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If the easy magnetization direction of a 3d-4f ferrimagnet is perpendicular to a high-symmetry axis, a
magnetic field applied in the easy direction may induce a number of first-order transitions, the first �lowest-
field� one of which carries the information sufficient for an unambiguous determination of the intersublattice
molecular field. This idea has been used to find the molecular field in Er2Fe17. To this end, magnetization
curves have been measured in pulsed magnetic fields of up to 50 T applied along �100� or �001�. In order to
obtain a reference value of the molecular field by a conventional method, high-field measurements have also
been performed on crystals free to rotate. The molecular fields determined by both techniques are in good
agreement with each other as well as with the values deduced from literature data.
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I. INTRODUCTION

The molecular field—a summary quantity expressing the
intensity of relevant exchange interactions—is one of two
main factors determining the behavior of a rare earth �R� in a
solid, the other one being the crystal field �CF�. The two
cannot be readily disentangled from each other, so in most
cases spectroscopic data are unsuitable for deducing the
value of the molecular field �or the CF�.1 Important excep-
tions from this rule are compounds of Gd, which is largely
insensitive to CF,2,3 and certain intermultiplet transitions in
light-R-based magnets, e.g., with R=Sm.4

For 3d-4f intermetallics with heavy R’s, there is also a
way to find the intersublattice molecular field, i.e., the field
created by the transition metal �T� sublattice and acting on
the R sublattice. This quantity can be determined from ex-
periments in high magnetic fields, which force the system to
abandon its ferrimagnetic ground state and to evolve gradu-
ally toward ferromagnetism.5,6 Unfortunately, magnetic an-
isotropy is a hindrance here as well; this time it is not just the
anisotropy due to the CF on the R, but also the anisotropy of
the T sublattice. Quantitatively tractable data can only be
obtained when the anisotropy of at least one of the two sub-
lattices �T or R� is negligible. This requirement is of course
satisfied if R=Gd, but such a restriction would limit the
scope of the method too severely.

Another more attractive possibility for quantitatively
meaningful high-field experiments is to study easy-plane fer-
rimagnets, i.e., tetra-, hexa-, or trigonal systems where the
easy magnetization direction lies in the basal plane. The cru-
cial advantage here is that the 3d anisotropy within the basal
plane is always very small. If the sublattice moments do not
leave the basal plane as they rotate under the strong magnetic
field, the 3d anisotropy can generally be neglected. There-
fore, all such systems are amenable to measurements on
unclamped samples.23,25 In such experiments, the mutual ori-
entation of the sublattice moments evolves as if there were
no anisotropy at all—the crystal lattice simply follows the
rotation of the R moments. If the available magnetic field is
sufficient to induce a transition to a noncollinear state, the

observed threshold field yields in a ready and unique way a
value of the molecular field on the rare earth.

The freely rotating sample technique was originally de-
veloped for quasistationary magnetic fields.23,25 Its imple-
mentation in pulsed fields meets with serious difficulties de-
scribed in some detail in Sec. III. We therefore made it our
aim to develop a different method of determining the inter-
sublattice molecular field in easy-plane 3d-4f ferrimagnets
�i.e., in the same systems which are amenable to the conven-
tional freely rotating sample technique�. Our intention was to
take advantage of the fact that a single anisotropy constant is
relevant to this special case.

To test our technique, we naturally chose a well-studied
compound, Er2Fe17. It has a hexagonal Th2Ni17-type struc-
ture �space group D6h

4 -P63/mmc�, in which Er occupies two
crystallographically nonequivalent sites, 2b and 2d. The mo-
lecular fields seen by Er�2b� and Er�2d� are strictly speaking
distinct. However, the difference appears to be small: thus,
the 161Dy Mössbauer spectra of the isomorphous Dy2Fe17 are
well represented by a single set of hyperfine parameters even
at room temperature.7 On these grounds, the R atoms in the
R2Fe17 compounds with the Th2Ni17-type structure are often
regarded as equivalent. Such an approximation will be
adopted in this work, too.

Furthermore, we shall assume that the magnetic moments
of the Fe atoms, distributed over four nonequivalent lattice
sites, are all parallel to each other, making a single magnetic
sublattice. As far as Er2Fe17 is concerned, validity of this
approximation is limited to low temperature and ambient
pressure. Under a pressure of only 0.2 GPa, the collinear
ferrimagnet turns into a helix,8 just like what happens in
Y2Fe17 at a much higher pressure �1 GPa.9,10 In a closely
related Tm2Fe17 just below room temperature, the helix
structure is stable even at ambient pressure.11

As regards high-field studies of Er2Fe17, there was an ear-
lier work on a single crystal12 as well as Er2Fe17−xAlx powder
data extrapolated to x=0.14 Nonetheless, we carried out our
own high-field magnetization measurements both on fixed
and free to rotate single crystals.

The paper is organized as follows. After some preparatory
development of theory in Sec. II A the technique is set out in

PHYSICAL REVIEW B 75, 184439 �2007�

1098-0121/2007/75�18�/184439�10� ©2007 The American Physical Society184439-1

http://dx.doi.org/10.1103/PhysRevB.75.184439


Sec. II B. Experimental details are then exposed in Sec. III,
followed by results and discussion in Sec. IV.

II. THEORY

A. General

Further to the suppositions stated in the Introduction, we
consider a two-sublattice magnet whose sublattice magneti-
zations, MT and MR, are assumed spatially homogeneous.
Our starting point is the following thermodynamic potential:

��MT,MR,H� = �MT · MR − �0H · �MT + MR� + Ea
T + Ea

R.

�1�

Here, the first term describes the R-T exchange, which favors
an antiparallel orientation of the sublattices, ��0. The sec-
ond term describes the interaction with the applied magnetic
field, while the last two terms are anisotropy energies of the
T and R sublattices. Our consideration is limited to low tem-
peratures, so we assume �MT�=MT=const and �MR�=MR
=const. The magnetostatic energy is neglected.

We further assume that the system is a hexagonal easy-
plane magnet and that the field H is applied along an easy
direction in the basal plane. Then, all three vectors MT, MR,
and H will lie in the basal plane. The orientation of MT and
MR will be described by the angles they make with H, � and
�, respectively �Fig. 1�. The thermodynamic potential then
takes the following form:

���,�� = �MTMR cos�� + �� − �0HMT cos �

− �0HMR cos � − �K4R�cos 6� . �2�

We have used the standard expression for the R anisotropy
energy appropriate for the hexagonal symmetry15 and omit-
ted the irrelevant terms which depend on the polar angle �
only, since by the assumption ��const=� /2. A term in
cos 6� originating from the T sublattice �of order 6 in the
weak spin-orbit coupling� has been left out.

The equilibrium orientation of the sublattice vectors is
found by minimizing Eq. �2� with respect to � and �. To this

end, it is convenient to introduce the following dimension-
less variables:

h =
�0H

�MT
, 	 =

�

�MT
2 , 
 =

�K4R�
�MT

2 , m =
MR

MT
. �3�

Using these variables, the thermodynamic potential �2� is
rewritten as follows:

	��,�� = m cos�� + �� − h cos � − mh cos � − 
 cos 6� .

�4�

This expression is readily adaptable for tetragonal easy-plane
ferrimagnets through the substitution of cos 4� for cos 6� in
the last term.

It is easy to see that Eq. �4� depends essentially on two
parameters, 
 and m. The latter is just the ratio of the
sublattice magnetizations, a readily obtainable quantity.
Thus, m�0.49 for Er2Fe17.

16 Without loss of generality, we
shall hereafter limit ourselves to a special case of MT�MR

α

β

H

MR

MT

FIG. 1. Mutual orientation of the sublattice magnetizations and
applied magnetic field. All three vectors lie in the basal plane of a
hexagonal crystal.

(a)

(b)

FIG. 2. Reduced magnetization of an easy-plane ferrimagnet
versus reduced magnetic field: �a� no in-plane anisotropy �Eq. �6��
and �b� strong six-fold anisotropy, magnetic field parallel to an easy
direction �Eq. �7��.
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or 0�m�1, relevant, e.g., to the R2Fe17 compounds. In this
case, �→0 and �→� as h→0 and the magnetization nor-
malized to unity in weak fields is given by

� =
cos � + m cos �

1 − m
. �5�

Here, � and � are the equilibrium values of the sublattice
orientation angles, obtained by minimizing Eq. �4�.

Of primary interest to us is the far from trivial dependence
of the magnetization curves ��h� on the unknown anisotropy

parameter 
. Explicit expressions for ��h� can only be ob-
tained for the special cases of 
=0 and 
=. In the former
case, the solution can be found in the literature:5,6

��h� = 	 1 if h � 1 − m

h/�1 − m� if 1 − m � h � 1 + m

�1 + m�/�1 − m� if h � 1 + m .

 �6�

We also have obtained the following expression for the case
of 
=:17

��h� =	
1 if h � h1

�1/�1 − m����h + m/2�/�h2 + mh + m2 − m/2� if h1 � h � h2

�1/�1 − m����h − m/2�/�h2 − mh + m2 + m/2� if h2 � h � h3

�1 + m�/�1 − m� if h � h3,

 �7�

where the threshold fields are given by

h1 =
1 − m

1 − m/4
, �8�

h2 =� 1 − m2

1 − m2/4
, �9�

h3 =
1 + m

1 + m/4
. �10�

Figure 2 displays both ��h� dependences with m=0.49. One
can observe that the magnetization curve is continuous in the

isotropic case �
=0, Fig. 2�a��, but it has three discontinui-
ties when 
= �Fig. 2�b��. They correspond to three first-
order transitions, when the R sublattice vector MR has to
jump over a hard direction in the basal plane, on its way
from being initially antiparallel to H to becoming eventually
parallel to it �see Fig. 3�. These transitions in the strongly
anisotropic case �
=� were earlier analyzed by Franse et
al.,18 who used the same approach without succeeding to
arrive at the explicit expressions �7�–�10�. We also note that
in this case the heights of the magnetization jumps at the first
�low-field� and the third �high-field� transitions are given by
the following simple formulas:

��1 =
m�1 − m/4�

2 − m + m2/2
, �11�

��3 =
m�1 + m��1 + m/4�

�1 − m��2 + m + m2/2�
. �12�

The first one of these expressions �11� is likely to prove
useful, since it is the low-field transition that is usually ob-
served experimentally.

In a more realistic case of intermediate 
, ��h� cannot be
expressed in explicit form. One may expect intuitively the
discontinuities in the ��h� curves to appear at certain finite
values of 
, their total number gradually increasing to 3. To
perform the calculations numerically, we found it convenient
to minimize the potential �4� with respect to the angle � first,
and then to eliminate � by means of the resulting expression,

� = arctan
m sin �

h − m cos �
. �13�

Now, the function 	(���� ,�) needs to be minimized with
respect to just one variable, �. This was carried out by trial
and error, taking for � values between 0 and � in increments

H

hard

hard

ha
rd

easy

easyea
sy

easy

FIG. 3. Easy and hard directions in the basal plane of a hexago-
nal crystal relevant to the magnetization curve in the strongly an-
isotropic case �Fig. 2�b��. As the magnetic field varies, the R sub-
lattice magnetization takes consecutively the four easy directions.
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of 0.001. The obtained equilibrium values of � and � were
subsequently put into Eq. �5�.

The magnetization curves computed in this way for m
=0.49 and some representative values of 
 are shown in Fig.
4. We observe that for very small 
, the curves are continu-
ous. Then at some stage, as 
 grows, the low-field kink be-
comes a discontinuity. This means that the second-order
phase transition turns into a first-order one. Then, at a yet
higher 
, the high-field kink undergoes the same transforma-
tion. Finally, an S-shaped anomaly develops in the middle
part of the magnetization curve.

An exhaustive summary of this information for any given
m is afforded by a 
-h phase diagram. Figure 5 is such a
diagram for m=0.49, as relevant to Er2Fe17. The solid curves
in Fig. 5 are first-order phase transition lines. A magnetiza-
tion process for a specific system—a growth of the field h at
fixed anisotropy 
—is depicted by a vertical line. Where this
line crosses a solid curve, a first-order transition �a jump of
magnetization� occurs. The solid curves are delimited on the
left by critical points, where the former either end �as in the
case of an end point C2� or continue as second-order �dotted�
transition lines �as happens at tricritical points C1 and C3�.
The number of jumps in a magnetization curve ��h� of a

particular system is thus uniquely determined by its abscissa
in Fig. 5, i.e., by its anisotropy parameter 
. In general, the
higher the 
, the more jumps take place, up to their total
number of 3. There will be no jumps at all if 
�
C1

.
General expressions for the coordinates of the critical

points in a 
-h phase diagram as well as for the second-order
�dotted� transition lines are given in the appendixes. Using
these formulas, one can sketch diagrams similar to Fig. 5 for
any value of m without recourse to large-scale calculations.
The shape of these diagrams does not depend on m in the
sense that for any m between 0 and 1, the upper line has a
descending slope, while the other two lines ascend. The only
topological change worthy of mention occurs at m�0.78. In
the diagrams for smaller m values �0�m�0.78� the point
C2 lies to the right of C3, whereas for larger m �0.78�m
�1� C2 lies to the left of C3.19 In terms of magnetization
curves, this means that when m is fixed at a positive value
below 0.78 and 
 is gradually increased, the low-field dis-
continuity at h1 first appears, followed by the high-field one
at h3, followed by the middle one at h2. The order of appear-
ance of the jumps at h2 and h3 will be reversed if 0.78�m
�1; now at certain 
, the ��h� curves may be discontinuous
at h1 and at h2, but still continuous at h3.

0 1 2
0

1

2

3

h

�

m = 0.49
� = 0.00015

h1 h3

FIG. 4. Magnetization curves calculated numerically for selected intermediate values of the anisotropy parameter 
. The magnetic field
is applied in an easy direction.
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B. Method of determining Hmol

By definition �3�, the molecular field on the R sublattice is
just the ratio of the dimensional and dimensionless magnetic
fields, Hmol=��0

−1MT=H /h. Therefore, the problem is
solved, Hmol=H1 /h1, if one succeeds to relate the two ab-
scissa scales by �i� observing a field-induced first-order tran-
sition at a point H1 in an experimental curve magnetization
versus H �Fig. 6� and �ii� independently finding the position
h1 of the same anomaly in the corresponding theoretical
curve ��h�.

To determine h1, we propose to use the measured height
of the magnetization jump ��1 �Fig. 6�, the magnetization
being normalized to unity before the jump. The two quanti-
ties, h1 and ��1, depend on the anisotropy parameter 
 in a
rather complicated way. However, when the pair of functions
���1�
�, h1�
� is regarded as a parametric definition of the
dependence ��1 versus h1 �with 
C1

�
��, the latter
proves practically linear �see Fig. 7�.

Both end points can be readily located. The left-hand ex-
treme is the tricritical point C1, where the magnetization
jump ��1 vanishes and the threshold field takes the critical
value hC1

�Eq. �A8��. At the opposite end of the interval, 

=, h1 and ��1 are obtainable from the simple expressions
�8� and �11�. Interpolating linearly, we get

h1 = hC1
�m� + ��1� 1 − m

1 − m/4
− hC1

�m��2 − m + m2/2

m�1 − m/4�
.

�14�

Here, ��1 is a quantity to be determined from experiment
�Fig. 6� and hC1

�m� is a known function �Eq. �A8�� of the
sublattice magnetization ratio m. Having found H1 and h1,
one gets immediately the molecular field on the R sublattice,
Hmol=H1 /h1. Thus, the method does not require any precise
knowledge of the anisotropy parameter 
.

III. EXPERIMENTAL DETAILS

The initial components, 99.9% pure Er and 99.998% pure
Fe, were mixed in the nominal molar ratio 2:17. The sub-
sequent alloying was carried out in an alundum crucible
placed in an induction furnace under argon atmosphere. The
melt was cooled down slowly, at a rate of 10 K/min, to
facilitate the growth of large single-crystalline grains within
the ingot. The ingot was then broken up by ultrasound and
large ��200 mg� single-crystalline grains were picked out.
The quality of the so prepared single crystals was controlled
by means of optical metallography, atomic force microscopy,
and x-ray diffraction �back Laue�. Specimens without grain
boundaries or inclusions of extraneous phases were selected
for further processing. First, by grinding off sharp corners,
the crystals were roughly shaped into spheres of various
sizes. Thereupon, they were run for several hours by a jet of
compressed air inside a cylinder lined with fine sandpaper,
until they became visually spherical. The stressed surface
layers were removed by electropolishing in CrO3 solution.
For magnetization measurements, the crystals were oriented
�when required� by back Laue diffraction.

The magnetization measurements were performed at the
pulsed-field facility of IFW Dresden. The energy was stored

FIG. 5. Phase diagram of a hexagonal easy-plane ferrimagnet.
The solid curves are first-order phase transition lines calculated nu-
merically. The second-order �dotted� transition lines and the posi-
tions of the critical points were computed using the formulas given
in the appendixes with m=0.49.

FIG. 6. Schematic normalized magnetization curve with a
“jump” corresponding to a first-order phase transition.

FIG. 7. The height of the first magnetization jump versus the
first threshold field, calculated for two representative values of m
�MR/MT. The magnetic field is applied in an easy direction.
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in a 1 MJ capacitor bank, consisting of four identical 5 mF
capacitor modules connected in parallel. The pulsed coil
used in the present work had been manufactured by the
NHMFL, Tallahassee. Combined with the capacitor bank, it
provided a magnetic field of up to 50 T in a 24 mm bore
with a rise time of about 8 ms.

The magnetic field was measured by two pickup coils
connected in series located symmetrically above and below
the sample pickup coils. To avoid possible influence of a
magnetized sample on the field value, the field-measuring
coils were placed at a reasonable distance from the sample.
The signal from the coils, proportional to Ḣ ��dH /dt�, was
integrated by an analog integrator. The integrator zero was
reset just before the start of each pulse and checked again
shortly after the end of the pulse to enable correction for
drift. The whole field-measuring system was calibrated by
measuring the well-known magnetization curve of the MnF2,
where a spin-flop transition takes place at 9.3 T.

The value of the magnetic moment was obtained by mea-
suring the signal induced in a pickup coil surrounding the
sample. This signal contained contributions from the chang-

ing magnetic moment of the sample Ṁ ��dM /dt� as well as

from the varying magnetic field Ḣ. The latter had to be can-
celed out by the signal from a compensation pickup coil,
exposed to the same changing field as the coil with the
sample, but connected in the opposite sense. Since perfect
compensation of the pickup coils is, in principle, impossible,
every measurement of a magnetization curve was followed
by a measurement of the decompensation signal, performed
in identical conditions but without a sample. This back-
ground signal was then subtracted from the initial magneti-
zation curve.

As can be appreciated from the preceding section, the
proposed technique is more sensitive to additive uncertain-
ties in M than it is to calibration errors of multiplicative kind.
Therefore, correct determination of zero on the magnetiza-
tion scale—always nontrivial where integration is
involved—is essential for the success of the method. To this
end, magnetization was also recorded at negative fields
�down to about −7 T� during the recoil after the main pulse,
then the entire curve was centered around the origin �Fig.
11�. The recoil data are not shown in Figs. 9 and 10 to save
space.

Two quite different sample pickup coil systems were em-
ployed, depending on whether the sample was fixed or free
to rotate. The first one, used for measurements on fixed crys-
tals, consisted of a sample coil �sample space �5 mm in
diameter�, surrounded by a coaxial compensating coil. The
coils were connected via a balancing voltage divider to the
input of an analog integrator. The magnetometer �together
with the integrator� was calibrated by measuring the well-
known magnetization curve of barium ferrite. Further details
about this pickup coil system can be found in Ref. 20.

For the measurements on unclamped crystals, the sample
size had to be cut down to R�0.3 mm in order to reduce the

sample reaction time constant, �= �R2 /�0MḢ�1/3, where M is
the mass magnetization and R is the radius of the sample. To
prevent the coil filling factor from becoming too low, a new
set of smaller pickup coils had to be constructed for the

purpose. In this case, the sample and the compensation coils
were identical and situated beside each other. The coils were
3 mm long with a 1 mm bore and contained 150 turns.

The mechanism of the delay at the start of rotation of an
unclamped ferrimagnet is illustrated in Fig. 8. In a weak
magnetic field, the easy axis and both sublattices are per-
fectly aligned with the field, the sublattice with the larger
moment being parallel and the one with the smaller moment
antiparallel to the field. The energy of the system is a mini-
mum at �=0 �Fig. 8�a��, where � is the angle between the
crystal’s easy axis and the direction of the field. As the grow-
ing with time magnetic field reaches a critical value Hc, the
equilibrium of the collinear alignment becomes unstable, i.e.,
the energy minimum at �=0 turns into a maximum. At the
same time, two new minima appear at nonzero �, situated
symmetrically on both sides of the maximum. In the spirit of
Landau’s theory, the positions of the minima should depend
on time as �� ± �H−Hc�1/2= ± Ḣ1/2t1/2, where the zero on the
time scale has been chosen to coincide with the moment
when the magnetic field reaches the critical value. The solid
curve in Fig. 8�b� shows schematically the positive branch of
this dependence. The crystal’s easy axis cannot keep up with
the rapid motion of the energy minima, initially infinitely
fast. It cannot even decide which of the two minima to fol-
low. Indeed, the crystal cannot start rotating instantly �and
certainly not with an infinite angular velocity� because it
experiences no torque at equilibrium, albeit unstable. The
crystal will come into rotational motion eventually after the
energy maximum has gained sufficient steepness. This pro-
cess develops in avalanchelike fashion �dashed line in Figs.
8�b� and 8�c�� and very soon the crystal’s easy axis catches
up with one of the runaway energy minima.21 So, while in a
steady-field magnetization curve of an unclamped crystal the
transition point looks like a kink between two straight seg-
ments �Fig. 8�c�, solid line�, the pulsed-field curve �dash�
sags due to the inertia of a finite-size sample. This effect is
clearly visible in the experimental data �Fig. 11�.

The exact duration of this process is hard to evaluate be-
cause it is largely determined by factors outside our control:
imperfect initial alignment, dry friction, jolts experienced by
the sample in a pulsed magnetic field, etc. Roughly, however,
one can estimate the catching-up time as 5�; over this time,
the angular velocity increases by three orders of magnitude.
The increment of the applied field over the same period of

time amounts to �H=5�Ḣ. For a typical crystal �R
�1 mm� of Er2Fe17 �M �80 A m2/kg� in the pulsed-field

installation employed ��0Ḣ�1�104 T/s�, one gets �

= �R2 /�0MḢ�1/3�0.1 ms and �0�H�5 T. That is, a
normal-size crystal does not have enough time to deviate
noticeably from the initial orientation a �H before the applied
field reaches the threshold value 37.5 T �see Figs. 10 and 11�
and a first-order transition takes place, just as if the crystal
were fixed rather than free to rotate. This effect frustrated our
early attempts to perform the measurements on relatively
large ��2.5 mm in diameter� unclamped crystals; the result-
ing magnetization curves looked no different to the ones ob-
tained on fixed samples with a �H �Fig. 10�. This brought
about the need to substantially reduce the sample size and all
the extra difficulties entailed.
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IV. RESULTS AND DISCUSSION

Figure 9 presents a magnetization curve of Er2Fe17 mea-
sured along the hard axis c �001�. At about 5 T, one can
clearly see a first-order field-induced spin-reorientation tran-
sition �SRT� earlier observed by several authors,22 in particu-
lar, by Sinnema.23 �It will be recalled that an SRT does not
affect the mutual orientation of the sublattices, antiparallel in
this case; only their orientation in relation to the crystallo-
graphic axes changes.� A second first-order transition takes
place at about 38 T �the field in Sinnema’s experiments23

went up to 35 T�. This transition cannot be classified as an
SRT because departure from the antiparallel orientation of
the sublattices is essential here. Theoretically, it was pre-
dicted over a decade ago by Zhao et al.24 The predicted
threshold field, 36.7 T, agrees surprisingly well with experi-
ment, especially if the latter is corrected for effects of de-
magnetization. For our purpose, however, this threshold field
is a less valuable source of information, since it depends on
several crystal-field parameters.

Our main objective is to analyze easy-axis magnetization
curves, for which a quantitative model has been developed in
Sec. II. Such a curve, measured in H �a or �100�, is displayed
in Fig. 10. Two first-order transitions are evident. The higher-
field one is centered around 44 T and features an �2-T-wide
hysteresis loop. Of primary interest to us, however, is the
lower-field transition. It is situated at �0H1=37.5 T, the hys-
teresis being rather narrow, �0.5 T. For the relative height

(a)

(b)

(c)

FIG. 8. �a� The energy of a free to rotate ferromagnetic crystal
versus the angle � between its easy axis and the magnetic field. In
small fields, the easy direction tends to align itself with the field; the
energy is a minimum at �=0. As at t=0 the growing field reaches a
critical value Hc, the minimum transforms into a central maximum
flanked by two minima. �b� Time dependence of the abscissa of the
�right-hand� minimum in the previous graph �solid line� and the
actual orientation angle of the crystal’s easy axis �dash�. �c� The
respective contributions to the magnetization projection on the di-
rection of the applied magnetic field, ��2.

FIG. 9. Magnetization curve of Er2Fe17 measured along
�001�.

FIG. 10. Magnetization curve of Er2Fe17 measured along
�100�.
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of the magnetization jump �see Fig. 6�, we find ��1�0.18.
Equations �A8� and �14� yield for Er2Fe17 �m=0.49� hC1
=0.531 and h1=0.565. Hence, the molecular field on the Er
sublattice is �0Hmol=�0H1 /h1=66.4 T. This and similar re-
sults are collected in Table I for comparison.

For verification, Hmol was also determined using the tra-
ditional technique, from a magnetization curve measured on
a small single-crystalline sphere free to rotate �Fig. 11�. The
measurements were performed on the more sensitive,
purpose-made magnetometer �Sec. III�, without calibration.
For reasons explained in the previous section, the magneti-
zation curve is distorted around the transition point. The
threshold field, �0H1=33.5 T, was determined by extrapola-
tion of the linear portions of the curve below and above the
transition. Hence, we got the molecular field on Er, �0Hmol
=�0H1 / �1−m�=65.7 T, as listed in Table I.

For a more complete comparison, we applied our tech-
nique to an earlier published magnetization curve along
�100�.12 We also included in Table I the value of Hmol ob-
tained in Ref. 14 by extrapolation to x=0 of Er2Fe17−xAlx
powder data �cited in Ref. 14 is the so-called exchange field
on Er, �0Hex=3�0Hmol=200 T�.

Comparing the values in the last column of Table I, it is
worth noting that these should be in all rigor rounded to two
digits. While on the whole the values appear consistent, the
two of them obtained in this work differ by as little as 1%.
We thus may conclude that our technique has passed the test.

We now turn to the higher-field transition in Fig. 10, situ-
ated at about 44 T. Earlier, a similar transition was observed

at 42 T by Verhoef et al.12 As regards the nature of this
anomaly, it clearly cannot be identified with the transition at
h2 shown in Fig. 2�b� or in the lower right panel of Fig. 4.
Such a transition could only take place at a higher field,
about 56 T �because h2 /h1�1.5�. The most likely explana-
tion is that proposed by Verhoef et al.12 and later adopted by
Zhao et al.24 and García-Landa et al.13 According to this
scenario, the sublattice moments leave the basal plane and go
over into the plane ac, or �010�. A quantitative description of
such a transition would necessitate a generalization of the
model set out in Sec. II by way of introducing several addi-
tional free parameters, which is outside the scope of this
work. �We would like to remind at this point that our main
goal is a unique deduction of the molecular field from the
observation of the first, lower-field transition. The presence
of another transition at a higher field does not interfere with
our reasoning.� Continuing with the higher-field transition,
we note its reentrant character: the sublattices leave the basal
plane at a certain value of applied field but later, at a yet
higher field, they suddenly return to the basal plane. The
width of the interval between the two threshold fields de-
pends strongly on the adopted parameters, e.g., from
49.5 to 63.0 T in Ref. 24 and from 53.5 to 58.5 T in Ref. 13,
centered always around 56 T. It means that the parameter set
of Ref. 13 is nearly three times closer than that of Ref. 24 to
the threshold beyond which the sublattices do not leave the
basal plane at all �i.e., everything proceeds as described in
Sec. II�. The latter scenario cannot therefore be ruled out,
since it lies near the sets of Refs. 13 and 24 in parameter
space.

Because of the discrepancies in the calculations of the
higher-field transition, it would be of interest to measure the
magnetization along the a axis up to a higher field �100 T� in
order to observe all possible transitions. This would enable
one to clarify the complex behavior of Er2Fe17, characterized
by the presence of several competing contributions to the
anisotropy energy. On account of this complexity, Er2Fe17
was perhaps after all not the best choice for our case study.
The advantages of our method will become more apparent
when applied to R2Fe17 where the Stevens factor �J is nega-
tive �i.e., R=Tb,Dy,Ho� so that the second-order crystal
field favors the easy-plane structure instead of opposing it.

In summary, magnetization curves of Er2Fe17 have been
measured at T�10 K in a long-pulsed field up to 50 T, ap-
plied either to a fixed crystal or to a crystal free to rotate. In
a field applied in the hard direction �001�, a previously
known first-order transition has been observed at 5 T, and a
further first-order transition has been observed at about 38 T.
In a field applied along the easy axis �100�, a first-order
transition at 37.5 T has been observed, followed by another
first-order transition at about 44 T. The threshold field of the
former �37.5 T� has been used to deduce—using the pro-
posed technique—the molecular field on Er. This has been
found to agree well with the value obtained by a more direct
�but experimentally more demanding� method, from mea-
surements on an unclamped sample. Also, earlier published
data, processed using the proposed technique, have yielded
consistent molecular field values. In our view, the proposed
technique has the potential of becoming a standard method
of experimental determination of intersublattice molecular
field in ferrimagnets.

TABLE I. Molecular field on Er determined by means of Eq.
�14� using experimental data from various sources.

�0H1

�T� ��1 h1

�0Hmol

�T�

37.5a 0.18a 0.565 66.4

35.7b 0.18b 0.565 63.2

33.5c 0.51 65.7

66.7d

aThis work.
bReference 12.
cFreely rotating crystal, h1=1−m, this work.
dEr2Fe17−xAlx powder data extrapolated to x=0, Ref. 14.

FIG. 11. Magnetization curve measured on an unclamped single
crystal of Er2Fe17.
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APPENDIX A: TRICRITICAL POINTS AND SECOND-
ORDER TRANSITION LINES IN THE PHASE DIAGRAM

Let us first deal with the lower second-order �dotted� line
ending at the tricritical point C1 �Fig. 5�. Two simultaneous
equations obtained by minimizing the thermodynamic poten-
tial 	�� ,�� �Eq. �4��,

− m sin�� + �� + h sin � = 0, �A1�

− m sin�� + �� + mh sin � + 6
 sin 6� = 0, �A2�

are to be solved under an additional condition that the system
deviates little from the ferrimagnetic ground state. That is,
the angle � must be infinitesimally small, and � must be
presentable as �=�−�, where � is an infinitesimal quantity.
It is convenient to rewrite Eq. �A1� as Eq. �13� and to use it
to eliminate � from Eq. �A2�. The latter is then presented as
an expansion in odd powers of the small parameter �:

a� + b�3 + ¯ = 0, �A3�

where

a = mh� 1

m + h
− 1� + 36
 , �A4�

b = −
1

6
a +

m2h2

2�m + h�3 − 210
 . �A5�

According to Landau, in order for a second-order phase tran-
sition to take place, it is necessary that a=0 and b�0.
Equating Eq. �A4� to zero yields immediately


 =
mh

36
�1 −

1

m + h
� , �A6�

which can be also presented as h�
�:

h =
1

2
�1 − m +

36


m
+��1 − m +

36


m
�2

+ 144
� .

�A7�

This expression, with m=0.49, describes the lower dotted
curve in the phase diagram �Fig. 5�.

At a tricritical point, where a second-order transition turns
into a first-order one, both Landau’s coefficients must vanish:
a=0, b=0. Equation �A5� then yields


 =
1

420

m2h2

�h + m�3

which has to be solved simultaneously with Eq. �A6�. Elimi-
nating 
, one arrives at an equation cubic in h. It has three

real solutions, but only one of them is positive. This positive
solution,

hC1
=

1

3
− m +

2

3
�1 +

9

35
m

�cos�1

3
arccos

1 +
27

70
m −

81

70
m2

�1 +
9

35
m�3/2 � , �A8�

is the ordinate of the tricritical point C1. The abscissa is then
obtainable from Eq. �A6�.

Explicit expressions for the upper dotted line in the phase
diagram �Fig. 5� and for the coordinates of the tricritical
point C3 are obtained by merely substituting −m for m in
Eqs. �A6�–�A8�.

On the left-hand side of the phase diagram �as 
→0� the
two dotted curves level off at h1,2=1±m, whereas on the
right �
→� the three solid curves tend to the limits given
by Eqs. �8�–�10�. Unfortunately, the solid curves themselves
cannot be calculated but numerically. However, the position
of the remaining critical point C2 can be estimated rather
accurately using simple formulas �B1� and �B4� derived in
Appendix B.

APPENDIX B: POSITION OF THE CRITICAL POINT C2

The key assumption here is that the angle � is very close
to � /2. The ordinate of the point C2 is obtained by simply
putting �=� /2 into the simultaneous equations �A1� and
�A2�. It follows immediately that sin �=m and

hC2
= cos � = �1 − m2. �B1�

To find the abscissa, one has to allow for a small deviation of
� from � /2: �=� /2+�. Proceeding as in Appendix A, i.e.,
using Eq. �13� to eliminate � from Eq. �A2� and expanding
the latter in powers of �, we get

mh�1 −
1

�m2 + h2� + � m2h2

�m2 + h2�3/2 − 36
�� + ¯ = 0.

�B2�

The left-hand side of this equation depends on � both explic-
itly and through h, which is a function of �. The full deriva-
tive with respect with respect to � is of course identically nil:

d

d�
�left-hand side� �

�

��
�lhs� +

dh

d�

�

�h
�lhs� � 0. �B3�

At the critical point C2, where dh /d� vanishes, the partial
derivative of the left-hand side of Eq. �B2� with respect to �
must vanish, too. Equating the square bracket of Eq. �B2� to
zero and substituting 1−m2 for h2 �by virtue of Eq. �B1��, we
finally get


C2
=

1

36
m2�1 − m2� . �B4�
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