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We propose a simple model for the nucleation of random intercalates during the growth of high-temperature
superconductor �HTSC� films by pulsed laser deposition �PLD�. The model predicts a very particular spatial
distribution of defects: a Markovian-like sequence of displacements along the growth direction �c axis�, as well
as a two-component in-plane correlation function, characteristic of self-organized intercalates. A model for
x-ray diffraction �XRD� on such structures is also developed and accounts for both c-axis and in-plane
anomalies observed in XRD experiments. The method presented in this work constitutes a useful character-
ization tool in the optimization of deposition parameters for the growth of HTSC films.
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I. INTRODUCTION

The observation of random intercalates is recurrent in
both natural and artificial layered materials. The class of ma-
terials subject to random intercalation is very large: it ranges
from graphite1 and interstratified clay minerals2,3 to high-
temperature superconductors �HTSC�.4–7 Although the
present work may apply to a large variety of materials, we
will focus our discussion on HTSC and, more specifically,
on Bi2Sr2CuO6 �Bi-2201� thin films grown by pulsed
laser deposition �PLD�. Indeed, compounds of the
Bi2Sr2CanCun+1O2n+6 �BSCCO� family, as most HTSC, are
cuprates with a characteristic layered perovskite structure.
The BSCCO family constitutes a good example of inter-
growth formation. Namely, these materials tend to form
polytypes,8 since the formation enthalpy of a compound, e.g.,
the Bi-2201 with a single CuO2 layer, differs only slightly
from that of the two CuO2 layer-compound Bi-2212. In ad-
dition, growth of films by PLD is an out-of-equilibrium
process,9,10 which favors the irreversible formation of other-
wise metastable intercalates.

In Sec. II we present a phenomenological model for irre-
versible random nucleation of intergrowth �guest phase� dur-
ing the layer formation of a given compound �host phase�.
The structure and composition of the guest phase are as-
sumed to be very similar to the structure and composition of
the host phase; the main difference being their respective
lattice constant in the growth direction �z axis�. The energy
cost of such random intercalation has two contributions: a
chemical contribution �formation enthalpy difference�, as
well as an elastic contribution which penalizes the relative
z-axis displacement of in-plane adjacent unit cells �steps�.
The associated dynamics is studied by combining a mean-
field approach and a numerical simulation. The result is a
Markovian sequence of layers containing, following a short
transient, a constant amount of guest unit cells and steps per
layer. In Sec. III we derive the corresponding c-axis and
in-plane distributions and correlation functions, which we
use in Sec. IV, to calculate and discuss x-ray diffraction
�XRD� patterns by extending the method used in a previous

publication on intercalated YBaCuO films.7 The type of dis-
order generated by our simple model accounts for two char-
acteristic XRD anomalies observed in various HTSC films:
nonmonotonous deviations of Bragg peak positions �as well
as peak broadening� and the appearance of two distinct con-
tributions to the rocking curves �RCs�, reflecting the self-
ordering of in-plane defects. A concrete example is given for
an intercalated Bi-2201 thin film. Finally, we summarize the
main points and draw the conclusions in Sec. V.

II. MODEL

The following phenomenological model describes the in-
tergrowth of metastable intercalates during the deposition of
a layered material from its vapor phase. The basic assump-
tions of the model are as follows:

�i� The global stoichiometry of the vapor phase is the one
of the desired host phases.

�ii� The random nucleation of guest unit cells �GUCs� is
induced by local composition fluctuations in the top layer
under formation enthalpy and is favored by the reduced in-
plane mobility of certain species and the small difference
between the formation enthalpies.

�iii� The GUC nucleation depends on two parameters: the
formation enthalpy difference V=EG−EH and the energy per
step U. We assume that the in-plane footprint of the guest
and the host is the same, allowing for a perfect epitaxial
growth along the c axis. The step �see Fig. 1�, defined as a
lateral mismatch induced by a finite relative displacement
between in-plane adjacent UC, implies a local strain field
with its corresponding elastic energy cost.

�iv� The GUC nucleation rate on a given site obeys local
thermodynamic equilibrium.

The basic assumptions of our model are minimal, in the
sense that we aim to investigate only two basic features of
the intergrowth formation: the displacement distribution
Pt�z� of the UCs along the c axis and the average in-plane
two-point correlation function of the displacements g�x�
= �gt�x��, where gt�x� is the correlation function on a given
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layer indexed by t. The minimal approach is justified by the
fact that only the Fourier transforms of these two quantities
have a direct impact on the standard XRD patterns of thin
films. In order to investigate the displacement distribution
along the growth direction �z axis�, we use a mean-field �MF�
approach. Although the layer-by-layer growth is a two-
dimensional �2D� process, within the MF approach we can
map the system on an effective one-dimensional �1D� system
�row by row� by integrating over one in-plane degree of free-
dom. While the MF approach is well adapted for a descrip-
tion of the z-axis sequencing and correlations, it masks all
information about the in-plane spatial correlations. In order
to investigate the in-plane disorder, we implement a numeri-
cal simulation of the complete 2D model.

A. Mean-field approach

In order to derive a mean-field-like rate equation for the
steps, we have to examine different events that may occur
during the construction of a given layer, and their corre-
sponding Boltzmann probabilities. The nucleation of a GUC
on top of the former layer depends on the neighboring envi-
ronment of the considered site, as schematically depicted in
Fig. 2. Starting with a 2D model �the upper part of Fig. 2�
and provided the next-neighboring sites are filled with the
majority phase–host unit cells �HUCs�—if the site belongs to
a plateau �type a�, the nucleation of a GUC will incorporate
four additional steps to the system. The corresponding en-
ergy cost is �E=V+4U. For a site of type b, only two addi-
tional steps are incorporated; thus, the energy cost is �E

=V+2U, etc. To reduce the 2D layer model to 1D, we have
to average over all the possible configurations along the
transversal direction �say y�. As a result, configurations such
as b, e, and f in the 2D layer are averaged to obtain the b
configuration in the 1D row �lower part of Fig. 2� with an
extra formation energy, corresponding to the weighted aver-
age of the elastic energy contributions from the correspond-
ing transversal configurations. Assigning to them zero prob-
ability, we exclude from the analysis all the events that imply
energy costs larger than 4U. This assumption is justified by
the fact that the high-energy costs of such events make their
contribution statistically negligible. The fraction of each of
the four types of sites, retained for the intergrowth nucle-
ation, can be written in terms of the total 1D density of steps
S within the given row,

fplateau = �1 − S�2, �1�

fstep = �1 − S�S , �2�

fvalley =
1

4
S2, �3�

fstair =
1

2
S2. �4�

Equation �1� is the probability of finding two consecutive
step-free sites. The total density of single steps being 2�1
−S�S in Eq. �2�, we have excluded two types of sites �upper
terraces� among the four possible situations close to a single
step. The factors 1

4 in Eq. �3� and 1
2 in Eq. �4� account for the

exclusion of one undesired type of site among the four pos-
sible double-step sites �probability S2�, retaining only the
valley and staircase configurations. Within the 1D reduced
system, the formation enthalpy difference V is renormalized
as follows:

FIG. 1. Schematic film cross section; formation of steps by ran-
dom nucleation of GUC.

FIG. 2. Different site environments in 2D and their 1D restric-
tion with the corresponding fractions f , energy costs E, and step
number variations.
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Ṽ = V + 2U��1 − S�2 +
1

4
S2� . �5�

The rate equation can now be constructed for the effective
row-by-row growth: If the site belongs to a plateau �a�, the
nucleation of a GUC will incorporate two additional steps to
the system. Conversely, if the site is already on the low dis-
placement terrace of a single step �b�, there will be no addi-
tional steps but just a shift of the existing one. If the site
belongs to a valley �c�, i.e., to low displacement terrace be-
tween two consecutive steps, the GUC nucleation will re-
move two steps from the system. Finally, if the site belongs
to a staircase configuration �d�, the GUC nucleation will re-
move one step, but the remaining steps will be double sized
�elastic energy=4U�.

The local equilibrium condition �iv� is implemented by
using the Boltzmann factors u and ṽ corresponding to the

energies U and Ṽ, respectively,

u = exp�− U/kBT�, ṽ = exp�− Ṽ/kBT� . �6�

Therefore, with the correct normalization, the thermal prob-
abilities for intergrowth nucleation at different sites are

p0 =
ṽu2

1 + ṽu2 , p1 =
ṽ

1 + ṽ
, p2 =

ṽ

ṽ + u2 , p3 = p0, �7�

where subindices 0, 1, 2, and 3 stand for plateau, single step,
valley, and staircase, respectively. Only events 0, 2, and 3
induce variations on S, while event 1 does not alter the num-
ber of steps. The balance in a given row yields the sought
rate equation,

dS

dt
= 2�p0�1 − S�2 −

1

4
�p2 + p3�S2� . �8�

In Eq. �8�, the “time” variable t has to be interpreted as an
integer layer index. The expression for the general solution
of the above differential equation reads as follows:

S = S0 + S1 tanh���t − t0�� . �9�

By differentiating Eq. �9�, the parameters S0, S1, and � can be
found by comparison with Eq. �8�,

S0 =
4u2

3u2 −
1 + ṽu2

ṽ + u2

, S1 = ±

2u	u2 +
1 + ṽu2

ṽ + u2

3u2 −
1 + ṽu2

ṽ + u2

,

� = �

ṽu	u2 +
1 + ṽu2

ṽ + u2

1 + ṽu2 . �10�

The first layer grows on a step-free substrate. The parameter
t0 is then defined by this initial condition,

S�1� = 2p0 ⇒ t0 = 1 −
1

�
tanh−1
2p0 − S0

S1
� . �11�

The concentration c of GUC within a given layer depends on
the distribution of steps in the preceding layer,

c�t + 1� = p0�1 − S�2 +
1

4
�p2 + 2p3�S2 + p1S�1 − S� . �12�

The existence of a steady-state regime follows directly from
Eq. �8�,

dS

dt
= 0 ⇔ S =

2u	 ṽ + u2

1 + 2u2ṽ + u4

1 + 2u	 ṽ + u2

1 + 2u2ṽ + u4

� S̄ . �13�

Accordingly, by inserting S̄ into Eq. �12�, we obtain the as-
ymptotical GUC concentration,

c̄ = 2p0�1 − S̄�2 + p1S̄�1 − S̄� +
1

4
p0S̄2. �14�

The extension of the transient is governed by the parameter �
through a characteristic length �number of layers� �= 1

� . The
lowest value � can attain �rapid approach to the steady state�
is �min=  1+v

	2v , and it corresponds to the extreme situation
where the �elastic� energy per step is U=0. In this limit, the
dynamics is only determined by the difference in the forma-
tion enthalpy V. In the other extreme, when U� V �large

step energy�, in the initial stage of the growth Ṽ�2U and �
scales with 1/u2�1. In any case, for intermediate situations
�say, U

kBT � V
kBT �1�, � will be of the order of a few tens of

layers. The latter is illustrated in Fig. 3, where we plotted
S�t� and c�t� according to Eqs. �9�–�12�, using parameter
values taken from a fit of an actual Bi-2201 thin film
sample:11 V

kBT =−6.17 and U
kBT = +3.22. These values imply, at

FIG. 3. Evolution of layer step density S and GUC density c
with film thickness t.
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a substrate temperature of 640 °C, V=−0.49 eV and U=
+0.25 eV. In terms of standard enthalpy differences, this
value of V for a single GUC corresponds to 47 kJ/mol and
is in the same order of magnitude as the 20 kJ/mol differ-
ence between Bi-2212 and Bi-2223.12 Concerning the value
of U, by using the lattice constants of Bi-2201,13 we find a
stacking fault energy of 85 mJ/m2, again realistic order of
magnitude for oxides ��100 mJ/m2�.

B. Numerical simulation

We have run the standard Metropolis algorithm com-
monly used in Monte Carlo �MC� simulations using the Bolt-
zmann rates as defined in Eq. �6�, for the same model param-
eters as in Fig. 3. However, the difference with a real MC
simulation is that, after an event �HUC or GUC� is chosen on
a given site, there is no further update at the site. Under such
conditions, the simulation reproduces the irreversibility of
the phenomenon, and the result does not represent a global
thermodynamic equilibrium.

Figure 4 shows the numerical simulation of a 100-layer
film grown according to the model described above. Each
layer consists of a 100�100 array with periodic boundary
conditions. Figure 4�a� is a map of equally displaced do-
mains on a given layer �top view�. Figure 4�b� is the in-plane
two-point correlation function averaged over the top layer.
Figure 4�c� is a vertical cross section of the film, in which
different displacement domains are successively colored in
black and white. Histograms in Fig. 4�d� are computed at
three different stages of film formation. One can already no-
tice from Figure 4�a� the in-plane clustering of equally dis-
placed domains. More detailed discussion of the simulation
results is given in the next section in connection with the
evaluation of the correlation functions.

III. DISPLACEMENT DISTRIBUTIONS AND
CORRELATION FUNCTIONS

A. Displacement distribution along z

In the steady state, the distribution along z can be cast in
terms of the density c of GUC. Let us denote the host and the

FIG. 4. Numerical simulation: �a� top view of the last layer, �b� in-plane correlation function and its fit �solid line� using Eq. �22�, �c� film
cross section �x-z plane�, and �d� displacement histograms for layers 10, 50, and 100.
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guest c-axis parameters as c0 and c1, respectively. The prob-
ability density distribution for the position along z of a UC in
the layer t obeys the following recursion relation:7,14

Pt�z� = �1 − c�Pt−1�z − c0� + cPt−1�z − c1� . �15�

Equation �15� simply means that a UC within the layer t will
end at z with probability �1−c� �hence, with lattice constant
c0� provided the underlying UC has ended at z−c0 or with
probability c �with lattice constant c1� provided the underly-
ing UC has ended at z−c1. The initial condition �growing on
an empty substrate� can be written as follows:

P1�z� = �1 − c���z − c0� + c��z − c1� . �16�

The distribution finally reads

Pt�z� = �
n=0

t 
 t

n
�cn�1 − c�t−n��z − tc0 − n�� , �17�

where ��c1−c0 is the difference between the two lattice
constants and � t

n
� are the binomial coefficients. Notice that,

even in the steady state, the standard deviation of such a
distribution is monotonically increasing with the layer index
t. The latter is illustrated by the histograms in Fig. 4�d�
which have been computed at three different stages of the
film formation: t= 10, 50, and 100. They are a particular
stochastic realization of Eq. �17�.

For later use within the XRD context, it is also useful to
compute the Fourier transform Pt�q� of Pt�z�. The Fourier
transform of the recursion relation �Eq. �15�� immediately
gives

Pt�q� = �P1�q��t = ���1 − c� + ce−iq��e−iqc0�t. �18�

B. In-plane correlations

In Fig. 4�a� we have mapped equally displaced domains
for the top layer �t=100� of our simulated film: each gray
level corresponds to a given displacement value. Figure 4�c�
is a vertical cross section of the film in which we have as-
signed the white or black color to cells with an even or odd
number of displacements, respectively. Consequently, it is
easier to visualize the horizontal borders between two adja-
cent domains. These borders contain a fortiori a GUC and
show a staircase structure. One can describe Fig. 4�a� as a
domain with displacement value of 8�, containing inclusions
with displacement values of 7� and 9�. The clustered struc-
ture in Fig. 4�a� is in striking contrast with the homogeneous
mixture of displacement values one would expect from a
completely random intergrowth nucleation in the U=0 limit.
Indeed, for a given value of the GUC concentration, both the
clustered structure of the domains and the staircase arrange-
ment of GUC reduce the number of steps and the associated
elastic energy. The corresponding in-plane two-point corre-
lation function g�x�, plotted in Fig. 4�b�, shows a rapid ex-
ponential drop over the first 20 sites, followed by a constant
asymptotic behavior for larger distances. The exponential
contribution to g�x� is similar to the usual short-range corre-
lation due to stacking faults in epitaxial films. The constant
contribution is less usual and denotes a spatially independent

�infinite range� correlation. Focusing on a single layer, one
has then to consider correlations on two distinct length
scales: short-range correlations for cells belonging to the
same cluster, and space-independent correlations for cells
situated on different clusters anywhere within the same layer.
Let us denote the short-range correlation function as g1�x�: it
is the probability for two cells, within a given layer and at a
distance x of each other, to belong to the same displacement
domain, i.e., with no steps in between. The general form for
g1�x� reads as follows:

g1�x� = e−x/�, �19�

Equation �19� contains a characteristic decay distance �, cor-
responding to the average domain linear size. This character-
istic distance depends not only on the step concentration S
but also on the in-plane step distribution characterizing the
cluster’s structure. While the value of � cannot be computed
within the MF approach, a lower bound can be found, corre-
sponding to the homogeneous step distribution situation �U
=0�,

g1�x� = �1 − S�x/a = e−x/� ⇒ �min =
a

ln
 1

1 − S
� , �20�

where a is the in-plane lattice constant. In the case of the real
sample used as an example in the present contribution, the
steady-state value for the step concentration is S=0.12 �see
Fig. 3�, implying �min�8UC, approximately half the value
observed in the numerical simulation.

The evaluation of the space-independent correlation g0
follows directly from the MF z-axis distribution �Eq. �17��,

g0 =
1

N
�
t=1

N �
tc0

tc1

�Pt�z��2dz =
1

N
�
t=1

N

�
n=0

t �
 t

n
�cn�1 − c�t−n�2

.

�21�

In Eq. �21�, �Pt�z��2 is the probability of finding two cells,
within the layer t, having the same z-axis position �i.e., con-
taining the same number of intergrowth in their underlying
columns� regardless of their particular mutual in-plane dis-
tance. The integration over z� �tc0 , tc1� gives the total prob-
ability of finding two such cells for any possible displace-
ment within the t layer. g0 is then obtained by averaging over
the entire film �N layers� of the preceding quantity. The evo-
lution of g0 with the total number of layers is depicted in Fig.
5 for the same model parameters as before, calculated ac-
cording to Eq. �21�. Notice that the space-independent corre-
lation is continuously decreasing with film thickness even in
the steady state and that, as for the cluster’s linear size �, Eq.
�21� underestimates g0. The latter is due to the fact that ex-
pression �17� is a MF result that does not take into account
in-plane correlations; it describes just the random sequencing
along the z axis.

Finally, the total two-point in-plane correlation function
for displacements is given by
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g�x� = g1�x� + �1 − g1�x��g0

= g0 + �1 − g0�g1�x� = g0 + �1 − g0�e−x/�. �22�

The continuous line curve in Fig. 4�d� is a fit obtained by
using expression �22�.

IV. X-RAY DIFFRACTION

For epitaxial thin film characterization with an x-ray dif-
fractometer, the most common measurements are 	-2	 scans
�T2T� and RC.15 The first technique, also known as the
Bragg-Brentano geometry, consists of measurements of the
diffracted intensity by keeping the sample’s surface normal
at the bisecting position between the incident and diffracted
beams. In the second one, the detector is fixed in a Bragg
position 2	B, and the sample surface is slightly rotated
around the bisecting position 
=	B. Therefore, T2T scans
probe the crystal along the normal direction, while RCs do it
along the sample’s in-plane direction, contained in the plane
of the two beams.

A. �-2� scans

1. Deviation of Bragg peak positions

The relation between q, the modulus of the momentum
transfer vector, and the diffraction angle 2	 in Bragg-
Brentano geometry is

q =
4� sin�	�

�
, �23�

where � is the wavelength of the monochromatic x-ray
beam. The diffraction amplitude from a c-axis-oriented per-
fect periodic crystal reads

A�q� = fUC�q��
t=1

N

e−iqtc0 → fUC�q��
n

�
q − n
2�

c0
� ,

N →  , �24�

where fUC�q� is the structure factor of the crystal UC and N
the total number of UCs along the c axis. The intensity dif-

fracted by a perfect crystal, which is proportional to the
square modulus of the amplitude �Eq. �24��, presents equally
spaced Bragg peaks at each q=nq0, with q0=2� /c0. The sum
over the periodic layered structure appearing in the first
equality of Eq. �4� is strongly modified if the beam encoun-
ters randomly displaced UCs in the intercalated crystal, as
discussed elsewhere.7 In order to compute the diffracted am-
plitude for a crystal containing random intergrowth, we have
to perform its average over the displacement distribution
Pt�z�,

�A�q�� = fUC�q��
t=1

N

�e−iqz�t�� = fUC�q��
t=1

N � Pt�z�e−iqzdz

= fUC�q��
t=1

N

Pt�q� . �25�

In Eq. �25�, the average of the phase factor and the UC
structure factor have been computed independently since the
displacement and the nature of the UC are independent ran-
dom events. The mean structure factor is simply the
weighted average of guest and host structure factors,

fUC�q� = �1 − c�fHUC�q� + cfGUC�q� . �26�

Inserting Eq. �18� in Eq. �25�, the expression for the diffrac-
tion amplitude reads

�A�q�� = fUC�q��
t=1

N

��1 − c� + ce−iq��te−iqtc0. �27�

Comparing the above result with the first equality in Eq.
�24�, the main difference is the complex coefficient affecting
the phase factor e−iqtc0 in Eq. �27�. This coefficient brings a
phase correction for each term in the sum and its exponen-
tially decaying amplitude enhances the weight of low index
terms. As a result, the maxima in the diffracted intensity are
shifted from their regular positions, and the angular-
dependent anomalous peak broadening and intensity attenu-
ation are observed in random intercalated films. The evalua-
tion of the order-dependent deviations for peak positions
requires rewriting of the additional complex coefficient in
Eq. �27� in terms of modulus and phase,

�1 − c� + ce−iq� = R�q�e−i��q�, �28�

with R�q� = 	1 − 2c�1 − c��1 − cos�q��� �29�

and ��q� = arctan� sin�q��
1 − c

c
+ cos�q��� . �30�

Consequently,

�A�q�� = fUC�q��
t=1

N

R�q�t exp�− i��q�t� , �31�

where ��q� is the modified phase defined as

FIG. 5. Average space-independent correlation function vs film
thickness from Eq. �21�.
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��q� = qc0 + ��q� . �32�

Since the real coefficient R�q� is a slowly varying function in
the vicinity of a peak, the maxima occur when all the terms
of the sum in Eq. �31� contribute in phase, i.e., when ��qn�
=2n�. The deviation �q of the Bragg peak position at any
order can be calculated as follows:

�q � qn − nq0 = qn − n
2�

c0
= −

1

c0
arctan� sin�q��

1 − c

c
+ cos�q��� .

�33�

Measuring the subtle peak position deviations from an
apparently single-phase-oriented film reveals the existence of
the intergrowth. By fitting such deviations with Eq. �33�, one
can extract the total concentration c of the guest phase and
the c-axis difference � with respect to the host material. An
example is shown in Fig. 6 for a thin La-doped Bi-2201 film
grown by laser ablation under conditions that enhance the
intergrowth formation.11 From the fit in Fig. 6, we obtained
the following values: c=0.18 and �=3.7 Å. This result has
to be interpreted by considering the Bi-2201 symmetry
�space group I4/mmm�. Indeed, for the layer formation pro-
cess, what matters is the building block with the reduced c
axis �c0 /2�, corresponding to one-half of the crystallographic
UC we have used to index the diffraction peaks. In other
words, 18% of intercalates corresponds to an actual amount
of �9% of GUCs. The value of � is remarkably close to the
typical lattice constant of cubic perovskites.

2. Anomalous peak broadening and weakening of intensity

Unlike in the case of perfect crystals, the sum in Eq. �31�
does not cancel out away from the peak maximum. This is
the reason why peak broadening is enhanced in a nonmo-
notonous way and also for the anomalous intensity modula-
tion in random intercalated materials. These effects are con-
trolled by the real coefficient R�q�t and its dependence on the
summation index t. Performing the geometrical sum in Eq.
�31� and calculating the corresponding intensity, one obtains

I�q� = �A�q��2 =
fUC�q�2

1 + R2�q� − 2R�q�cos ��q�
, �34�

where the extra q-dependent intensity modulation appears
explicitly in the denominator. From Eq. �34�, we can extract
the full width at half maximum �FWHM� of the modified
Bragg peaks. Indeed, the FWHM in Bragg-Brentano geom-
etry is defined as 4�	, where �	 is the deviation from 	B
resulting in a reduction of the scattered intensity by a factor
of 2. The corresponding deviation �� of the total phase
obeys

2R�1 − cos����� = �1 − R�2 ⇒ �� =
4�c0 cos 	

�
�	

= arccos�1 −
�1 − R�2

2R
� . �35�

Finally, ��2	� �the FWHM� can be written as

��2	� = 4�	 =
�

cos 	
� 1

tef f
+

1

�c0
arccos�1 −

�1 − R�2

2R
�� ,

�36�

where the instrumental broadening has been neglected and
the term 1

tef f
has been added to account for the effective size

effect �Scherrer’s formula�.15 In Fig. 7 we use the same fit-
ting parameters c and �, as in Fig. 6. For the effective thick-
ness, we find tef f �300 Å. This value, ten times smaller than
the actual total thickness of the film ��4000 Å�, is the char-
acteristic length over which the phase coherence is destroyed
by disorder. This happens over distances for which the accu-
mulated average displacement corresponds to one reduced
UC �c0 /2�. For the values found for c and �, one expects an

effective coherence length tef f =
c0

2

2c� =447 Å, in good agree-
ment with the value used for the fit in Fig. 7.

B. Anomalous rocking curves

The signature, in XRD, of the very peculiar in-plane two-
point correlation function discussed in Sec. III B would be
the observation of two distinct contributions to the RC. It is
well known that RC probes the in-plane crystal coherence
and can have different shapes depending on the type of dis-

FIG. 6. Fitting the peak position deviations with Eq. �33�.

FIG. 7. Fitting the FWHM with Eq. �36�.
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order involved.16 The RC is proportional to the Fourier trans-
form of the two-point correlation function thus, from Eq.
�22�, we expect the RC to be a superposition of a Lorentzian
curve generated by the exponential term and a Dirac peak
generated by the constant term. The latter is, in fact, a narrow
Lorentzian limited by the instrumental resolution.

The Fourier transform of Eq. �22� yields

g�qx� = g0��qx� + 2��1 − g0�
1

1 + ��qx�2 . �37�

The FWHM of the Lorentzian �qx is given by

�qx =
2

�
. �38�

Figure 8 is the fit of the RC on the �006� peak of the same
film as above using Eq. �37�. The value found for the fitting
parameter is �qx=0.03 Å−1. According to Eq. �38�, the in-
plane coherence length seen by XRD is then �=67 Å, corre-
sponding to 17 UCs, in good agreement with the result of the
numerical simulation. The integrated intensity ratio of the
two contributions can be computed from Eq. �37�,

r =
� g0��qx�dqx

� 2��1 − g0�
1 + ��qx�2 dqx

=
g0

2��1 − g0�
. �39�

Measuring the integrated intensity ratio on the RC �r
=0.12�, we can extract the value of the space-independent
correlation: g0=0.43, again in good agreement with the nu-

merical simulation �see Fig. 4�b��, showing the consistency
of the approach.

V. CONCLUSIONS

Within the context of epitaxial growth of HTSC-layered
oxides, we have developed a simple model for the random
nucleation of intergrowth during the deposition of thin films
by PLD. The model describes an out-of-equilibrium process,
governed by two characteristic energies: the formation en-
thalpy difference and a “stacking fault” energy of elastic ori-
gin. A mean-field treatment allows us to find the displace-
ment distribution along the growth direction and to show the
existence of a steady state with a constant amount of inter-
growth per layer. A numerical simulation, based on MC tech-
niques, has been implemented in order to describe the in-
plane disorder. We show that the z-axis displacements in the
successive layers are self-organized in huge interpenetrating
clusters. This result is directly interpreted within our model
by noticing that this kind of structure reduces the elastic
energy due to stacking faults, as compared with the homoge-
neous dilution of different displacement values. Conse-
quently, the intergrowth is also self-organized in a staircase
structure. The resulting in-plane two-point correlation func-
tion for the displacements consists of two components corre-
sponding to two distinct length scales.

XRD patterns obtained from the calculated structure pre-
dict, for the T2T diffractograms, periodic deviations of the
Bragg peaks from their regular positions, anomalous inten-
sity modulations, and oscillating peak broadening. The RC
shows two distinct contributions generated by the two com-
ponents of the in-plane correlation function. Fitting XRD
patterns with the above model allows us to measure the con-
centration c of intergrowth, the difference in lattice constants
with respect to the host �z-axis displacement unit ��, and the
average in-plane cluster size.

The structural characterization of thin films is an unavoid-
able step in order to interpret their physical properties. Epi-
taxial intergrowth of isostructural parent compounds is a
typical hidden defect that does not appear when using stan-
dard techniques. Observing closely, even single crystals, one
realizes that the random intergrowth is often present. In the
particular context of angle-resolved photoemission spectros-
copy, the latter can bias the results as well as the interpreta-
tion of the electronic structure. In this context, our contribu-
tion provides a useful tool to control the quality and
characterize the disorder in layered oxides.
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FIG. 8. Fitting the RC with Eq. �37�.
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