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We present an analytical method of calculating the mean first-passage times �MFPTs� for the magnetic
moment of a uniaxial nanoparticle which is driven by a rapidly rotating, circularly polarized magnetic field and
interacts with a heat bath. The method is based on the solution of the equation for the MFPT derived from the
two-dimensional backward Fokker-Planck equation in the rotating frame. We solve these equations in the
high-frequency limit and perform precise, numerical simulations which verify the analytical findings. The
results are used for the description of the rates of escape from the metastable domains, which in turn determine
the magnetic relaxation dynamics. A main finding is that the presence of a rotating field can cause a drastic
decrease of the relaxation time and a strong magnetization of the nanoparticle system. The resulting stationary
magnetization along the direction of the easy axis is compared with the mean magnetization following from the
stationary solution of the Fokker-Planck equation.
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I. INTRODUCTION

The problem of finding the statistical characteristics of the
first, the biggest, and the like, for sample paths of a stochas-
tic process, frequently occurs in physics, biology, economics,
and other sciences.1–3 A particularly prominent identifier is
the mean first-passage time �MFPT�, i.e., the average value
of the random times taken by a random walker that starts out
from some initial state to reach another prescribed state in
state space for the first time. This quantity describes a large
variety of noise-induced effects such as activation rates or
reaction rates, the lifetime of metastable states, the extinction
of populations, or the extreme events in financial time series,
to name only a few. Unfortunately, the class of stochastic
processes for which the MFPT can be calculated explicitly is
rather restricted. In fact, the most general analytical results
were obtained for one-dimensional discrete or continuous
Markov processes that are homogeneous in time.4–7 How-
ever, these conditions of one-dimensionality and time homo-
geneity often represent an oversimplification. In particular,
Markov processes that describe time-dependent systems are
usually not homogeneous. Prominent examples are Brownian
motors and ratchetlike stochastic systems,8,9 as well as sys-
tems exhibiting stochastic resonance.10,11 Although a few ad-
vanced, approximate methods for the analysis of periodically
driven Markovian systems are available,12–19 the develop-
ment of new approaches for calculating the MFPTs in such
systems still presents an important challenge.

In this paper, we develop an analytical approach to the
two-dimensional MFPT problem for a magnetic moment of a
ferromagnetic nanoparticle driven by a magnetic field which
rapidly rotates in the plane perpendicular to the easy axis of
magnetization �up-down axis�. The natural precession of the
magnetic moment always occurs in the counterclockwise di-
rection �when viewed from above�. Therefore, its determin-
istic dynamics in the up and down states differ.20 For this
reason the stochastic dynamics and thus the MFPTs in these
states are different as well. In turn, the difference in the
MFPTs can drastically change the magnetic properties of

systems composed of nanoparticles. This was explicitly
shown in the resonant case, when the driving frequency co-
incides with the Larmor frequency of precession.21 With this
work we present a detailed analysis of this phenomenon in
the case of a rapidly rotating magnetic field, which was
briefly presented in Ref. 22, and apply the MFPTs for de-
scribing the thermally activated magnetic relaxation in such
systems.

The paper is structured as follows. In Sec. II, we present
the model and introduce the stochastic Landau-Lifshitz equa-
tion together with the corresponding forward and backward
Fokker-Planck equations in the rotating frame. In Sec. III, we
derive the general two-dimensional equations that define the
MFPTs for the driven magnetic moment of a uniaxial nano-
particle in the up and down states. The analytical solution of
these equations in the case of a rapidly rotating magnetic
field is carried out in Sec. IV. In the same section, to verify
our method, we solve the effective stochastic Landau-
Lifshitz equations and calculate the MFPTs numerically.
Some applications of the obtained results are presented in
Sec. V. Here we study the features of magnetic relaxation
and steady-state magnetization induced by a rapidly rotating
field in nanoparticle systems. We summarize and discuss our
findings in Sec. VI.

II. MODEL AND BASIC EQUATIONS IN THE ROTATING
FRAME

Let us consider a simple model of a uniaxial ferromag-
netic nanoparticle within which the nanoparticle is character-
ized only by the anisotropy field Ha and the magnetic mo-
ment m�t� of fixed length �m�t��=m. This model is relevant
for nanoparticles whose sizes do not exceed the exchange
length, i.e., the length scale below which the exchange inter-
action is predominant. We assume also that perpendicular to
the easy axis of magnetization, which we choose as the z axis
of a Cartesian coordinate system xyz, a circularly polarized
magnetic field h�t�=h�cos �t ,� sin �t ,0� is applied. Here,
h= �h�t�� is the field amplitude, � is the angular field fre-
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quency, and �=−1 or +1 for clockwise and counterclockwise
rotation of h�t�, respectively.

We take into account the influence of a heat bath by
means of damping and the presence of a thermal, Gaussian-
distributed magnetic field n�t�, possessing zero mean and the
white noise correlations �n��t1�n��t2��=2������t2− t1�. Here,
n��t� �� ,�=x ,y ,z� are the Cartesian components of n�t�, �
is the intensity of the thermal field, ��� is the Kronecker
symbol, ��t� is the Dirac � function, and the angular brackets
denote averaging with respect to the sample paths of n�t�. In
this case the dynamics of m�t� is Markovian and can be
described by the stochastic Landau-Lifshitz equation

d

dt
m = − �m 	 �Heff + n� −


�

m
m 	 �m 	 Heff� , �2.1�

where ��0 denotes the gyromagnetic ratio, 
 ��0� is the
dimensionless damping parameter, Heff=−�W /�m is the ef-
fective magnetic field acting on m�t�, W denotes the mag-
netic energy of a nanoparticle, and 	 indicates the vector
product. The stochastic Landau-Lifshitz equation in the form
of �2.1� was introduced by Kubo and Hashitsume.23 Another
form of this equation �with Gilbert’s relaxation term24� was
employed by Brown in his well-known paper.25 We note,
however, that although the solutions of these equations for a
given realization of n�t� are generally different, their statis-
tical characteristics are the same26 �to within a renormaliza-
tion factor for ��. At present, both forms of the stochastic
Landau-Lifshitz equation are used equally often. Although in
the Langevin equation �2.1� the noise enters in a multiplica-
tive manner, the resulting process actually is independent of
the stochastic calculus if restricted to the sphere m2�t�=m2.
This is so because the corresponding, noise-induced drift
terms are perpendicular to the sphere for any interpretation
of the stochastic differential equation �2.1�.27–30 For the sake
of definiteness, upon performing nonlinear transformations
of this stochastic differential equation we shall consistently
employ the Stratonovich interpretation.31 We next perform
such a nonlinear transformation by considering the dynamics
of m�t� in terms of spherical coordinates in a rotating frame.

Specifically, using the respective polar and azimuthal
angles � and 
 of the magnetic moment m�t�
=m�sin � cos 
 , sin � sin 
 , cos ��, the magnetic energy W
emerges as

W =
1

2
mHa sin2 � − mh sin � cos�
 − ��t� . �2.2�

The energy W depends on 
 and t only through the single
variable �=
−��t. Therefore, it is advantageous to intro-
duce a rotating Cartesian coordinate system x�y�z� �see also
a similar description of a noisy, periodically driven Van der
Pol oscillator in Ref. 32�, in which h�t�=h�1,0 ,0� and the
azimuthal angle 
 is changed by �. According to Eq. �2.1�,
in this coordinate system the equations for � and � can be
written in the dimensionless form as follows:

�̇ = u��,�� + ����,�,�� ,

�̇ = v��,�� − �� + ����,�,�� . �2.3�

Here, an overdot denotes the derivative with respect to the
dimensionless time �=�rt with the Larmor frequency �r
=�Ha, and �=� /�r is the corresponding dimensionless fre-
quency of the driving field. The functions u�� ,�� and v�� ,��
result as

u��,�� = −
1

sin �
�
 sin �

�

��
+

�

��
�W̃ ,

v��,�� =
1

sin2 �
�sin �

�

��
− 


�

��
�W̃ �2.4�

with W̃=W�� ,�� /mHa denoting the dimensionless magnetic
energy. The stochastic forces ��,��� ,� ,�� are determined as

�� = − ñx����sin � + ñy����cos � ,

�� = ñz��� − �ñx����cos � + ñy����sin �	cot � , �2.5�

where ñx����= ñx���cos ��+�ñy���sin ��, ñy����
= ñy���cos ��−�ñx���sin ��, and ñ����=n��� /�r� /Ha are
the components of the reduced thermal magnetic field. Using
the statistical characteristics of n��t�, for these components

we readily obtain �ñ�����=0 and �ñ���1�ñ���2��=2�̃������2

−�1�. Here, �̃=�� /Ha is the dimensionless intensity of the
reduced thermal field. With the help of the Sutherland-
Einstein relation,33 i.e., �=
kBT /�m wherein kB denotes the
Boltzmann constant and T is the absolute temperature, it can

be written also in the form �̃=
 /2a, where

a = mHa/2kBT �2.6�

is the anisotropy barrier height in the units of the thermal
energy kBT. We note that, in the purely deterministic case,

when �̃=0, some important features of the solution of Eqs.
�2.3� were studied in the context of the nonlinear dynamics
of m�t� and its stability.20,36

Next we introduce the conditional probability density P
= P�� ,� ,� ��� ,�� ,��� ������ which presents the most im-
portant statistical characteristic of the solution of Eqs. �2.3�.
Using the well-known connection between a set of stochastic
differential equations and the corresponding Fokker-Planck
equation �see, e.g., Refs. 2, 6, 28, and 37�, we obtain the
two-dimensional forward Fokker-Planck equation




2a
� �2P

��2 +
1

sin2 �

�2P

��2� −
�

��
� 


2a
cot � + u��,���P

−
�

��
�v��,�� − ��	P =

�P

��
�2.7�
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and the corresponding backward Fokker-Planck equation




2a
� �2P

���2 +
1

sin2 ��

�2P

���2� + � 


2a
cot �� + u���,���� �P

���

+ �v���,��� − ��	
�P

���
= −

�P

���
. �2.8�

Notably, this two-dimensional Fokker-Planck dynamics does
not obey a detailed balance symmetry,28,37 if the driving fre-
quency � does not vanish. In the model under consideration

we have W̃= �1/2�sin2 �− h̃ sin � cos �, where h̃=h /Ha.
Therefore

u��,�� = − 
 sin � cos � + h̃�
 cos � cos � − sin �� ,

v��,�� = cos � − h̃
cos � cos � + 
 sin �

sin �
. �2.9�

The probability density P must satisfy the equal-time con-
dition �P��=��=���−������−��� and appropriate boundary
conditions, as implied by the physical context. Moreover, in
spite of the singularities in Eqs. �2.7� and �2.8� at � ,��
=0,� �which are a consequence of the use of the spherical
coordinate system�, the probability density P must be a regu-
lar function also at these points. In addition, if not excluded
by the boundary conditions, P must be properly normalized,
i.e., 
0

2�d�
0
�d� P=1. We note also that the forward and

backward Fokker-Planck equations �2.7� and �2.8� are
equivalent; the difference between them is which set of vari-
ables, � ,� ,� or �� ,�� ,��, is held fixed. Due to this differ-
ence, the former is more convenient for studying the statis-
tical properties of the magnetic moment m�t� as a function of
the evolving time t, while the latter is more appropriate in
studying the first-passage time statistics for m�t�.

Based on the Fokker-Planck equation �2.7� one can deter-
mine stochastically equivalent Langevin equations, reading

�̇ = u��,�� +



2a
cot � +�


a
����� ,

�̇ = v��,�� − �� +�


a

1

sin �
����� , �2.10�

where ����� and ����� denote two independent Gaussian
white noise sources with zero mean and white noise correla-
tions ��i���� j�����=�ij���−���, wherein i , j=� ,�. In spite of
the multiplicative nature involving the noise ����� in the
second equation, the resulting stochastic dynamics possesses
a vanishing noise-induced drift and thus is again independent
of the employed stochastic calculus.29,30 As a basis for nu-
merical investigations the latter Langevin equations provide
a more convenient starting point than Eqs. �2.3�; this is so
because they require the simulation of only two, rather than
three, independent Gaussian white noises.

III. GENERAL EQUATIONS FOR THE MFPTs

In the absence of the random magnetic field, i.e., for
n�t�=0, or equivalently �=0, the motion of the magnetic

moment follows the deterministic Landau-Lifshitz equations.
In the rotating frame, the resulting deterministic dynamical
system is not explicitly dependent on time and is given in
terms of two degrees of freedom. For 
�0 this constitutes a
dissipative system, which can only perform regular motion
approaching fixed points or limit cycles in the asymptotic
limit of large times. In the present paper, we are mainly

interested in values of the parameters 
, h̃, and � for which
the motion is bistable, i.e., the asymptotic motion does lead
to either of two attractors depending on the initial condition.
These attractors are denoted as up and down states and la-
beled by �= +1 and −1, respectively. The dynamics gener-
ates a partition of the state space into two domains of attrac-
tion, each containing either the up or the down state. The
common boundary between the domains of attraction is
formed by the separatrix.

In the presence of a random magnetic field the separatrix
is no longer an impenetrable border, and transitions between
the two domains of attraction may occur. For small random
fields, corresponding to large values of a, these transitions
are rare and can be characterized by transition rates. It is now
tempting to determine the rate between a state � and the
opposite state by the MFPT to the separatrix, T�sep, i.e., by
the statistical average of the stochastic first-passage times of
trajectories that start at the attractor � and reach the separa-
trix for the first time. In the asymptotic limit of vanishing
noise a trajectory visiting the separatrix will go to either side
with equal probability, and the rate is given by the inverse of
twice the mean first-passage time. For finite noise the transi-
tions from the separatrix to the two sides may differ from
each other,34 whereby the precise value of the resulting bias
in general is difficult to quantify.35 In order to be more flex-
ible, we consider the mean first-passage times to the bound-
aries of two regions R+1= �� ,� �0����+1��� ,0���2�

and R−1= �� ,� ��−1������� ,0���2�
, each containing
one attractor. The boundaries ����� can be chosen as the
separatrix or as any other curve between the two attractors.
For a convenient choice of the boundaries ����� we refer the
reader to the next section. We note that the regions R� are
stationary in the rotating frame but may move in the rest
frame.

In order to determine the first-passage times of the regions
R�, recrossings of the respective boundaries �R�= �� ,� ��
=����� ,0���2�
 must be suppressed.1 This is conve-
niently achieved by imposing absorbing boundary conditions
on the conditional probability density P��� ,� ,�−�� ��� ,���
obeying the backward Fokker-Planck equation �2.8�, i.e., we
require P��� ,� ,�−�� ��� ,���=0 for ��� ,�����R�. Here, we
used the fact that in the rotating frame the process in the
stationary regions R� is time homogeneous, with

P���,�,� − �����,��� � P���,�,� − �����,��,0�

= P���,�,����,��,��� . �3.1�

If the magnetic moment starts out at the time �� at the
position ��� ,����R�, it will uninterruptedly stay within the
initial region R� until a time � with a probability
Q��� ,�� ;�−���. This probability can be expressed as the in-
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tegral of the conditional probability density over all states in
R�, i.e.,

Q����,��;� − ��� = �
R�

d� d� P���,�,� − �������� .

�3.2�

The probability Q���� ,�� ;�−��� is a solution of the back-
ward equation with the absorbing boundary conditions
Q���� ,�� ;�−���=0 for ��� ,�����R� and the initial condi-
tion Q���� ,�� ;0�=1. Integrating Q���� ,�� ;�−��� over all
positive �dimensionless� times u��−��, one obtains an ex-
pression for the �dimensionless� MFPT of the form

T����,��� = �
0

�

du Q����,��;u� . �3.3�

This MFPT is the solution of the backward equation




2a
� �2T�

���2 +
1

sin2 ��

�2T�

���2� + � 


2a
cot �� + u���,���� �T�

���

+ �v���,��� − ��	
�T�

���
= − 1 �3.4�

with the absorbing boundary conditions

T����,��� = 0 for ���,��� � �R�. �3.5�

Equation �3.4� was derived in Ref. 38 for the undriven case
with �=0.

Because u��� ,���, v��� ,���, and also T���� ,��� are peri-
odic functions of ��, it is convenient to decompose these
functions into their average and periodically varying
parts in ��: u��� ,���= ū����+u1��� ,���, v��� ,���= v̄����
+v1��� ,���, and T���� ,���= T̄�����+S���� ,���. Here,

ū1��� ,���= v̄1��� ,���= S̄���� ,���=0, the overbar denotes an
average over ��, i.e., �·�= �1/2��
0

2�d���·� and, according to
�2.9�,

ū���� = − 
 sin �� cos ��, v̄���� = cos ��,

u1���,��� = h̃�
 cos �� cos �� − sin ��� ,

v1���,��� = − h̃
cos �� cos �� + 
 sin ��

sin ��
. �3.6�

Using these decompositions, we find from Eq. �3.4� coupled
equations �see also in Ref. 22� for the average part




2a
�d2T̄�

d��2 + cot ��
dT̄�

d��
� + ū

dT̄�

d��
+ u1

�S�

���
+ v1

�S�

���
= − 1

�3.7�

and for the periodic part




2a
� �2S�

���2 +
1

sin2 ��

�2S�

���2 + cot ��
�S�

���
� + u1

dT̄�

d��
+ u

�S�

���

+ �v − ���
�S�

���
− u1

�S�

���
− v1

�S�

���
= 0. �3.8�

We emphasize that these equations are fully exact, i.e., they
follow from the stationary backward Fokker-Planck equation
being in the rotating frame.

IV. RAPIDLY ROTATING FIELD

A. Analytical analysis for the MFPT

In the case of a rapidly rotating magnetic field, i.e., when

the condition h̃ /��1 holds �note that h̃ need not be small�,
Eq. �3.8� can be essentially simplified.22 The reason is that

the function S� and its derivatives tend to zero as h̃ /�→0.
Using these conditions and taking into account that for large
frequencies the term ��S� /��� is of the order �0, we obtain
from Eq. �3.8� the approximation

��
�S�

���
− u1

dT̄�

d��
= 0. �4.1�

According to �3.6�, the solution of Eq. �4.1� that satisfies the

condition S̄�=0 is given by

S� = �
h̃

�
�
 cos �� sin �� + cos ���

dT̄�

d��
. �4.2�

This solution self-consistently conforms with the assump-
tions made above. Using Eqs. �4.2� and �3.6�, we find

u1

�S�

���
= v1

�S�

���
= −




2
h̃eff sin ��

dT̄�

d��
, �4.3�

where

h̃eff = − �h̃2/� . �4.4�

With these results, Eq. �3.7� reduces to the form




2a

d2T̄�

d��2 + � 


2a
cot �� − 
�cos �� + h̃eff�sin ���dT̄�

d��
= − 1.

�4.5�

According to this equation, a magnetic field rapidly rotat-
ing in the plane perpendicular to the easy axis of the nano-
particle acts on the nanoparticle’s magnetic moment pre-

cisely as a static effective magnetic field h̃eff �in units of the
anisotropy field Ha� which is applied along the easy axis.
The direction of this field and the direction of the field rota-
tion follow the left-hand rule and its value can be large
enough to produce observable effects. Next we assume that

�h̃eff��1; otherwise, only one state, �= +1 or �=−1, is
stable.

It is not difficult to show that the general solution of Eq.
�4.5� contains both regular and singular parts.39 The singular
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part arises solely from the use of a spherical coordinate sys-
tem and has no physical meaning. It exhibits a logarithmic
singularity at ��=��1−�� /2 and, as a consequence, its de-
rivative diverges. On the contrary, the regular part has a van-
ishing derivative at this point. Therefore, in order to exclude
the contribution of the singular part, the solution of Eq. �4.5�
must satisfy the regularity condition ��dT̄� /d������=��1−��/2
=0. We note in this context that the regularity condition cor-
responds to the situation when a reflecting barrier is placed at
the point ��=��1−�� /2.

In order that the high-frequency approximation for the
MFPTs can consistently be performed, the � dependence of
the boundary curves ����� must be chosen conveniently. As-

suming that ������= �̄�+�1����� with �̄1�����=0 and

�1������ h̃ /�, the absorbing boundary condition �3.5� in

the linear approximation in h̃ /� leads to the relations

T̄���̄��=0 and ��1������dT̄� /d������=�̄�
+S���̄� ,���=0. Us-

ing �4.2� and the latter relation, we find for the absorbing
boundary the explicit form

����� = �̄� − �
h̃

�
�
 cos �̄� sin � + cos �� . �4.6�

Next, solving Eq. �4.5� with the specified regularity and

boundary conditions ��dT̄� /d������=��1−��/2=0 and T̄���̄��
=0, we obtain

T̄����� =
2a



�

cos �̄�

cos ��
dx

e−a�x + h̃eff�
2

1 − x2 �
x

�

dy ea�y + h̃eff�
2
,

�4.7�

where ��� �0, �̄+1	 if �= +1, and ��� ��̄−1 ,�	 if �=−1.

The angles �̄� can be chosen depending on the physical situ-
ation. For high potential barriers, i.e., a�1, the magnetic
moment predominantly dwells in the vicinity of either of two
equilibrium states at �=0 and �. In this case, the transition
times between the states � and −� exceed by far the relax-
ation times toward these states. Therefore, in dimensional

units the averaged MFPT T̄�����= T̄����� /�r representing the
transition time from one state � to the opposite state −� only
weakly depends on the precise location of the initial magne-
tization, as long as �� lies within the domain of attraction of
the considered state �. Accordingly, the precise location of
the absorbing boundary �̄� has practically no effect on

T̄����� if it is located well beyond the separatrix which di-
vides the state space into domains of attraction of up and
down magnetization. Under these conditions, we find from
�4.7� in leading order in a

T̄� =
T̄�

�r
=

1


�r

��

a

exp�a�1 + �h̃eff�2	

�1 − h̃eff
2 ��1 + �h̃eff�

. �4.8�

As follows upon inspection from �4.2� and �4.8�, in the high-
frequency limit the periodic part of T���� ,��� can be ne-

glected, i.e., T���� ,���� T̄�.

If �h̃eff � �1 then �4.8� yields T̄�=T0 exp��2ah̃eff�, where

T0= �1/
�r��� /a exp a is the MFPT at h̃=0. According to
this formula, a rapidly rotating magnetic field increases the

MFPT for the magnetic moment in the state �=−� ��h̃eff

�0� and lowers this MFPT for the magnetic moment in the

state �= +� ��h̃eff�0�. This difference in the MFPTs arises
from the natural precession of the nanoparticle magnetic mo-
ments, which occurs in the counterclockwise direction, if
viewed from above. As a consequence, the statistical behav-
ior of the up and down magnetic moments in the magnetic
field rotating in a fixed direction is different.

Another choice of the position for the absorbing boundary
can be made right on the separatrix itself. For the averaged
one-dimensional dynamics of the azimuthal angle it corre-
sponds to the � value where the deterministic part of the drift
of the reduced backward equation �4.5� assumes an unstable

fixed point, i.e., for cos �=−h̃eff, or, equivalently, to the
maximum of the effective magnetic energy of the nanopar-

ticle, Weff���=mHa��1/2�sin2 �− h̃eff cos �	. Accordingly, the
averaged dimensionless MFPT from an initial angle �� to the
separatrix reads

T̄� sep���� =
2a



�

−h̃eff

cos ��
dx

e−a�x + h̃eff�
2

1 − x2 �
x

�

dy ea�y + h̃eff�
2
.

�4.9�

If a�1 and cos �� is not too close to −h̃eff then T̄� sep����
only weakly depends on �� and T̄� sep→T̄� /2 as a→�.

Thus, the ratio T̄� sep/ T̄� between the MFPT to the separatrix
and to an angle �̄� that is well beyond the separatrix con-
verges to the value 1/2 if a→�; however, the larger the

rotating field amplitude h̃ the slower is the convergence �see
Fig. 1�. We note also that for large but finite a the conditions

T̄� sep/ T̄��1/2 and T̄� sep/ T̄��1/2 hold for ��= +1 and
��=−1, respectively. The reason is that the effective mag-
netic energy Weff��� has different slopes from the left and

from the right of the separatrix disposed at �=arccos�−h̃eff�.

B. Numerical simulations

In order to examine the analytical results developed for
calculating the MFPTs for a magnetic moment which is
driven by a rapidly varying circularly polarized magnetic
field, we performed numerical simulations of the full two-
dimensional Langevin equations �2.10�. For any given set of

parameter values � ,� ,� ,a ,
 , h̃, four groups of 104 trajecto-
ries were run using a stochastic vector Euler algorithm.2,40

All trajectories of a simulation were initialized with the same
values for � and �. In the vicinity of the coordinate singu-
larity at �=0 a reflecting boundary was located at �=0.02�,
together with an absorbing boundary at �=0.8�, which is
located well beyond the separatrix of the corresponding de-
terministic system. The step width was chosen such that the
increments in � were less than � /100 and the increments in
� less than � /10, respectively. The precise computation of
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the MFPTs of this system using the Langevin equations
�2.10� requires us to compute the arrival of all trajectories at
the absorbing boundary. In practice, this method is unfeasible
for all but the smallest values of the anisotropy barrier height
a; this is so because a given trajectory can take much longer
than the MFPT to arrive at the absorbing boundary. These
events are rare, but contribute significantly to the MFPT, and
hence a sufficiently large number of these events needs to be
simulated to arrive at a reliable statistics. However, assuming
that the first-passage time distribution is exponentially dis-

tributed with a rate parameter 1 / T̄� it is possible to deter-
mine the MFPT approximately by fitting the tail of the simu-
lated first-passage time distribution to an exponential.
Although this assumption can be justified for large barrier
heights a�1, since then the relaxation time of the system is
much shorter than the MFPT, it clearly is expected to fail for
a�1. Note that a enters the exponent of the expression for
the MFPT equation �4.7�, and therefore the large barrier limit
is already obtained for moderately large values of a. Using
this assumption allows us to simulate the Langevin equations
�2.10� for each trajectory up to a fixed maximal time at
which on average a considerable fraction of all trajectories,
but not all, have crossed the absorbing boundary. To be defi-
nite, we took this time to be two-thirds of the theoretical
mean first-passage time calculated from Eq. �4.7�. With this
choice, roughly half of all trajectories arrived at the absorb-
ing boundary. The number of absorbed transitions was stored
as a function of time. From each of the resulting four data

sets the rate 1 / T̄� was determined by an exponential fit and
thereby the MFPT was estimated. From these four values an
average value and a standard deviation was determined. The
so obtained numerical findings compare most favorably with
our theoretical predictions �see Figs. 2 and 3�.

Figure 2 depicts the dependence of the MFPT as a func-
tion of the anisotropy barrier height a for two different driv-
ing angular frequencies �=5 and 10. The values of the other

parameters are �= +1, �= +1, h̃=1, 
=0.1. Depicted is the

natural logarithm of the dimensionless MFPT T̄+1. It can
clearly be seen that the high-frequency predictions from Eqs.
�4.7� and �4.8� approach the results of the numerical simula-
tion from above as � is increased. This can be understood
intuitively because the effective dynamic barrier for escape is

FIG. 1. �Color online� Dependence of the ratio T̄� sep/ T̄� on the
dimensionless anisotropy barrier height a for different values of the

dimensionless amplitude h̃ of the rotating magnetic field. The nu-
merical calculations of the integrals in the relations �4.7� and �4.9�
were carried out for �=10, �= +1, �̄+1=0.9�, �̄−1=0.1�, ��
=0.1� if �= +1, and ��=0.9� if �=−1. The broken curves �green
and blue online� that cross the horizontal asymptote �black online�
correspond to �= +1, and the broken curves �green and blue online�
that lie below the asymptote correspond to �=−1. The solid curve

�red online� represents the case h̃=0 for which T̄+1 sep/ T̄+1

= T̄−1 sep/ T̄−1. We note also that in all cases the ratio T̄� sep/ T̄� does
not depend on 
.

FIG. 2. �Color online� Natural logarithm of the dimensionless

MFPT T̄+1 as a function of the parameter a. The thick curves rep-
resent the exact theoretical results obtained from �4.7�, and the thin
curves depict the approximate high barrier limit given by �4.8�. The
symbols indicate results from the numerical simulation of 4	104

runs of the effective stochastic Landau-Lifshitz equations �2.10�
with the initial conditions �0=0, �0=0.05� and with the absorbing
boundary at �̄+1=0.8�. The broken curves and circular symbols
�red online� correspond to �=5, and the solid curves and triangular
symbols �blue online� correspond to �=10. In accordance with the
theoretical assumption, the analytical results approach the numeri-
cal ones with increasing field frequency.

FIG. 3. �Color online� Natural logarithm of 
T̄� as a function of

the dimensionless amplitude h̃ of the rotating magnetic field. The
solid and broken curves represent the theoretical results obtained
from the relation �4.7� for �= +1 and −1, respectively. The values
of the other parameters are a=5, �=10, and �= +1. The symbols
�in color online� depict the results obtained from the numerical
simulation of Eqs. �2.10� for different values of the damping param-

eter 
. In full agreement with theoretical predictions, ln�
T̄�� as a

function of h̃ decreases if �= +1, increases if �=−1, and does not
depend on 
.
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increased as � is increased. As expected, the agreement de-
creases in quality upon lowering the angular driving fre-
quency; this fact is corroborated by the numerical results for
�=5 �the thick dashed line versus the numerical data
points�.

Figure 3 shows the dependence of the MFPT as a function

of h̃, 
, and � at constant a=5 and �= +1. As predicted by

Eqs. �4.7� and �4.8�, T̄� can be seen to be proportional to
1/
. The up and down states ��= +1 and −1� are clearly

inequivalent for nonzero h̃. This is in perfect agreement with
the prediction of the theory, as can be deduced from the
approximate equation �4.8� in which �= +1 ��=−1� de-

creases �increases� the exponent, since h̃eff�0 for �= +1.

V. RELAXATION OF THE MAGNETIZATION

A. Relaxation law at high anisotropy barrier

The MFPTs T̄� provide important characteristics for the
magnetic dynamics of nanoparticles. If their states � are used
for information storage then the average times during which
the information in these states is kept safely must be consid-

erably shorter than T̄�. The dependence of T̄� on the charac-
teristics of the rotating field gives the possibility to intention-
ally change the relative stability of the up and down states.

The transition times T̄� from the state � to the state −�
also determine the thermally activated magnetic relaxation in
a system composed of uniaxial nanoparticles whose easy
axes are perpendicular to the plane of field rotation. If a
�1 and the precession angle20

�� =� 1 + 
2

�1 − ����2 + 
2 h̃ �5.1�

of the magnetic moment in the state � is small, i.e., ��
2 �1,

the reduced magnetization of this system can be defined as
��t�= �N+1�t�−N−1�t�	 /N, where N��t� denotes the number of
nanoparticles in the state � at time t, and N the whole num-
ber of particles. Taking into account that N+1�t�+N−1�t�=N,

this definition yields �̇�t�=2Ṅ+1�t� /N. Next, since the rate

1 / T̄� is the probability of reorientation of the magnetic mo-
ment from the state � to the state −� per unit time, we have

Ṅ��t�=N−��t� / T̄−�−N��t� / T̄� and thus the equation for ��t�
takes the form

�̇�t� = − ��t�� 1

T̄+1

+
1

T̄−1
� −

1

T̄+1

+
1

T̄−1

. �5.2�

Its solution with the initial condition ��0�=1 is given by

��t� = �1 − ���exp�− t/trel� + ��, �5.3�

where trel= T̄+1T̄−1 / �T̄+1+ T̄−1� is the relaxation time and

�� =
T̄+1 − T̄−1

T̄+1 + T̄−1

�5.4�

is the steady-state magnetization of the nanoparticle system
induced by a rapidly rotating field.

A simple analysis shows that a rapidly rotating magnetic
field causes a decrease of the relaxation time and magnetizes
the nanoparticle system along the easy axis of magnetization

�trel� trel
�0� and ���0 if h̃�0�. This conclusion is not trivial

because the rotating field has no component in the direction
of the induced magnetization. The value of this magnetiza-
tion grows with decreasing temperature and its sign is deter-
mined by the direction of the magnetic field rotation, i.e.,

sgn ��=−�. In particular, if �h̃eff � �1 then trel

= �T0 /2�cosh−1�2ah̃eff� and ��=tanh�2ah̃eff�. These results
indicate that even a weak rotating field can drastically de-
crease the relaxation time and strongly magnetize the nano-

particle system if the temperature is low enough that a�h̃eff�
�1. We note also that Eq. �5.4� overestimates the absolute
value of the magnetization because the magnetic moment is
less than m in the up state and larger than −m in the down
state.

B. Steady-state magnetization at high frequencies

In the case of a rapidly rotating field we are able to cal-
culate the steady-state magnetization �� for an arbitrary an-
isotropy barrier. To this end, we introduce the stationary
probability density Pst= Pst�� ,�� which, according to Eq.
�2.7�, satisfies the stationary �in the rotating frame� Fokker-
Planck equation




2a
� �2Pst

��2 +
1

sin2 �

�2Pst

��2 � −
�

��
� 


2a
cot � + u��,���Pst

−
�

��
�v��,�� − ��	Pst = 0, �5.5�

being properly normalized, 
0
2�d�
0

�d� Pst=1. Using the de-

compositions Pst= P̄st���+ P1�� ,�� �P̄1=0�, u�� ,��= ū���
+u1�� ,�� �ū1=0�, and v�� ,��= v̄���+v1�� ,�� �v̄1=0�, where
the overbar denotes averaging over �, i.e., �·�
= �1/2��
0

2�d��·�, we obtain from Eq. �5.5� coupled equa-

tions for P̄st,




2a

d2P̄st

d�2 −
d

d�
� 


2a
cot � + ū�P̄st −

d

d�
u1P1 = 0, �5.6�

and P1




2a
� �2P1

��2 +
1

sin2 �

�2P1

��2 � −
�

��
� 


2a
cot � + u��,���P1

+ ��
�

��
P1 −

�

��
v1P̄st −

�

��
u1P̄st +

d

d�
u1P1

−
�

��
v��,��P1 = 0. �5.7�

Assuming that P1��−1 as �→�, Eq. �5.7� reduces in
the high-frequency limit to
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��
�

��
P1 =

�

��
v1P̄st +

�

��
u1P̄st. �5.8�

Since v1=−h̃�cos � cos �+
 sin �� / sin � and u1

= h̃�
 cos � cos �−sin ��, the last equation has the solution

P1 = − �
h̃

�
�cos � cos � + 
 sin ��

P̄st

sin �

+ �
h̃

�

�

��
�
 cos � sin � + cos ��P̄st. �5.9�

Evaluating the average

u1P1 = �

h̃2

�
sin �P̄st, �5.10�

Eq. �5.6� becomes




2a

d2P̄st

d�2 −
d

d�
� 


2a
cot � − 
�cos � + h̃eff�sin ��P̄st = 0.

�5.11�

The normalized solution of this equation assumes the form

P̄st��� = C sin � exp�− 2aW̃eff���	 , �5.12�

where W̃eff����Weff��� /mHa= �1/2�sin2 �− h̃eff cos � is the
dimensionless effective energy of the nanoparticle and

C =� a

�3

exp�a�1 + h̃eff
2 �	

erfi��a�1 + h̃eff�	 + erfi��a�1 − h̃eff�	
�5.13�

is a normalizing constant derived from the condition

2�
0
�d� P̄st���=1. Here, erfi�z� stands for the imaginary er-

ror function defined as erfi�z�= �2/���
0
zdx exp�x2�.

Finally, using the definition of the steady-state magnetiza-

tion ��=2�
0
�d� cos �P̄st���, we obtain

�� =� 1

�a

exp�a�1 + h̃eff�2	 − exp�a�1 − h̃eff�2	

erfi��a�1 + h̃eff�	 + erfi��a�1 − h̃eff�	
− h̃eff.

�5.14�

Since erfi�z�=2�z+z3 /3+ ¯ � /�� if z�1 and erfi�z�
=exp�z2��1/z+1/2z3+ ¯ � /�� if z�1, in the case of a low

anisotropy barrier �a�1� this formula yields ��=2ah̃eff /3,
and in the case of a high anisotropy barrier �a�1� and small

effective field ��h̃eff � �1� it is reduced to the formula ��

=tanh�2ah̃eff�, which coincides with that derived from the
MFPT approach. As an illustration of the accuracy of �5.14�
and the applicability of the MFPT approach for describing
the magnetic relaxation in nanoparticle systems, we depict in
Fig. 4 the theoretical and numerical results for the depen-
dence of the induced magnetization �� on the anisotropy
barrier height a=mHa /2kBT.

C. Numerical verification

As in the simulation of the MFPTs, described in the pre-
vious section, the Langevin equations �2.10� were used to
compute the mean magnetization at high frequencies. How-
ever, the numerical simulation in this case differs from the
case studied before in two important aspects. First, instead of
an ensemble average over magnetic nanoparticles, a single,
stochastic magnetic moment was averaged over time,
thereby making use of ergodicity. Second, instead of using a
reflecting and an absorbing boundary, here two reflecting
boundaries were located at �=0.01� and 0.99�. For fixed

parameter values �=10, h̃=1, �=−1, 
=0.5, four trajecto-
ries were simulated for each value of a. Each trajectory was
initialized with �=0.05� and �=�. We introduced two
circles as marks on the sphere at �=0.2� and 0.8� and de-
fined a sign change of the magnetic moment as a crossing of
the �=0.8� ��=0.2�� mark, provided the magnetic moment
had been in the ��0.2� ���0.8�� domain before. Each
trajectory was run until 200 such sign changes had occurred.
The projection of the magnetic moment on the easy axis was
summed over all time steps and divided by the number of
time steps at the end of the simulation. The convergence of
the mean magnetic moment along these trajectories was
monitored and found to have converged after 200 sign
changes. From the four values for the mean magnetization, a
mean value and a standard deviation were determined. Fig-
ure 4 depicts that the simulation and the analytic result of the
steady-state theory at high frequencies, Eq. �5.14�, are in
very good agreement, indicating that the high-frequency
limit is already obtained for �=10.

VI. CONCLUSIONS

We carried out a comprehensive study of the two-
dimensional MFPT problem for the magnetic moment of a

FIG. 4. �Color online� Dimensionless induced magnetization ��

as a function of the anisotropy barrier height a for �=10, h̃=1, �
=−1, and 
=0.5. The solid curve �red online� and the broken curve
�blue online� represent the induced magnetization defined by the
formulas �5.14� and �5.4� with �4.7�, respectively. The triangular
symbols indicate results obtained from the numerical simulation of
Eqs. �2.10�. As seen, the theoretical results that follow from the
explicit solution of the Fokker-Planck equation are in excellent
agreement with the numerical results. A small systematic shift of
the induced magnetization derived within the rate theory arises
from an overestimation of the absolute values of the average mag-
netic moment in the up and down states.
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nanoparticle driven by a magnetic field rapidly rotating in the
plane perpendicular to the easy axis of magnetization. Our
approach is based on Eqs. �3.7� and �3.8� for the MFPTs that
we derived from the backward Fokker-Planck equation in the
rotating frame. In the high-frequency limit, we solved these
equations analytically and calculated the MFPTs for the
nanoparticle magnetic moment in the up and down states.
The main finding is that a rapidly rotating field influences the
MFPTs due to the change of the potential barrier between
these states, which occurs under the action of the static ef-
fective magnetic field applied along the easy axis of magne-
tization. We showed that the magnetic field rotating in the
clockwise �counterclockwise� direction increases the MFPT
for the magnetic moment in the up �down� state and de-
creases it for the magnetic moment in the down �up� state.
Our theoretical predictions are in good agreement with the
results obtained by numerical solution of the effective sto-
chastic Landau-Lifshitz equations.

In addition, we applied the derived MFPTs to study the
features of magnetic relaxation in nanoparticle systems
caused by a rotating magnetic field. We established that in
the case of a large anisotropy barrier this field always de-
creases the relaxation time and magnetizes the nanoparticle
system. The magnetization grows as the temperature de-
creases and its direction is uniquely determined by the direc-

tion of field rotation. Solving the forward Fokker-Planck
equation in the case of a rapidly rotating field, we calculated
also the magnetization for an arbitrary anisotropy barrier.
The theoretical results are in excellent agreement with the
numerical ones and confirm the applicability of the MFPT
approach for describing the magnetic relaxation in systems
of high-anisotropy nanoparticles driven by a rapidly rotating
magnetic field.

Due to the selective change of the noise-induced stability
of a rapidly driven magnetic moment of a nanoparticle, as
represented by the corresponding mean first-passage times,
the results herein can be used for potential applications in
magnetic recording technology. The relative stability of the
magnetic moment in the up and down states can be suitably
controlled either by changing the temperature T of the envi-
ronment �thereby changing the anisotropy barrier height� or
upon varying the strength of a rapidly rotating magnetic
field.
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