting in until signifi-
cantly longer sweep times. This may be understood in terms
of our remarks in connection with Eq. �12� that decoherence
has most of its effect during level crossing. If one attempts to
estimate the time spent during the sweep in the vicinity of
the “crossing” with the given conditions, it is on the order of
10%. This suggests that the relevant time for the onset of
significant decoherence is not 29 000 time units but rather
more like 290 000, in agreement with the behavior in Table
IV. This argument is supported by examination of Fig. 3 or
Fig. 13, where one sees that the actual switching of a state
takes place in a small fraction of the total sweep time. Hence
for our sorts of logic gates, the speed needed to avoid deco-
herence may be less stringent than one might simply infer
from comparing the sweep time to the decoherence time.

To illustrate the effects of nonadiabaticity and decoher-
ence together, we show in Fig. 7 a series of simulations for
varying sweep times and �’s. There appears to be a broad
range around 20 000 time units where neither effect is dras-
tic. The times refer to our dimensionless units, so for our
typical time unit 6.3�10−12 s, the two values of D in the plot
would correspond to 1/D= tdec=50 ns and 180 ns. If one
were to consider SQUID parameters giving a larger 	tunnel
and so a shorter adiabatic time, the favorable region could be
widened considerably to the left, i.e., to shorter times. �See
the discussion below “Smaller �.”�

VII. TWO-VARIABLE SYSTEM

We now turn to the two-variable or two-qubit system.
When two one-variable systems are weakly coupled we ar-
rive at a two-variable system with four low-lying states. For
the SQUID these would be the four possible states arising
from the current circulating clockwise or counterclockwise
in two SQUIDs, and as explained in Ref. 3 this can be so
arranged that the result of the sweep of one of the �ext de-

pends on the state of the other SQUID, thus providing the
conditions for a CNOT gate.15 We recall2,3 the Hamiltonian for
this problem

H =
− 1

2�1

�2

��1
2 +

− 1

2�2

�2

��2
2 + V , �22�

with V

V = V0� 1
2 �l1��1 − �1

ext�2 + l2��2 − �2
ext�2 − 2l12��2 − �2

ext�

���1 − �1
ext�� + �1 cos �1 + �2 cos �2� . �23�

In place of �=V0 for the one-variable case, one now has
��1�2=V0. Analogously to the single variable case, the fac-
tor E0 which converts the energy of the dimensionless
Hamiltonian to physical energy involves the inductance and
capacitance of the two SQUIDs,2 namely E0=1/ �LC, where
1
L =

�L1L2

L1L2−L12
2 and C=�C1C2. The small l are the inductances

referred to L. In Fig. 8 we reproduce a contour plot for the
potential showing its four minima, corresponding to the four
states of the 2-qubit system. �Also see Fig. 9.�

As in the one-dimensional case, the numerical calcula-
tions use a large harmonic oscillator basis, now in two vari-
ables. For most runs a basis of 1000 or 2000 states was used.
Even when using the “second cut” reduced basis to four
eigenstates, time dependent runs with many samples could
take several minutes on fast PC’s. It seems that extensions to
more than two or three variables would need new computa-
tional methods.12

TABLE IV. Effect of decoherence on the “success” of adiabatic
inversion sweeps. Noise parameters are chosen to give a decoher-
ence time tdec=1/D=29 000 time units. “Final overlap” is the av-
erage of the overlap squared 1

N�a���a �� f�2 or equivalently
�� f���� f. As the sweep is made slower, so that decoherence has
time to take effect at level crossing, � approaches the totally inco-
herent value of 1

2 . Errors on “final overlap” are on the order of a few
percent. For the no-decoherence situation see Fig. 3 and Table II.

� � Initial �ext 	c � tsweep

Final
overlap

1.19 16.3 0.0020 0.042 0.000042 30000 0.95

60000 0.96

80000 0.90

150000 0.85

800000 0.60

1000000 0.58

2000000 0.52

FIG. 7. �Color online� Adiabatic and decoherence effects on the
“success” of a sweep �−0.002→0.002� in �ext, for the one-
dimensional system �NOT� as the sweep time is increased. The adia-
batic time for 50% “success” is indicated by an arrow. As the sweep
time is lengthened one observes the onset of adiabaticity, followed
by decreasing “success” as the decoherence takes effect. Squares
and dots, noise parameters adjusted to give D=1.3�10−4. Squares,
	c=20 mK and �=5.0�10−5. Dots, 	c=50 mK; �=7.9�10−5.
Triangles, noise parameters adjusted to give D=3.5�10−5, using
	c=50 mK and �=4.2�10−5. “Final overlap” is the scalar product
�squared� between an evolved wave function and the target eigen-
state of the final Hamiltonian, and the time unit is 1.0�10−12 s
� �L / pH C / pF�1/2. SQUID parameters are �=1.19, �=16.3.
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A basis for the four states is provided by “spin-up�1�spin-
down�2�=u+�1�u−�2� and so forth,

u−�1�u−�2�, u+�1�u−�2�, u−�1�u+�2�, u+�1�u+�2� .

�24�

These four states correspond to definite senses for the
currents in the SQUIDs.

On the other hand, if the parameter l12 giving the flux
coupling between the SQUID is very small, the situation
reduces to two independent single variable systems. Thus for
the analysis of weak coupling with small l12 it is convenient
to introduce the eigenstates for any value of the individual
�ext for each SQUID,

v−�1�v−�2�, v+�1�v−�2�, v−�1�v+�2�, v+�1�v+�2� .

�25�

This is the independent SQUID basis, where each SQUID
can have its own Hamiltonian, according to its �ext.

The v are those discussed in connection with Table I: v+

= �cos 
2u++sin 

2u−� and v−= �cos 
2u−−sin 

2u+�. If the ap-
plied �ext are different, then we have different angles 1 and
2 in these relations. At l12=0 the v�1�v�2�’s are the eigen-
states of the complete system, and with l12�0 there will be a
mixing among them.

VIII. COUPLED HAMILTONIAN IN THE SPIN PICTURE

In the spin picture for Eq. �23� there are now two “spin-
1 /2” objects, interacting through l12 and subject to the exter-
nal fields �1

ext ,�2
ext. By the arguments used for Eq. �4�, we

make the identifications

�1 → �c�1�, �z�1��2 → �c�2��z�2� , �26�

and the effective spin Hamiltonian is

1
2��1� · V1 + 1

2��2� · V2 − V0l12��c�1��z�1� − �1
ext�

���c�2��z�2� − �2
ext� . �27�

For small l12 the components of the V are determined as
in Eq. �6�, namely Vz
2V0l�c�

ext while Vx is found via Eq.
�7�. As before, �c is approximately the � of a state localized
in one of the potential wells. The effective interaction Hamil-
tonian between the two devices is then

Hint 
 − V0l12�1�2 
 − V0l12�c�1��c�2��z�1��z�2� .

�28�

This operator induces level shifts of the four u base states
without mixing them. However, when the tunneling is intro-
duced as a perturbation, nontrivial combinations of the four
states can arise.

Low-lying level patterns. We begin with weakly interact-
ing SQUIDs, l12� l1 , l2. The energy level pattern anticipated
for the lowest levels may be understood by beginning with
the totally decoupled system of just two independent devices,
l12=0. If we take both devices with about the same param-
eters, for example, we have first the ground state where both
SQUIDs are in their lowest state, the first state of Eq. �25�.
Then there are two approximately degenerate states with one
SQUID in the first excited state and the other in its ground
state, the second and third states of Eq. �25�. Finally the
fourth state has both SQUIDs in the first excited states, the
last wave function of Eq. �25�. If each device is in the con-
figuration where the splitting of its first two states is small
�small Vz�, as in our discussions above, then the splitting
from the ground state to the degenerate pair is equal to the

FIG. 8. �Color online� Potential contours for Eq. �23�, showing
the four minima of the 2-qubit system. The reduced fluxes �1 and
�2 are the variables for each SQUID.

FIG. 9. �a� Square of the wave function for state 1 localized in
the lower left-hand side potential well of Fig. 8. �b� At “level cross-
ing” as the wave function moves to the lower right-hand potential
well. Potential parameters were l1= l2=1, l12=0.005, �1=�2=1.19,
and V0=16.3.

SIMULATIONS OF QUANTUM GATES WITH DECOHERENCE PHYSICAL REVIEW B 75, 184507 �2007�

184507-11



splitting from the pair to the fourth state. Furthermore the
splitting to the fifth state should be substantially greater since
it involves an excitation of the principal quantum number.

Turning on a small l12, we show an example from numeri-
cal calculations in Table V. With l12=10−5 these reveal the
expected pattern. One sees that the fifth state is well sepa-
rated from the lower ones, again supporting the use of the
picture of an approximately isolated Hilbert space, as for the
first two states in the single variable case.

In the example of identical parameters for both SQUIDs,
with second and third levels degenerate for l12=0, we may
use degenerate perturbation theory to find the splitting in-
duced by turning on l12. The matrix element is
�v+�1�v−�2��Hint�v−�1�v+�2�=V0l12�sin �2, where  is the
angle for going from the u to the v as discussed in connec-
tion with Table I. The splitting of levels 2 and 3 is then
2V0l12�sin �2�c

2. With our typical parameters and l12=1
�10−5 and �ext=0 and so sin =1, the formula, using �c

0.88, gives 25�10−5. The numerical calculation, as shown
in Table V, gives 27�10−5.

Observation of this small splitting would be quite amus-
ing with regard to the question of coherence between mac-
roscopic objects. While work with the “Cooper-pair box”14

has seen effects involving interference between the states of
two qubits, the states involved differ only microscopically,
namely by a Cooper pair. Here, with the SQUID, the states
concerned differ by the circulation direction of a macro-
scopic number of electrons, and so seem to pose the macro-
scopic coherence question more dramatically. The energy
eigenstates resulting from the diagonalization to obtain the
small splitting are �1/ �2��v−�1�v+�2�±v+�1�v−�2��. The
splitting, one might say, results from the relative quantum
phase 
 involving the two SQUIDs, that is, between two
macroscopic objects. This is yet a step further than the ef-
fects for one SQUID, where one is sensitive to the phase
between different macroscopic current directions, but in one
device. Since this splitting is very small, however, line
broadening due to the noise effects may be comparable to the
splitting. Values of D�10−4–10−5 for the tens of mK region
could be in the same range as the splitting for l12�10−5.

The degenerate perturbation theory formula only applies
when we have the picture of two approximately degenerate
levels well separated from the others, as in Table V. The

picture changes rapidly as the mutual coupling l12 is in-
creased. In Fig. 10 we show the energy level patterns for the
first four levels for different l12 as functions of a common
applied �ext. Again, the two SQUIDs are taken to be identi-
cal, with our standard parameters. One observes that after
about l12
10−4 the uncoupled SQUID pattern no longer
holds, since now the interaction energy �V0l12 is on the
same order as the original splittings, 	tunnel=0.0044. A char-
acteristic change of behavior occurs when l12
�ext. This
may be understood as the value of l12 where the flux contrib-
uted from the other SQUID becomes comparable to the ap-
plied �ext �see Eq. 5 of Ref. 3�.

Another limit which is not difficult to analyze is that of
small  or relatively large �ext �see Table I�. In this limit the
u’s are the eigenstates and the interaction Eq. �28� simply
gives additive contributions to the energies. We may even
consider different parameters and �ext for the SQUIDs. Ac-
cording to Eq. �27� this results in a ground state with both
spins “down” and energy 1

2 �−Vz�1�−Vz�2�−�� and an upper
state with both spins “up” and energy 1

2 �+Vz�1�+Vz�2�−��.
There are two middle states with energy 1

2 �+Vz�1�−Vz�2�
+�� and 1

2 �−Vz�1�+Vz�2�+��; � is the contribution from Eq.
�28�, �=V0l12�c�1��c�2�. In the case of identical SQUIDs
these middle states form a degenerate pair, as one sees for
the larger �ext. With small deviations of the V from the z
direction there will again be a splitting which can be found
from perturbation theory.

IX. CNOT CONFIGURATIONS

Our design for a CNOT operation consists of an adiabatic
sweep from a point with relatively large �ext in the
��1

ext ,�2
ext� plane to another such point so that there is a defi-

nite mapping among the four u�1�u�2� states. The four pos-
sible configurations of currents clockwise and counterclock-
wise in the two SQUIDs undergo a certain definite,
reversible, rearrangement. This rearrangement is chosen in
accordance with the definition of CNOT: one pair of states
remains unchanged �control bit is zero�, while the other pair
reverses �control bit is one�. This is accomplished by having
the energy eigenstates �1,2,3,4�, each one concentrated in a
different potential well, move from one set of locations to
another.3 Since for relatively large �ext each well represents a
distinct state of the SQUID currents, one physical configura-
tion of the two qubits is mapped to another. These rearrange-
ments are represented by “tableaux” like � 3 4

1 2
� showing the

localization of the first four energy eigenstates in the poten-
tial wells of Fig. 8.

In a first step it is only necessary to identify those loca-
tions of the ��1

ext ,�2
ext� plane with different tableaux such that

a sweep from one to the other leads to the desired rearrange-
ment. An example is � 3 4

1 2
�→ � 4 3

1 2
�. The lower row may be

identified with control bit zero, and the upper row with con-
trol bit one. The adiabatic theorem then guarantees that a
“sufficiently slow” sweep will preserve the occupation of the
levels, 1→1,2→2, and so forth. Once having so identified
the desired sweep, the adiabaticity may be examined after-
wards.

TABLE V. Splittings at �ext=0 among the first five levels for the
first panel of Fig. 10. The energy difference �E is with respect to
the previous level, thus the first excited state is 0.0043 units above
the ground state. The fifth state is distinctly separated from the first
four. The first and third splitting should be approximately that of a
single SQUID, which with �ext=0 is 0.0044. The small splitting
between the second and third state is in agreement with the predic-
tion of degenerate perturbation theory, 2V0l12�c

2.

� � l12 �ext �E

1.19 16.3 0.00001 0.0 0.0043

0.00027

0.0043

0.42
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Not all points of the ��1
ext ,�2

ext� plane are suitable starting
or ending points for a sweep since we require “well-defined”
wave functions. The wave functions should be �A� well lo-
calized in one potential well so that the SQUID is in a defi-
nite flux state, and �B� all first four states should be localized
in different wells. Figure 9 shows the appearance of a “good
wave function” with state 1 in the lower left-hand potential
well of Fig. 8. In the searches a wave function was consid-
ered as “well localized” when the distance between centers
of the wave functions was more than 2.5 times the spread of
the wave function, as measured by the dispersion.

In Fig. 11 we show the results of such a search. The
associated tableaux are indicated for each region. The black
areas are those of “bad wave functions.” The general range
of “good” corresponds to the observations for one SQUID in
Table I, where the spin picture was valid up to about �ext


0.01.
In principle a CNOT may be accomplished by a sweep

between any two adjacent regions where one row �or col-
umn� interchanges and the other does not. As was explained
in Ref. 3 the switching values between tableaux �dark lines�
may be understood as a “level crossing” occurring when the
flux from the control SQUID onto the target SQUID is equal
and opposite to the applied flux onto the target SQUID. That
is, when �ext= l12/ l. At this point the total flux on the target
SQUID is approximately zero and so is at a level crossing.

This argument allows one to understand the pattern of dark
lines. It will be noted that in crossing a dark line only adja-
cent energy levels switch, as expected for a “crossing.” The
vertices are singular points involving more than two levels.

For a smaller l12 the map will then be similar but with
smaller regions between the vertical and horizontal dark
lines. In the central box of the plot, although there are
“good” wave functions, the applied flux is apparently too
low for the “immobilization” argument of Ref. 3 to work and
there are no CNOT rearrangements within the box. However
CNOT sweeps exist connected to peripheral regions. These
take place in the vertical or horizontal direction with the flux
on one qubit �control bit� relatively large and constant while
the other flux �target bit� is varied.

For such vertical or horizontal sweeps, involving chang-
ing one flux, only one SQUID inverts, according to which
one undergoes the sweep. In diagonal sweeps involving both
fluxes on the other hand, states transfer across the diagonal in
the tableaux, indicating changes in both SQUIDs. This ex-
plains why the diagonal black lines are very narrow, since
such “double flips” involve two tunnelings with a corre-
sponding small mixing energy.

Although the map of Fig. 11 was obtained by an exami-
nation of the individual wave functions, a reasonable idea
may be had by simply inspecting the potential landscape.
Since the ordering of the energy levels will usually follow

FIG. 10. �Color online� Level behavior for the first four states of two identical SQUIDs with coupling l12. In the first panel one notes the
pattern of a ground state, an almost degenerate pair and single state, as would be expected for two independent SQUIDs. This pattern
changes as the interaction energy between the SQUIDs �V0l12 becomes on the order of the splitting 	tunnel. The energy is in units of E0 as
defined in the Introduction, and �ext is the applied reduced flux, common to both SQUIDs.
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the ordering of the minima of the potential wells, we find
that the ordering of the minima usually give the correct tab-
leaux. Thus a suitable sweep is frequently simply one where
the potential minima rearrange in the desired manner. Alter-
natively, all the transition lines on the map may be found
from the set of linear relations arising from the “level cross-
ing” conditions �coefficients of the �z� while treating the
tunneling ��x� terms as a perturbation.

A. Hilbert space completeness

For the “spin-1
2 picture” to be meaningful in a complex

system with many levels it is necessary that the states se-
lected constitute an approximately independent vector space.
If, for example, the selected states were to mix with other
states of the system as we carry out our gate operations, then
the two states would not be a faithful representation of a
two-state qubit, since more than two states would be in-
volved. And similarly when we have two qubits or four states
for CNOT, these four should act effectively as a separate
space.

The Hilbert space completeness test mentioned at the end
of the section “Identification with a spin-1

2 system” proves to
be quite interesting in this regard and may be a useful tool in
studying higher dimensional systems. In this method, we
take a point in the parameter space of the Hamiltonian and
compare it with some reference point. If the Hilbert spaces
for these different Hamiltonians are closely the same, there
should be a high overlap of the lowest eigenstates for the
different Hamiltonians. As we shall explain, a test can be
formulated which applies to any linear combination. For the

one-variable system the parameter space in question is the
�ext line, and with two variables the ��1

ext ,�2
ext� plane. The

precise point we choose as the reference is unimportant in
regions where the overlaps are high; for the ��1

ext ,�2
ext� plane

we take ��1
ext ,�2

ext�= �0,0�.
Let the vi be the lowest eigenstates at the reference point

and v� a linear combination of the lowest eigenstates for
some other parameter values. We search for the “worst case,”
the minimum value of ���vi �v��2. The procedure involves
constructing the matrix Mij = �vi �v j�. For the one SQUID or
two state system i and j run from 1 to 2; in the two-variable
system from 1 to 4.

One now observes that the sum of the overlaps squared
���vi �v��2 is the expectation of the matrix MTM in the state
�v�. Thus the worst or lowest overlap for an arbitrary nor-
malized linear combination in the v� space is given by the
lowest eigenvalue of this matrix:

least overlap = smallest eigenvalue MTM . �29�

Varying the chosen point in the ��1
ext ,�2

ext� plane, one
maps out the region of a common Hilbert space where the
worst overlap is close to 1. Figure 12 shows such a map,
produced with high resolution. A grey scale was used for the
points, from white for least overlap=1 to black for least
overlap=0.

It is quite interesting that the region of the ��1
ext ,�2

ext�
plane found by this method is essentially the same as that
found by the detailed examination of individual wave func-
tions as in Fig. 11. This may perhaps be understood by not-
ing that if we have “bad wave functions” with two states in
one potential well, this will have a poor overlap with the
“good” situation where each wave function is in a different
well. On the other hand, “bad wave functions” in the sense
that they are delocalized, as at a “crossing,” will still give a

FIG. 11. Map of the regions of ��1
ext ,�2

ext� plane with well-
defined wave functions suitable for performing CNOT. The numbers
in a tableaux show the location of the first four energy eigenstates
on the potential landscape of Fig. 8. These show that a CNOT may be
obtained by horizontal or vertical sweeps in the regions external to
the central square. Potential parameters used were l1= l2=1, l12

=0.005, �1=�2=1.19, and V0=16.3.

FIG. 12. Region of the ��1
ext ,�2

ext� plane with high “complete-
ness” using Eq. �29�. One notes the close similarity to the region
defined by Fig. 11, which was found by examination of individual
wave functions.
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high “completeness.” The sharp transition, with little grey
area, seems remarkable. Although the corresponding transi-
tion in the one-dimensional case was rather abrupt, it seems
more so here, presumably the effect is multiplicative. Both
Figs. 11 and 12 contain 90 000 pixels, necessitating runs of
many hours.

Figure 12 does not contain the narrow black bands of Fig.
11, where there are “bad wave functions” at “level cross-
ings.” This is because these “bad wave functions,” although
delocalized in � and so not corresponding to a definite state
of the SQUIDs, are still in the same Hilbert space as the
localized states. An example of such a state is shown in Fig.
9�b�. It should also be noted that the narrowness of the black
bands in Fig. 11 is in accord with our earlier remarks con-
cerning the small fraction of the time spent near “crossing”
during a sweep.

B. Noise for the two-variable system

The extension of the previous noise treatment to the two-
variable problem is straightforward if we continue to repre-
sent the noise as fluctuations of the external fluxes �ext. To
each �ext there will now be a noise term as in Eq. �13�. As in
the discussion of Eq. �27� we have Vz
2V0l�ext�c and so an
additional term in Eq. �27�,

− V0�l1�c�1��z�1�N1 + l2�c�2��z�2�N2� , �30�

where again we keep only the linear term in the noise.
There will then be a D as in Eq. �20� associated with each

variable,

D1 = 4
�V0l1�c�1��1�2

	c�1�
, D2 = 4

�V0l2�c�2��2�2

	c�2�
. �31�

We can now carry out the simulations with the two noise
signals imposed, one for each SQUID.

X. CNOT SWEEPS

As for the one-bit case, the “success” of a sweep can be
measured by the overlap of an evolved wave function with
the stationary eigenstate for the intended final state. For
CNOT two wave functions, representing control bit=0, should
not change their states, while those representing control bit
=1 should move to new positions. We exemplify a successful
CNOT sweep in Fig. 13 where we show the behavior of states
1 and 4 for a sweep between a tableaux � 3 4

1 2
� and a tableaux

� 4 3
1 2

�. One sees the reversal of state 4 while state 1 remains
steady.

In Fig. 14 we illustrate the effects of nonadiabaticity and
decoherence for the � 4 3

1 2
�→ � 4 3

2 1
� sweep of the right-hand

lower portion of Fig. 11, with �0,−0.01�→ �0.006,−0.01�.
The curves show the behavior of the overlap for state 1,
which ideally would behave as the switching curve of Fig.
13, reaching close to complete overlap. The upper curve,
without noise, shows the progression to adiabaticity as the
sweeps become slower. The lower curves have noise applied,
equally to both SQUIDs, to show the effects of decoherence.
The two sets of noise parameters, according to Eq. �31�,
correspond to decoherence times of 29 000 and 8200 time
units, giving decoherence times 1/D of 180 ns and 52 ns
with our typical time unit. In terms of the formula 1/D

FIG. 13. �Color online� Behavior of the states 1 and 4 in a CNOT

sweep connecting two tableaux, where state 1 should remain in its
original location while state 4 should reverse, as in the lower left-
hand side of Fig. 11. No noise is applied. The vertical axis shows
the overlap of the wave function with its intended final state. State
1 �upper curve� should not change its location and is seen to be
stable. State 4 �lower curve� should reverse its location and is seen
to go from zero to approximately complete overlap with the desired
final state. State 2 and state 3 are not shown but behave similarly to
states 1 and 4, respectively. Squid parameters are as in Fig. 11, and
the sweep time was 20 000 units. It is to be observed that the switch
itself takes place in a small fraction of the sweep time.

FIG. 14. �Color online� A CNOT sweep in the lower right-hand
side of the ��1

ext ,�2
ext� plane of Fig. 11, with �0,−0.01�→ �0.006,

−0.01�. The final overlap is plotted for state 1, which should change
position. The coupling between the SQUIDs is l12=0.005. The
sweep without noise �circles� shows the effect of nonadiabaticity for
fast sweeps, while the addition of noise and/or exhibit the noise/
decoherence effects at longer times. The squares have noise param-
eters �=0.000 042, 	c=0.042 and the stars �=0.000 079, 	c

=0.042. The noise is applied to both SQUIDs equally but
independently.
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=e2R /T, at 20 mK these would correspond to R
2 M �
and R
580 k �. As expected, the wave functions for the
states which should not change remained stable in these runs.

In these runs we applied the noise to each SQUID inde-
pendently. However, one might consider the effects of a
common noise applied to both SQUIDs together. This would
be the case not for the true intrinsic decoherence but could
represent, say, an instrumental effect due to an external com-
mon noise like long-range fluctuations in the applied field.
Interestingly, applying the noise signal so it is the same on
both devices seems to have little or no effect. Taking the
lower curve of Fig. 14 at tsweep=100 000, one finds that such
a common noise produces the same result as the independent
noise, namely a final overlap of 0.7. This at first surprising
result is understandable from the fact that the major effect of
the noise takes place at level crossing. The noise is mostly
effective on the SQUID undergoing the sweep and appar-

ently the noise on the control SQUID has little effect. Indeed,
turning the noise on SQUID 2 completely off still leaves the
final overlap at 0.7; but turning it off for SQUID 1 leads to a
perfect result with overlap 
1.

XI. SMALLER �

As seen in Table II, a reduced � gives an increased 	tunnel
and shorter adiabatic times. Since shorter times gives the
decoherence less time to act, there is reduced decoherence.
This suggest examining the situation with a reduced tunnel
barrier. We take �=1.14, which according to Table II, in-
creases 	tunnel by a factor of 6, from 0.0044 to 0.027 energy
units. Figure 15 shows, analogously to Fig. 11, the good
domains of the ��1

ext ,�2
ext� plane for �=1.14. The small

change in � has great effects. The thin black lines of Fig. 11,
with “bad wave functions,” have now become broad bands.
Thus starting and finishing points of the sweeps are now
restricted to certain “islands.” By lowering the tunnel barrier,
we have created substantial areas represented by the right-
hand panel of Fig. 9, where the wave functions are not in a
single well with a definite flux in the SQUIDs. While for Fig.
11, this occurred only at the “level crossings” given by the
black lines, there are now rather large regions with delocal-
ized wave functions. Even on the “good” islands examina-
tion of pictures of the wave functions as in Fig. 9 shows that,
while they are generally still well concentrated, there are
little ripples some distance off from the center of localiza-
tion. Evidently in this parameter range we operate on the
border to total delocalization.

To examine the hoped-for improved robustness16 with re-
spect to noise and/or decoherence we show in Table VI the
results of a series of CNOT sweeps for �=1.14, choosing a
sweep on the lower left-hand side of Fig. 15 where � 3 4

1 2
�

→ � 4 3
1 2

�. The increased 	tunnel allows us to set tsweep as short
as 1000 units without violating adiabaticity. Increasing the
noise parameter � from zero and tabulating the final overlap
for state 4, one sees that significantly shorter decoherence
times as compared to �=1.19 �Fig. 14� become possible. The
next-to-last entry would correspond to a decoherence time of
only 500 time units. This reflects in part the phenomenon
discussed in connection with Eq. �12� and Table IV that the
sweep time can be longer than the decoherence time before
large decoherence effects occur.

FIG. 15. “Good domains” of the ��1
ext ,�2

ext� plane as in Fig. 11
with the smaller � values �1=�2=1.14. Due to the increased tun-
neling the “good” regions where there is a definite state of the
SQUIDs have been reduced to small islands. The relative narrow-
ness for the diagonal bands, as discussed for Fig. 11, is seen here
clearly. For legibility the tableaux are not shown; however they
correspond to those in Fig. 11.

TABLE VI. CNOT sweeps with a shortened adiabatic time, using �=1.14. “Final overlap” is shown for
increasing noise parameter �. Due to the increased 	tunnel permitting faster sweeps, a much stronger deco-
herence, compared to �=1.19, can be tolerated before the sweeps become unsuccessful. Other parameters are
as in Fig. 14. The noise frequency was 	c=0.042. The entry with �=0.000 32 would correspond to a
decoherence time of 500 time units, or 3.1 ns with our “typical” parameters.

� �, V0 l12 Initial ��1
ext ,�2

ext� Final ��1
ext ,�2

ext� tsweep State � Final overlap

1.14 16.3 0.005 �−0.0080, −0.0075� �0.0, −0.0075� 1000 4 0.0 0.98

0.000079 0.98

0.00016 0.97

0.00032 0.87

0.00064 0.68
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The 500 time units would be 3.1 ns with our “typical”
parameters. This is substantially less than the 20 ns reported
in Ref. 11. This is one of our most interesting results con-
cerning the engineering of such devices and perhaps implies
that the feasibility of such devices is not so very far off.

XII. CONCLUSIONS

We have presented a description of one or two interacting
rf SQUIDs in a form suitable for numerical simulation and a
system of programs for carrying out these simulations. In
addition to static properties, the behavior under time depen-
dent conditions, including flux sweeps for adiabatic gates,
and the effects of noise or decoherence, were studied.

Among the points investigated was the validity of the
“spin-1

2 picture” where the behavior governed by the full
Hamiltonian is approximated by the components of an effec-
tive “spin-1

2” system using the lowest levels of the double-
potential well. The identification between the parameters of
the spin Hamiltonian and the full Hamiltonian was estab-
lished and the regime of validity of the approximation were
investigated numerically. It is found, using various criteria,
including “Hilbert space completeness,” that the “spin-1

2”
picture is approximately valid up to variations of the external
bias which moves the basic pair of levels a substantial frac-
tion of the principal level splitting.

For the two SQUID system, we have found it is capable
of performing the logical operation CNOT, and have been
able to determine regions of the ��1

ext ,�2
ext� plane with defi-

nite configurations of the wave functions suitable for CNOT

sweeps. The conditions for adiabatic behavior under such
sweeps were examined and adiabatic times found for typical
SQUID parameters. The splitting 	tunnel of the basic pair
enters into the adiabatic condition and is very sensitive to the
barrier parameter �. It is found that the most interesting re-
gions for this parameter are values slightly greater than 1,
and detailed studies were presented for �=1.19.

Noise or decoherence were simulated as a random flux
noise and a formula was derived relating the parameters of
this random noise to the decoherence parameter D. Numeri-
cal simulations verify the validity of the formula. This ran-
dom noise is then applied to the adiabatic logic gates and
possible regimes of operation for the gates are found. One of
the interesting conclusions is that the adiabatic sweep time
can be substantially longer than the decoherence time 1/D
before decoherence effects become very large. This is traced
to the fact that decoherence, and also nonadiabaticity, are
mostly effective at “level crossing,” which is only a small
part of the sweep. Indeed for the two-SQUID CNOT gate it is
found that noise applied to the control bit SQUID, which
does not undergo a “level crossing,” has almost no effect.

One of our general conclusions therefore, for any devices
of this general type, is that “level crossings” should be held
to a minimum, and when they occur a large tunneling energy
or splitting at “crossing” is beneficial both for reducing both
decoherence and nonadiabaticity effects.

It thus appears that an interesting region for the engineer-
ing of adiabatic gates involves rather small values of �,
where the splitting is large. However the wave functions are
then nearly delocalized. We have examined the case �
=1.14, where the reduced tunnel barrier and thus large 	tunnel
permit fast operation of the gates. The resulting short time
for the decoherence to act leads to operations which are suc-
cessful with presently discussed values of the decoherence
time, some nanoseconds. However, a careful choice of pa-
rameters is necessary.

Generally speaking, we may say that our studies verify
that it is in principal possible to have a regime where one can
create and manipulate quantum linear combinations of quasi-
classical objects, as pictured in Fig. 9.

While the parameters and examples we have used are spe-
cific to the rf SQUID, it will be recognized that our methods
and results will apply, after some adjustments, to almost all
interacting double-potential well systems.
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15 D. V. Averin, Solid State Commun. 105, 659 �1998�, suggested
using adiabatic “level crossings” to implement the CNOT opera-
tion in Josephson devices.

16 Increased robustness with respect to decoherence with increased
tunnel splitting might, at first sight, appear to be unclear in view
of the approach reviewed in Sec. IV B of Ref. 4, where there
seems to be two rates involved with the decoherence, with one
of them apparently proportional to the tunnel splitting. However,
for small x=�E /T, using x coth x
1 one verifies that the two

rates, Eqs. �4.11� and �4.12� of Ref. 4, are really the same, con-
trolled by the same factor ��T. That is, both terms are induced
by the same physical processes and there is really only one
decoherence parameter. This is in fact represented by our D, and
at small x our simulations automatically include “both kinds” of
decoherence. The assumption of small x �see discussion follow-
ing Eq. �16�� is approximately correct in view of the small tun-
neling splittings, but for very low temperature where “spontane-
ous emission” becomes important, the point might have to be
reconsidered. This might be handled by modifying our Eq. �11�
so that with constant V the density matrix relaxes not to 1

2 I at
infinite time but to the more strictly correct limit given by a
Boltzmann factor. Of course, the argument that an increased
tunnel splitting allows a faster adiabatic sweep and so less time
for decoherence to act remains true, independently of this issue.
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