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We studied the nanoscale structure of the short-range incommensurate magnetic order in La1.5Sr0.5CoO4 by
elastic neutron scattering. We find that magnetic diffuse scattering is isotropic in the a-b plane, in contrast with
the naive expectation based on the popular stripe model. Indeed, charge segregation into lines favoring certain
lattice direction�s� would facilitate linear stacking faults in an otherwise robust antiferromagnetism of undoped
material, leading to anisotropic disorder with a characteristic symmetry pattern present in the neutron scattering
data.
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I. INTRODUCTION

Since the advent of high-temperature superconductivity
�HTSC� in cuprates, the physics of doped strongly correlated
transition metal oxides remains at the forefront of condensed
matter research.1–3 In particular, there is a renewed interest in
metal-insulator transitions associated with charge and/or or-
bital ordering in doped manganese and nickel oxides and in
“colossal” magnetoresistance phenomena.3–5 While macro-
scopic magnetic and transport properties of strongly corre-
lated oxides respond to doping in many different and often
fascinating ways, the appearance of structural and magnetic
superlattices whose periods depend on the doping level is a
common microscopic response shared by many oxides.6–15

Simultaneous incommensurate magnetic and charge or-
dering was probably first observed in a doped nickelate,
La2−xSrxNiO4+y.

6 It gained prominence when a similar phe-
nomenon was discovered in a x�1/8 doped cuprate with an
anomalously suppressed superconductivity.7 It was proposed
that a simple model of real-space static ordering of holes and
spins, where doped charges segregate into lines separating
magnetically ordered stripe domains, can explain all features
observed by elastic neutron scattering. In conjunction with
earlier theoretical predictions of such superstructures in the
two-dimensional �2D� Hubbard model, which is believed to
describe the physics of HTSC cuprates,16–19 striped phases
gained broad popularity and became essentially a default
model for describing incommensurate magnetic and charge
superstructures in doped layered perovskite oxides
La2−xSrxMO4 �M =Cu, Ni, Co, Mn�.

There is a growing recognition, however, that physics of
charge ordering in cuprates may differ significantly from that
in well-insulating materials such as cobaltates and nickelates,
where it can also be viewed as ordering of polarons driven
by lattice elastic interactions.20–22 In fact, it was argued theo-
retically that formation of superstructures whose period de-
pends on the doping level, including stripes, is a natural re-
sponse of the crystal lattice to local strain associated with
doped charges and can be already explained by considering
the system’s elastic energy.21 Experiments indicate this type
of superlattices in layered manganates and cobaltates.13–15

In a superlattice, e.g., such as associated with polaron
ordering, atomic positions and/or alignment of magnetic mo-

ments do not vary in the direction perpendicular to the
propagation vector, presenting superlattice modulation as a
periodic arrangement of lines of parallel spins and/or identi-
cal atomic displacements �Fig. 1�. Hence, stripe superstruc-
tures resulting from one-dimensional electronic phase segre-
gation and elastic/magnetic superlattices have similar
appearance in real space. Accounting for domains, they also
give rise to similarly positioned elastic peaks observable in
scattering experiments. Hence, the question arises: is it pos-
sible to distinguish between the two cases? Here we show
that for short-range superstructures this question can be an-
swered by studying the nanoscale structure of disorder. By
measuring the pattern of elastic neutron scattering, we find
that short-range incommensurate magnetism in half-doped
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FIG. 1. �Color online� �a� Checkerboard charge and spin order at
half-doping. �b� Stacking fault giving rise to short-range correlation
and magnetic incommensurability in La1.5Sr0.5CoO4 in stripe pic-
ture. �c�, �d� LTO superlattice of weakly doped cuprates. a�, b� are
reciprocal lattice vectors of the HTT phase; arrows show tilts of O
octahedra. Stacking faults separating structural domains with oppo-
site tilts �broken lines� running along “stripes” �perpendicular to
Qc�, �c�, and perpendicular to stripes �parallel to Qc�, �d�, have the
same energy, implying isotropic disorder.
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cobaltite La1.5Sr0.5CoO4 does not originate from an intrinsi-
cally one-dimensional stripe charge order.

At half-doping, the system is naturally amenable to a
checkerboard charge order �CO� where every other site in the
a-b plane of the high-temperature tetragonal �HTT� structure
accommodates a hole, Fig. 1�a�. It is accompanied by a cor-
related harmonic modulation of atomic positions with propa-
gation vector Qc= �1/2 ,1 /2� in the HTT reciprocal lattice,
resulting in a superlattice with twice larger unit cell com-
pared to the HTT phase where a=b�3.83 Å. In stripe pic-
ture this type of CO can be viewed as an alternate stacking of
diagonal charge stripes. The CO structural disorder results
from faults in stripe stacking, Fig. 1�b�, and is one-
dimensional �1D� in nature. The ordering of small polarons
driven by lattice strain, on the other hand, is in essence simi-
lar to the cooperative tilt pattern of oxygen octahedra in the
low-temperature orthorhombic �LTO� lattice, which relieves
chemical pressure in weakly doped cuprates, Figs. 1�c� and
1�d�. Stacking faults have no intrinsic 1D rigidity and result
in randomly shaped domains and isotropic disorder.

Although x=0.5 regime is inaccessible in cuprates, check-
erboard CO was found for M =Ni, Co, Mn.11,13–15 While
there is no consensus yet on the cobaltate, ordering in Mn
material is commonly viewed as a cooperative Jahn-Teller
distortion, or CDW, driven mainly by lattice elastic energy,13

while that in the nickelate is usually discussed in terms of
stripes,11 following the original proposition of Ref. 6. Al-
though for different reasons, hole sites are effectively non-
magnetic both in cobaltite and nickelate; antiferromagnetic
spin order �SO� on the remaining sites gives rise to a super-
lattice with four times the period of the original HTT lattice,
Fig. 1�a�. Experiments show that this spin order is usually
short ranged, most probably reflecting the short-range nature
of charge and/or stripe superlattice. Then, it would be natural
to expect that structure of these short-range nanoscale spin
correlations reflects the structure of faults in the charge order,
e.g., a disorder in the form of linear magnetic disclinations
associated with stripe stacking faults, Fig. 1�b�.

II. EXPERIMENTAL PROCEDURE

We studied a large single crystal of La1.5Sr0.5CoO4
�m�11 g� grown by the floating zone method. It has a
nearly HTT structure with lattice parameters a=b�3.83 Å
and c�12.5 Å at T=10 K and was previously described in
Ref. 15. Sample mosaic spread is ��20�. Measurements
were done in �h ,k ,0� and �h ,h , l� reciprocal lattice zones
using cold �SPINS� and thermal �BT9� neutron triple axis
spectrometers, respectively, at NIST Center for Neutron Re-
search. Monochromatic neutrons were obtained using �002�
reflection from vertically focusing pyrolytic graphite �PG�
crystals and analyzed using flat PG�002� analyzer crystals.
On SPINS beam collimations were �37�−80�−80�−240�,
from guide to detector, and neutron final energy was
Ef =5 meV. Beryllium filters both before and after the
sample were used to remove the contamination from higher
order reflections in PG. On BT9 we used Ef =14.7 meV, col-
limations �40�−40�−40�−100�, and PG filters before and
after the sample.

Color contour maps of the measured elastic scattering in-
tensity are shown in Figs. 2�a� and 2�b�. Both in �h ,k ,0� �a�
and �h ,h , l� �b� zones the observed peaks are much broader
than the calculated instrument resolution, which is illustrated
by the FWHM ellipses. Peaks of magnetic origin are at
h ,k�0.25 and 0.75, while those due to atomic displacement
accompanying charge ordering are at h=k=0.5. Checker-
board CO in La1.5Sr0.5CoO4 sets in at about 825 K, while
magnetic spin ordering appears only below abound 30 K.15

Quantifying the nanoscale structure of short-range mag-
netic correlations experimentally so as to distinguish be-
tween various symmetries of magnetic domains requires ac-
curate knowledge and deep understanding of the resolution
effects present in neutron scattering measurements. In order
to quantify the resolution function and accurately account for
the resolution effects we measured elastic scattering intensity
around �1,1,0� Bragg peak, in the �h ,k ,0� orientation. The
data scaled down by a factor of 100 in order to roughly fit in
the intensity range of magnetic scattering are shown in the
upper right corner of the contour plot of Fig. 2�a�. It is im-
mediately clear that magnetic peaks are much broader than
nuclear lattice peak, whose width is governed entirely by the
resolution and sample mosaics. A more detailed image of
intensity around �1,1,0� nuclear Bragg peak is shown in Fig.
3�a�. Intensity scale enhances regions with smaller number of
counts away from the peak.
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FIG. 2. �Color online� Contour map of the measured neutron
elastic scattering intensity in �h ,k ,0� �a� and �h ,h , l� �b� zones at
T=3.5 K and 10 K, respectively. Ellipses show the calculated full
width at half maximum �FWHM� instrument resolution �Ref. 23�.
Magnetic peaks are at h ,k�0.25,0.75 r.l.u. Charge order scattering
is seen at h=k=0.5 r.l.u. Intensity in the map around �1,1,0� Bragg
peak shown in the top right corner was scaled down by a factor of
100.
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Resolution of the triple axis neutron spectrometer is usu-
ally described using the Cooper-Nathans formalism.23 We
show the result of such calculation for the �110� nuclear
Bragg reflection in Fig. 3�b�. There is an obvious discrep-
ancy between the calculation and the observed intensity
shown in Fig. 3�a�, which has a pronounced tail along k
direction, resulting in an elliptical Bragg spot on the contour
map. This shape can be explained by taking into account the
sample size effects �our sample is a �5 cm long cylinder,
which for scattering measurement in the �h ,k ,0� zone is
mounted roughly parallel to the scattering plane�. In a very
general way, this can be done by using the method devised
by Popovici,24 where the sample is described in terms of a
Gaussian density distribution. Instead, here we have explic-
itly included the sample size in the Cooper-Nathans calcula-
tion by averaging over the scattering angle between the inci-
dent and scattered neutron beams, which varies across the
length of the sample. The result of such calculation gives
very good fit of the measured �110� nuclear Bragg intensity,
which is plotted in Fig. 3�c�. Sample mosaic was found to be
0.3°.

Mosaic structure of the �110� nuclear Bragg reflection in
Fig. 3�a� consists of a single peak, with no apparent indica-
tion of an orthorhombic lattice distortion.25 Therefore, if
present, any such distortion is not detectable within the ac-
curacy of our measurement of nuclear Bragg reflections.
However, we find a small, �0.6% distortion from the analy-
sis of magnetic scattering, which is described below.

Selected scans around the magnetic peak position are pre-
sented in Fig. 4. The lines show the result of the global fit of
all data to the resolution corrected anisotropic cross section
given by Eq. �5� for D=3, which is discussed in detail in the
next section.

III. ANALYSIS AND DISCUSSION

An appealing feature of stripe picture is that it provides a
simple real-space model explaining both temperature-

dependent CO incommensurability in nickelates and short-
range incommensurate magnetism in both Ni and Co
materials.11 In this picture they arise from discommensura-
tions, or faults in the stacking pattern of 1D charge and/or
spin stripes, favored by strong nearest-neighbor exchange
coupling on the HTT square lattice, Fig. 1�b�. At half-doping
such faults effectively reduce the average period of magnetic
structure within the correlated domains in a-b plane, consis-
tent with slightly longer than �1/4,1/4� SO wave vector
Qso��0.256,0.256� in La1.5Sr0.5CoO4.15 It is also clear from
the figure that discommensurations introduce linear disclina-
tions parallel to stripes �coupling across two consecutive
hole sites is weak and frustrated� and therefore truncate spin
correlation range. This type of disorder has a specific imprint
in the structure of diffuse elastic peaks measured in scatter-
ing experiment.27–31

Anisotropic short-range-ordered superlattices are well
known in the physics of imperfect crystals and binary alloys,
such as Cu3Au.27–30 Phase mismatches at the boundaries of
antiphase domains and/or stacking faults introduce one-
dimensional disorder in the direction perpendicular to the
defect planes. A combination of several systems of such
phase slips allowed in the crystal structure leads to a peculiar
x-ray �and neutron� scattering pattern, with tails along certain
lattice directions.27,29
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FIG. 3. �Color online� Resolution and sample size effects for
�1,1,0� Bragg reflection. �a� Contour map of the measured neutron
scattering intensity in the �h ,k ,0� zone at T=3.5 K. �b� Calculated
intensity for the pointlike sample, corresponding to the resolution-
broadened � function �Ref. 23�. �c� Same as in �b�, but with sample
size effects included. Small extra intensity extended along a diago-
nal corresponds to a small ��0.3%� oriented powder component
with angular distribution of �0.8°, much broader than sample mo-
saic spread ��0.3°.
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FIG. 4. �Color online� Elastic neutron scattering from
La1.5Sr0.5CoO4. �a� �h ,k ,0� reciprocal lattice zone, �b� �h ,h , l� zone.
The lines show the global fit of the data to Eq. �5� describing
coupled anisotropic 3D correlations.
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Similar considerations can be extended to scattering by
short-range magnetic structures where disorder results from
uncorrelated stacking faults �disclinations�, such as shown in
Fig. 1�b�.32 The elastic magnetic neutron scattering cross sec-
tion is given by

d��q�
d�

= N� rm

2�B
�2

	
j

N

e−iq·R j
M0
��− q�M j

��q�� , �1�

where rm�−5.39�10−13 cm, �B is the Bohr’s magneton,
M j

��q� is the perpendicular to the wave vector q component
of the Fourier transform of the magnetization of atoms be-
longing to the lattice unit cell at a position R j, and the sum
extends over all N unit cells of the crystal. In the presence of
long-range magnetic order with wave vector Q


M j�q�� = m�q�eiQ·R j + m��q�e−iQ·R j , �2�

where the order parameter m�q� includes Wannier function
describing magnetic form factor of the unit cell. Fourier-
transform in Eq. �1� is a sum of �-functions offset by Q from
reciprocal lattice points.

Uncorrelated magnetic disclinations in the crystal can be
accounted for by introducing additional random phase mul-
tipliers e−i�j in the magnetization density �2�. In view of its
randomness, averaging over this phase factor can be decou-
pled in the correlation function in Eq. �1�. Assuming self-
averaging and Gaussian randomness, its statistical average is


e−i�j�=e−
�j
2�/2 �Bloch identity� and the scattering cross-

section is

d��q�
d�

= Nrm
2 �m��q�

2�B
�2

	
j

N

e−iq·R j−
1
2


�j
2�. �3�

In the case of planar �linear in 2D� disclinations perpen-
dicular to principal lattice directions such as expected from
stripes, the accumulated mean-square phase mismatch can be
described by independent random walks along these direc-
tions. Then, 
� j

2� /2=		nj,	 /
	, where nj,	 label lattice
sites, R j =		nj,	a	, and 
	 are correlation lengths in appro-
priate units �	=x ,y ,z�. Substituting this into Eq. �1�, one
obtains cross section in the form of a product of 1D lattice-
Lorentzians �LL�

L̃
	
�q	� �

sinh 
	
−1

cosh 
	
−1 − cos�q	 ± Q	�

, �4�

along principal crystallographic directions �Eq. �4� is a sum
of Lorentzians placed periodically in 1D reciprocal lattice�.
Factorized cross section is a consequence of the 1D nature of
disorder generated by system of linear and/or planar phase
slips. It retains the orientational symmetry of these defects in
the crystal lattice.

If, perhaps upon appropriate rescaling of coordinates, the
disorder is isotropic, such as introduced for example by the
domain structure in the random field Ising model �RFIM�,33

phase slips depend only on R j and 
� j
2� /2=

n j

 . While the

lattice sum cannot be easily evaluated, it can be rewritten as
an integral which is repeated periodically in reciprocal lattice
and summed to restore the lattice translational symmetry. For

a D-dimensional lattice �D=1,2 ,3�, the result is a
generalized-lattice-Lorentzian function

	
�

�1 + 	
	=1

D

�q	 ± Q	 + �	�2
	
2�−�D+1�/2, �5�

where 
	 are the original unrescaled correlation lengths and
� are reciprocal lattice vectors. Cross section of the form
given by Eq. �5� was observed in neutron scattering
experiments in two- and three-dimensional random field
Ising ferro- and antiferro-magnets, in particular in
Rb2Co0.7Mg0.3F4 and Co0.35Zn0.65F2.34,35

Scattering functions for different combinations of disorder
described by Eqs. �4� and �5� on a three-dimensional �3D�
lattice are summarized in Table I. A fully factorized �product
of LL in all three directions� 1D�1D�1D cross section can
be expected in stripe picture for La1.5Sr0.5CoO4. Indeed, dis-
commensurations destroy magnetic correlation perpendicular
to stripes without seriously affecting order along them. Simi-
larly, the interplane correlation is destroyed by faults in plane
stacking. Resulting diffuse scattering has diamondlike shape
reminiscent of a superposition of quasi-1D “rods” of scatter-
ing extended perpendicular to stripes and/or planes, such as
shown in Fig. 5�a�. Cross-section corresponding to aniso-
tropic 3D domains given by a lattice-Lorentzian-squared is
shown in Fig. 5�b�.

Whether the disorder-generating defects are independent
linear and/or planar disclinations or not �i.e., independent of
how the cross section is factorized and which of the models
listed in Table I is appropriate�, one expects an in-plane an-
isotropy between the correlation length along and perpen-
dicular to stripe direction within the stripe model.26 Hence,
within this model we expect two weak contributions to mag-
netic scattering in our sample, at the diagonal positions
h=k�1/4 ,3 /4 in the �h ,k ,0� zone of the tetragonal unit
cell, which are extended along this diagonal, indicating
shorter correlations perpendicular to stripes. Their intensity
is weak because they are just tails of magnetic peaks at
�1/4,1/4,1� and �3/4,3/4,1� resulting from finite correlation
length �peak width� along the c axis. The strong signal,
which is present in our data at �1/4,3/4,0� and �3/4,1/4,0�,
arises from twin magnetic domains in the sample, and thus
its intensity pattern is rotated by 90°. Overall, all peaks
should exhibit C2 symmetry and contributions from twin do-
mains should be rotated 90° with respect to each other.

In Fig. 5 we show simulated magnetic scattering intensity
for our sample arising from anisotropic short-range magnetic
correlations expected in the stripe model with correlation

TABLE I. Scattering functions for different structure of the
nanoscale disorder on a 3D lattice �assuming large 
	�.

Type of disorder Scattering cross section

1D�1D�1D �1+q1
2
1

2�−1�1+q2
2
2

2�−1�1+q3
2
3

2�−1

2D�1D �1+q1
2
1

2+q2
2
2

2�−1.5�1+q3
2
3

2�−1

3D �1+q1
2
1

2+q2
2
2

2+q3
2
3

2�−2
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length ratio 2:1, chosen to compare with the data of Ref. 26.
Figure 5�a� shows simulated neutron scattering data for the
factorized-lattice-Lorentzian cross section, while scattering
corresponding to the lattice-Lorentzian-squared from aniso-
tropic 3D correlations is presented in Fig. 5�b�. Equal con-
tributions from both twin domains were assumed.

From comparing Figs. 2�a� and 2�b� and Figs. 5�a� and
5�b� it is already clear that short-range magnetic order in
La1.5Sr0.5CoO4 is neither anisotropic in the a-b plane, nor it
is described by independent one-dimensional magnetic dis-
clinations associated with stripes running along diagonals of
the HTT unit cell, Fig. 1�b�. It is rather consistent with an-
isotropic short-range 3D superlattice model with equal cor-
relation lengths in the a-b plane. This can be further quanti-
fied by fitting to Eq. �5� 1D scans made at different off-sets
�q from the magnetic peak position along the diagonal of the
HTT unit cell, Fig. 6�a�. “Correlation lengths” obtained from
such fits of scans along �h ,h ,0� and �0,0,l� directions are
shown in Fig. 6. For now, we neglect the instrumental reso-
lution effects which are small compared to much larger width

of magnetic and/or charge order peaks. In this case, for the
factorized LL scattering cross section so determined 
	

should be independent of �q, while for D=2,3


	
fit = 
	/�1 + 	

��	

��q�
��2, �6�

where 
	 is the magnetic correlation length in the corre-
sponding direction. Fits shown in Figs. 6�b� and 6�c� using
Eq. �6� yield 
1,1,0

3D =7.0 and 
1,1,0
2D�1D=9.6 �HTT diagonal�

lattice units, and 
0,0,1
3D =0.68 l.u. Note, that these values are

obtained neglecting the resolution corrections, and thus rep-
resent lower limits for the corresponding correlation length.

While different fits to 1D scan through magnetic peak
shown in Fig. 6�a� can be hardly distinguished, variation of
the fitted correlation length 
1,1,0

fit with offset from the peak
position shown in Fig. 6�b� is clearly inconsistent with the
factorized scattering cross-section expected for independent
disclinations associated with stripes in the a-b plane. More-
over, variation of 
c

fit obtained from measurements around
�1/4,1/4,1� in the �h ,h , l� zone shown in Fig. 6�c� rules out
factorization into a 2D dependence in the a-b plane and a 1D
dependence along c axis, such as arises from independent
planar stacking faults. Therefore, our results are best de-
scribed by Eq. �5� with D=3 and anisotropic correlation
lengths, indicating disorder typical of an anisotropic 3D ran-
dom field Ising model.33

This is further confirmed quantitatively by fitting the en-
tire data set to resolution corrected cross sections from Table
I. Such fits yield 2 per degree of freedom values of 6.4
�3D�, 10.3 �2D�1D� and 13.6 ��1D�3�. For the 3D case �fits
are shown in Fig. 4 and Figs. 7�e� and 7�f�� we obtain cor-
relation lengths 
1,1,0=
1,−1,0=9.4 LTO �HTT diagonal� lat-
tice units �50.9 Å� and 
c=0.58 l.u. �7.25 Å�. For 2D�1D
case, 
1,1,0=
1,−1,0=10.2 l.u. �55.2 Å�, 
c=0.9 l.u. �11.3 Å�
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FIG. 5. �Color online� Simulated magnetic scattering intensity
for La1.5Sr0.5CoO4 in the �h ,k ,0� reciprocal lattice zone with
anisotropic correlation lengths in the a-b plane 
1,1,0=9.2 and

1,−1,0=18.4 LTO �HTT diagonal� lattice units �l.u.�. 2:1 ratio of the
correlation lengths corresponds to findings of Ref. 26. �a� factorized
1D lattice Lorentzian cross section �b� Lorentzian-squared corre-
sponding to anisotropic 3D disorder.
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FIG. 6. �Color online� �a� Typical scan through magnetic peak
with fits to cross sections for completely independent linear discli-
nations ��1D�3�, isotropic disorder in a-b plane with stacking faults
along c �2D�1D�, or disorder coupled in all three directions �3D�.
�b� and �c� “correlation length” for scans offset by �q from the
magnetic peak position, Q ��0.744+�h ,0.256−�h ,0� for �b� and
Q ��0.256+�h ,0.256+�h ,1� for �c�. The solid/dashed lines are
single-parameter fits to Eq. �6�, �q=�h�2.
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and for 1D�1D�1D case, 
1,1,0=
1,−1,0=13.3 l.u. �72.1 Å�,

c=1.1 l.u. �13.8 Å�. The latter two compare well with the
previous results of Ref. 15, although now it is clear from our
present data that a factorized cross section is not an appro-
priate model for magnetic scattering in La1.5Sr0.5CoO4. Color
contour plots of the calculated intensities corresponding to
the above fitting results are shown in Fig. 7. Note that cor-
relation lengths obtained from fitting our data to different
line shapes differ as much as by �50%. This shows that
using an incorrect cross section to describe the data can in-
troduce very appreciable and ill-controlled systematic errors.

Finally, we also found that magnetic scattering pattern in
�hk0� zone allows us to refine small orthorhombic distortion
of the crystal lattice of about 0.6% in the a-b plane
�a /b�1.006�.

IV. SUMMARY AND CONCLUSIONS

In summary, incommensurate magnetic and charge super-
structures observed in hole-doped cuprates, nickelates, and
cobaltates La2−xSrxMO4 �M =Cu, Ni, Co, Mn� are often
described in terms of discommensurations in the quasiregular
stacking of charge lines separating antiferromagnetically or-
dered stripe domains. Existence of such faults in stripe stack-
ing has two essential consequences. First, it renders the
superlattice incommensurability, which can explain the
temperature-dependent incommensurate magnetism observed
in hole-doped nickelates with 0.25�x�0.5.11,12 Second,
stacking faults truncate the superlattice coherence, resulting
in a short-range glassy superstructure, which manifests itself
in experiment by finite width, diffuse peaks of elastic scat-
tering in place of Bragg reflections.

Experimental studies of short-range magnetic and/or
charge scattering such as presented in this paper provide an
important tool for investigating spin- and charge-ordered
phases and testing various flavors of stripe models. Our re-
sults present strong evidence that stripe-type superstructure
is not at the origin of incommensurate short-range magne-
tism in the half-doped cobaltate La1.5Sr0.5CoO4. This is not
completely unexpected, as charge order in this material oc-
curs independently of magnetic order, in a well-insulating
state and at a much higher temperature.15 It is mainly driven
by lattice electrostatics and local spin entropy competing
with the crystal field splitting of Co ion’s energy levels.
Magnetic incommensurability in this picture can result from
an inhomogeneous exchange modulation induced by CO.36

The rigidity of quasi-1D charge-stripe segregation, on the
other hand, is rendered by the kinetic energy of charge
hopping,7,16,17 which seems insignificant in our case. Our
analysis can be applied to investigating the relevance of ki-
netic energy driven segregation of doped charges into stripes
in cuprates and for “diagonal stripe” CO in other insulating
La2−xSrxMO4 oxides. Such studies of “stripe-ordered” nick-
elates and cuprates are currently under way.
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FIG. 7. �Color online� Fit re-
sults of neutron scattering inten-
sity in �h ,k ,0� �a�, �c�, �e� and
�h ,h , l� �b�, �d�, �f� zones at T
=3.5 K and 10 K. 1D�1D�1D
correlation �stripelike� are in �a�
and �b�. �c� and �d� show results
for 2D�1D correlations. �e� and
�f� are fitted intensity patterns
for coupled isotropic correlations
�superlattice�.
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