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We use series expansions to investigate the zero-temperature phase diagram of a recently proposed frustrated
quantum spin-1 /2 antiferromagnet on the two-dimensional union jack lattice with coupling ratio �. A single
second-order phase transition is found between a Néel phase and a canted ferrimagnetic phase at a critical
coupling �c=0.65�1�. The Néel magnetization vanishes at the transition. Dispersion curves for magnon exci-
tations are also obtained and compared with spin-wave predictions. Two Goldstone modes are found in the
canted phase, one linear in momentum and the other quadratic, in accordance with theoretical predictions.
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I. INTRODUCTION

The physics of two-dimensional quantum antiferromag-
nets on frustrated lattices is surprisingly rich and still not
fully understood. Various models have been studied in recent
years, including the square lattice J1-J2 model1–3 �a model
for Li2VOSiO4�, the Shastry-Sutherland model4,5 �a model
for SrCu2�BO2�3�, and the anisotropic triangular lattice6,7 �a
model of Cs2CuCl4�. Each of these models is based on a
square-lattice S=1/2 antiferromagnet with nearest-neighbor
exchange J1 and the addition of frustrating second-neighbor
exchanges J2=�J1 on some or all of the plaquettes of the
lattice. Although all of these models show antiferromagnetic
Néel order for small �, the phase diagrams for larger � ap-
pear to differ, showing variously columnar order, spiral or-
der, or dimerization. The rich and sometimes exotic physical
phenomena expected in such systems are well described in a
recent review.8

It is then of interest to investigate other models of this
type. One such case is the union jack lattice, shown in Fig. 1.
This lattice has been studied in classical statistical mechanics
for some time,9 but has only been considered in the context
of quantum antiferromagnets very recently by Collins et al.10

�hereafter referred to as I�, who treated the model via spin-
wave theory. This approach appeared to predict a first-order
phase transition from a Néel phase to a canted ferrimagnetic
phase and the existence of two kinds of spin-wave excita-
tions �� and � bosons� with characteristic dispersion fea-
tures. Spin-wave theory, however, is by no means always
reliable for frustrated systems with strong quantum correc-
tions, so it is desirable to test these predictions using a more
accurate systematic approach, such as series expansions.11

That is the motivation behind the present work.
The Hamiltonian for our lattice model is

H = J1�
�ij�

Si · S j + J2�
�jk�

S j · Sk, �1�

where the interactions are both antiferromagnetic �J1 ,J2

�0�, the summations are over the two kinds of bonds shown
in Fig. 1, and the Si are spin-1 /2 operators. In the following
we will set J1=1 and J2=�J1=�.

A classical variational analysis10 predicts that for �
=J2 /J1�0.5, the ground state is the Néel state, as in the
J1-J2 model. For ��0.5, the ground state is the canted fer-

rimagnetic state shown in Fig. 2, where the spins on the A
sublattice are canted at an angle � to those on the B sublattice
and at angle 2� to their neighbors on the A sublattice, with
the angle � given by

cos � =
1

2�
. �2�

In the limit �→�, the angle �→� /2: the spins on the A
sublattice are then Néel ordered, as expected, and the spins
on the A and B sublattices are at right angles to each other.

The modified second-order spin-wave expansion of I ap-
peared to show that the transition between the Néel and
canted phases is postponed until �c�0.84, with the ground-
state energy remaining lowest in the Néel phase out to that
point. The staggered magnetization according to this expan-
sion remains substantial at ��0.8, but by analogy with the
J1-J2 model it was argued10 that higher-order quantum fluc-
tuations might well reduce the magnetization at larger � and
result in a second-order transition. Another intriguing feature
of the spin-wave results was the development of an instabil-

FIG. 1. The Heisenberg spin model on the union jack lattice.
Solid lines represent nearest-neighbor antiferromagnetic interac-
tions J1; dashed lines represent next-nearest-neighbor interactions
J2.
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ity in the single-particle dispersion relation at �=0.65, with a
vanishing energy gap and quadratic dispersion at nearby mo-
menta. This is another indication of a possible second-order
transition. More accurate numerical calculations were clearly
called for.

The ground state in the canted phase has ferromagnetic
order in the z �vertical� direction and antiferromagnetic order
in the x �horizontal� direction, as shown in Fig. 2. Thus the
O�3� symmetry of the Hamiltonian is completely broken, as
it takes two vectors to specify the orientation of the order
parameters. The physics of such phases has been discussed
by Sachdev and co-workers12,13 and Roman and Soto,14 who
predict that such a system should possess one linear and one
quadratic Goldstone mode. This is consistent with the gen-
eral counting rules of Nielsen and Chadha,15 who show that
for a nonrelativistic system, if each linear mode is counted
once and each quadratic mode is counted twice, then the total
number of “bosons” so obtained should be equal to or greater
than the number of symmetry generators that are spontane-
ously broken �3, in this case�.

The characteristics of a second-order transition between a
canted phase and a Néel phase have been discussed by Sa-
chdev and Senthil12 using a generic quantum rotor model and
assuming that the Néel magnetization and spin-wave stiff-
ness remain finite at the transition point. A renormalization
group analysis shows that spatial dimension d=2 is the upper
critical dimension for such systems, with critical exponents

z = 2, 	 = 0, 
 = 1/2, �3�

where z is the appropriate dynamic critical exponent. Then
using the scaling relation

2� = �d + z − 2 + 	�
 , �4�

we obtain

� = 1/2. �5�

In the present work we perform two perturbation series
expansions for the model, one in the Néel phase and one in
the canted phase. The Néel expansion shows very clear evi-
dence of a continuous second-order phase transition at �c
�0.645, where an extra massless mode with quadratic dis-

persion develops. The staggered magnetization also vanishes
there. The critical exponents can only be crudely estimated,
but are roughly given by 
=1, �=1/2. Thus the transition
appears to be in a different universality class from the one
discussed by Sachdev and Senthil.12

The expansions in the canted phase gives much less ac-
curate results, but they are consistent with a second-order
transition at the same point. There is no sign of any interme-
diate “spin-liquid” phase in between the two ordered phases,
such as seems to occur in other two-dimensional frustrated
antiferromagnets. The ground-state energy continues
smoothly into the canted phase, without any sign of a dis-
continuity in slope as one would expect at a first-order tran-
sition. The canted magnetizations appear to be dropping
smoothly towards zero at the critical point, albeit with large
error bars. Throughout this phase, the system seems to ex-
hibit two massless Goldstone modes, as predicted by
theory.12–15 There is an unresolved puzzle, however, in that
the overall pattern of the magnon dispersion relations seems
to be quite different from that predicted by spin-wave theory.

In Sec. II we make some additional remarks on the spin-
wave theory discussed in I, and it is shown that the Gold-
stone modes predicted by general theory are already present
in first-order spin-wave theory. In Sec. III we briefly indicate
how our series expansions were carried out. Numerical re-
sults for the Néel phase are presented in Sec. IV, and for the
canted phase in Sec. V. Our conclusions are summarized in
Sec. VI.

II. LINEAR SPIN-WAVE THEORY

Spin-wave expansions for this system were discussed in I.
One important feature was missed in that discussion, how-
ever, which we bring out here: namely, the appearance of the
quadratic Goldstone mode. We will use a convention in
which kx and ky are the components of momentum along the
nearest-neighbor axes, and we set the nearest-neighbor spac-
ing to 1, so that the structure constants for the full lattice and
the A sublattice are, respectively,

�k =
1

2
�cos kx + cos ky� ,

	k = cos kx cos ky . �6�

This convention differs from the previous paper, but other-
wise, our conventions are the same, and we refer to I for the
formalism and further details.

A. Néel phase

Since the Néel state has a two-sublattice structure, the
spin-wave excitations �magnons� in this system also have
two branches, which we denote the � and � bosons, respec-
tively. According to linear spin-wave theory in the Néel
phase, the energy of the � boson in zero magnetic field takes
the form �I, Eq. �27��

Ek
� = 4S	uk

2�1 − ��1 − 	k�� + vk
2 − 2ukvk�k
 , �7�

where S is the spin �here S=1/2� and uk and vk are given by

FIG. 2. Spin configurations in the canted phase.
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uk = �1 + hk

2hk
�1/2

, vk = sgn��k��1 − hk

2hk
�1/2

, �8�

where

hk = 1 −
�k

2

fk
2 �1/2

, fk = 1 −
�

2
�1 − 	k� . �9�

We are interested in the special case k= �� ,0� �or �0,���,
where �k=0 and 	k=−1. Then we find hk→1, uk→1, and
vk→0, and Ek

� takes the simple form

Ek=��,0�
� = 2�1 − 2�� . �10�

This energy gap vanishes linearly at �=1/2, the classical
transition point. Beyond this point, the energy eigenvalue at
this momentum is negative, and the Néel solution becomes
unphysical. In the modified second-order theory, the point at
which this gap vanishes moves out to �c=0.645.10

B. Canted phase

In linear spin-wave theory for the canted phase, at canting
angle �, the single-particle energies at momenta �±k� appear
as eigenvalues of the Hamiltonian Hk �I, Eq. �45��:

Hk = 2S�qk
†Ĥkqk + Nk� . �11�

Here qk
† has four components �ak

† ,b−k ,bk
† ,a−k�, where

�ak
† ,ak� and �bk

† ,bk� are the usual spin-deviation operators on
the A and B sublattices, respectively, with commutation re-
lations among them:

�qi,qj
†� = Ji�ij �i, j = 1, . . . ,4� . �12�

Here J is a diagonal matrix with diagonal elements �1,−1,

+1,−1�. The matrix Ĥk has the form

Ĥk = �
A C D E

C B 0 D

D 0 B C

E D C A
� , �13�

with

A = 2�cos � − � cos 2�� + ��1 + cos 2��	k,

B = 2 cos � ,

C = − �1 + cos ���k,

D = �1 − cos ���k,

E = − ��1 − cos 2��	k, �14�

and the normal-ordering correction is

Nk = − A − B . �15�

We look for the eigenvalues of Hk under the generalized
Bogoliubov transformation

qi = �
j

Sijqj� �i, j = 1, . . . ,4� , �16�

Ĥk� = S†ĤkS , �17�

which preserves the commutation relations �12�; this implies
that

SJS† = J . �18�

Now S is not unitary, and so the eigenvalues of Ĥk are not
invariant under the transformation. We note, however, that
from Eqs. �17� and �18� it follows that

�JS�−1�ĤkJ��JS� = JĤk�, �19�

and so a similarity transform of � ĤkJ can be used to pro-

duce a diagonal matrix JĤk�= Ĥk�J, which does preserve
eigenvalues.16 The matrix  is given by

 = �
A − C D − E

C − B 0 − D

D 0 B − C

E − D C − A
� . �20�

The characteristic equation det�−�I�=0 then yields a quar-
tic equation for the eigenvalues,

�4 − 2b�2 + c = 0, �21�

where

b =
1

2
�A2 + B2 − 2C2 + 2D2 − E2� ,

c = �B�A − E� − �C − D�2��B�A + E� − �C + D�2� . �22�

The solutions are

�2 = b ± �b2 − c �23�

or

�k = 2S��b ± �b2 − c� �24�

for the eigenvalues of the original Hamiltonian.
Setting cos �=1/ �2�� �the classical value�, the various

constants can be simplified:

b → �1 + 4�4

�2 + 2	k + 2�1 − 2�2�	k
2 −

4

�
�k

2�� 2,

c →
2

�2 �1 + 	k − 2�k
2��2�2 + �1 − 2�2�	k − �k

2� . �25�

Now let us look at some special cases:
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1. �k�™1

Then �k�1−k2 /4, 	k�1−k2 /2 and b��2−1/�� /2, c
�k4. Hence the two energies are

�k � 2S2 −
1

�
�,

2�S

2� − 1
k2. �26�

Here we see the emergence of an extra quadratic zero mode
at zero momentum. At �=1/2, the zero mode becomes lin-
ear, as in the Néel phase.

2. k= „� ,0…+q, �q�™1

Then �k�q2 /4, 	k�−1+q2 /2 and b��1/�2+ �4�2

−1�q2� /2, c��4�2−1�q2 /�2. Hence the two energies are

�k �
2S

�
, 2S�4�2 − 1�q� . �27�

Here we see the emergence of a linear zero mode at k
= �� ,0�. Only at �=1/2 does the linear term vanish, and the
mode becomes quadratic, matching the result in the Néel
phase.

Figure 3 shows a graph of the two energies as functions of
k, along high-symmetry cuts in the Brillouin zone, for the
cases �=0.75 and 1 �note that the numerical results in the
canted phase given in I were erroneous, due to a program-
ming error�. It can be seen that there is a crossover between
the two eigenvalues. The quadratic zero mode at k= �0,0�
and the linear zero mode at �� ,0� are clearly seen in this
figure, satisfying the counting rules of Nielsen and Chadha.15

Thus it can be seen that linear spin-wave theory already
demonstrates the existence of a massless Goldstone mode
with quadratic dispersion, characteristic of a ferromagnetic
system, throughout the canted phase. Of course, we expect
the dependence of the canting angle � on � to be renormal-
ized by quantum fluctuation terms at higher order.

III. SERIES EXPANSION METHODS

The method of series expansions is based on dividing the
Hamiltonian into two parts H=H0+�V, where H0 can be
solved exactly, � is a parameter introduced for convenience
such that �=1 for the physical Hamiltonian, and the V term
is treated perturbatively to high order. The resulting series in
powers of � is then evaluated at �=1 by standard numerical
methods �Padé approximants, integrated differential
approximants11� to obtain estimates of the physical properties
of the original Hamiltonian. The decomposition of H can be
done in various ways, depending on the type of phase ex-
pected. Details of the approach can be obtained from Ref. 11.

A. Ising expansion in the Néel phase

In the region of small � we expect Néel order, and we use
an “Ising expansion”11 in which H is decomposed as

H0 = �
�ij�

Si
zSj

z + ��
�jk�

Sj
zSk

z − t�
i

�Si
z − 1/2� ,

V =
1

2�
�ij�

�Si
+Sj

− + Si
−Sj

+� +
�

2 �
�jk�

�Sj
+Sk

− + Sj
−Sk

+� + t�
i

�Si
z − 1/2� ,

�28�

where Si
+ and Si

− are the usual raising and lowering operators,
and the sums �ij� run over nearest-neighbor pairs, while the
sums �jk� run over bonds on the A sublattice as shown in Fig.
2. The last term of strength t in both H0 and V is a local field
term, which can be included to improve convergence. The
unperturbed ground state is the classical Néel state with en-
ergy E0 /N=−J1 /2+J2 /4. Series have been obtained to order
�13, at fixed values of � and t, for the ground-state energy
per site, the near-neighbor correlation functions 	�Si

�Sj
��, �

=x ,y ,z
 and the staggered magnetization Ms= ��−1�iSi
z�. This

calculation requires 3 070 628 linked clusters of up to 13
sites.

Excitation energies can also be obtained using a linked-
cluster expansion.11,17 We have obtained series for the mag-
non energy �k to order �,10 involving 2 106 181 clusters of
up to 11 sites. Results of the analysis are presented in the
next section.

B. Ising expansions in the canted phase

We turn now to the large-� phase. The classical ground
state is the canted ferrimagnetic state discussed in Sec. I,
with canting angle cos �=1/2�. Quantum fluctuations will
modify this picture to some degree, of course. In linear spin-
wave theory, the canting angle is unchanged from the classi-
cal result. In the series approach � is not known a priori, and
it is necessary to compute series for different values of � and
then determine � by some criterion, such as minimizing the
ground-state energy. This approach has been used
previously6 for the anisotropic triangular lattice.

Following I, we quantize the spins with respect to the
axes shown in Fig. 2, so that the z axis on the B sublattice
points upwards and the z axes on the sublattices A1 and A2

FIG. 3. �Color online� Dispersion relations for the one-particle
states for �=0.75 �solid lines� and 1 �dashed lines�, along high-
symmetry cuts in the Brillouin zone, as predicted by linear spin-
wave theory in the canted phase.
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are canted at angle � to the downwards direction as shown,
where � is a parameter to be determined. The y axes are
taken to lie perpendicular to the paper in each case. In terms
of spin components, we then write

H0 = − cos � �
B:n,�

SB:n
z SA:n+�

z + � cos 2� �
A1:n,��

SA1:n
z SA2:n+��

z

− t�
i

�Si
z − 1/2� �29�

and

V = �
B:n,�

�− SB:n
x SA:n+�

x cos � + 	n��SB:n
z SA:n+�

x

− SB:n
x SA:n+�

z �sin � + SB:n
y SA:n+�

y �

+ � �
A1:n,��

�SA1:n
x SA2:n+��

x cos 2� + SA1:n
y SA2:n+��

y

+ �SA1:n
z SA2:n+��

x − SA1:n
x SA2:n+��

z �sin 2�� + t�
i

�Si
z − 1/2� .

�30�

Here the direction vectors are 	�
= ± i , ± j and 	��

= ± �i± j� and the phase factor 	n�= ± �−1�ny for � equals ±i
or ±j, respectively. The last term of strength t in both H0 and
V is a local field term, which can be included to improve
convergence.

Since the canted state also has a two sublattice structure,
the spin-wave excitations �magnons� in this system again
have two branches, which we denote as in the previous sub-
section. In this phase, we have obtained series for the
ground-state energy per site, the staggered magnetization in
the x and z directions, the net magnetization in the z direction
to order �12, and the one-magnon dispersion to order �9.

IV. RESULTS IN THE NÉEL PHASE

A. Ground-state energy

In Fig. 4 we show the ground-state energy as a function of
�=J2 /J1 and, for comparison, results from linear and
second-order spin-wave theory.10 The series estimates in the
Néel phase lie just slightly higher than the modified spin-
wave values. In the canted phase, only linear spin-wave re-
sults are available, shown as the solid curve for ��0.5. An-
ticipating Sec. V, series estimates for the ground-state energy
in the canted phase are also shown as open circles in the
figure. It can be seen that the estimates from the two series
expansions merge at ��0.65, marking the transition point
between the two phases. The two curves merge smoothly,
without any visible discontinuity in slope, providing a first
indication that the transition is second order.

B. Staggered magnetization

Figure 5�a� shows the staggered magnetization in the Néel
phase as a function of �, together with the best available
spin-wave estimate.10 It can be seen that the series results
agree well with the spin-wave estimates at small �, but then
drop away rapidly and vanish at ��0.65. This is an even

stronger indicator that we are in the vicinity, at least, of a
second-order phase transition. However, the error bars in this
region are large and it is not possible, from the series, to
obtain the critical point �c with high accuracy or even to
exclude the possibility of a weak first-order transition. The
spin-wave estimates substantially overestimate the magneti-
zation at larger � and, hence, the region of stability of the
Néel phase.

Assuming a second-order transition, a simple fit of the
form M �a��c−��� in the vicinity of the transition gives a
critical point �c=0.65�1� and a critical index �=0.4�1�, pos-
sibly compatible with a square-root branch point, such as the
mean-field value predicted by Sachdev and Senthil.12

To help delineate the limit of stability of the Néel phase
more precisely, we have also derived and analyzed series for
the quantity

C = �3�Si
zSj

z� − �Si · S j�� , �31�

which is a measure of the breaking of spin rotational sym-
metry. At the transition point we expect O�3� spin symmetry
to be restored and hence C=0. Figure 5�b� shows C for
the nearest-neighbor and next-nearest-neighbor correlations
as functions of �. The transition appears to be second order,
with C going continuously to zero and yielding an estimate
�c=0.64±0.02.

C. Single-particle dispersion

We turn now to the magnon excitations. The dispersion
curve obtained from series provides a rather stringent test of
the approximate spin-wave theories and also provides esti-
mates of energy gaps and hence of critical points, where the
gap vanishes. Figure 6 shows dispersion curves along sym-

FIG. 4. �Color online� Ground-state energy per site in the Néel
and canted phases, from Ising expansions. Also shown are the re-
sults from linear spin-wave theory �solid line� and modified second-
order spin-wave theory �dashed line� in the Néel phase. The vertical
line shows the estimated position of the critical point, at �c�0.65.
To the left of the line the system is in the Néel phase and to the right
in the canted phase.
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metry lines in the Brillouin zone, for various values of �, in
the Néel phase.

Both magnon species are gapless at k= �0,0�, and it is
evident that the �-boson branch also becomes gapless at k
= �� ,0� �and �0,��� as � approaches the critical value �c

�0.645, yet further evidence of a second-order transition at
that point. The dispersion near the gapless points �� ,0� and
�0,�� is quadratic, just as predicted for the critical point by
spin-wave theory. There is remarkable agreement with the
predictions of the modified second-order spin-wave theory
for this dispersion relation. The only discrepancy is the varia-
tion between momenta �� ,0� and �� /2 ,� /2�: this small dis-
crepancy was already noticed for the simple square-lattice
Heisenberg model18. Thus spin-wave theory for this quantity
remains remarkably accurate even up to the critical point.

Figure 7 shows the energy gap at k= �� ,0� as a function
of �. The data can be quite well represented by a straight

line, corresponding to a critical index 
=1 and a critical
point �c=0.656�5�.

The dispersion of the � bosons does not vary greatly with
�, as was already seen in spin-wave theory.

FIG. 5. �a� Staggered magnetization M in the Néel phase from
series �circles with error bars�, with modified spin-wave estimates
�from I� shown as the dashed line. �b� Correlation parameters C
�Eq. �31��, for first and second neighbors.

FIG. 6. �Color online� Dispersion curves for �a� the �-boson and
�b� �-boson excitations along symmetry lines in the Brillouin zone,
for various �=J2 /J1 in the Néel phase. The solid lines are the result
of second-order spin-wave theory �Ref. 10�.

FIG. 7. The energy gap at k= �� ,0� as a function of �. The
straight line is a least-squares fit to the data. The gap vanishes at
�c=0.656�5�.
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D. Single-particle spectral weight

Figure 8 shows the �-boson transverse spectral weight
S1p�k� along high-symmetry cuts in the Brillouin zone,
where S1p�k� is the single-particle contribution to the trans-
verse structure factor

S��,k� =
1

2�N
�
i,j
�

−�

�

ei��t+k·�ri−rj���Sj
x�t�Si

x�0� + Sj
y�t�Si

y�0��dt

= �„� − �k�…S1p�k� + ¯ . �32�

It can be seen that the overall spectral weight changes
remarkably little between �=0 and �=0.645. As in the
square lattice Heisenberg model,11 the spectral weight van-
ishes at k= �0,0� and diverges at k= �� ,��. Note that it re-
mains finite at k= �� ,0�, even at the critical point. Normally,
one expects the one-particle spectral weight to diverge as the
energy gap vanishes at a critical point,19 so in this case the
quasiparticle residue must vanish at the critical point. This is
consistent with the general behavior of Goldstone bosons,
whose couplings are “soft”—i.e., vanish at zero momentum.

The series for the structure factor of the � boson does not
converge well, and we display no results for it here.

V. RESULTS IN THE CANTED PHASE

We turn now to the canted phase at large �. It is harder to
obtain accurate results here than it is in the Néel phase. The
expansions are technically more complicated since we need
to divide the lattice into four sublattices, and so the expan-
sion cannot be carried to such high orders, and to this must
be added the uncertainty in the canting angle �. The value of
� was determined in the following manner. We expect a zero
mode to develop at k= �� ,0� in the canted phase, and the
estimated energy gap at this momentum turns out to be par-
ticularly sensitive to the value of �. Thus we searched for a
value of � where the estimated energy gap at this point does
in fact vanish. The canting angle is determined quite accu-
rately by this criterion. Figure 9 shows the behavior of the
canting angle as a function of �, together with the classical
prediction cos �=1/2�. The series result lies substantially
lower than the classical one at all values of �.

The ground-state energy in this phase has already been
discussed in Sec. IV A. It is not very sensitive to the estimate
of �.

A. Magnetizations

Figures 10�a�, 10�b�, and 10�c� show estimates of the av-
erage magnetization Mz= �Sz� in the z direction, the staggered
magnetization in the z direction, Mz

s= ��−1�x+ySz�, and the
staggered magnetization in the x direction, Mx

s = ��−1�ySx�,
respectively, as functions of �. All of them appear to be
trending downwards towards zero at the critical point �
=0.65 but the errors in these estimates are rather large, and it
is hardly possible to extract meaningful estimates of the criti-
cal exponents.

B. Single-particle dispersion

Figures 11�a� and 11�b� show the dispersion relations of
the � and � bosons, respectively, at some representative cou-
plings. The results here are rather different from the linear
spin-wave predictions. The �-boson energy remains finite at
k= �0,0� and vanishes at �� ,0�, as we required when fixing
�, but the behavior in the neighborhood of the zero mode
appears to be quadratic in momentum, rather than linear as
predicted by the spin-wave theory. The � boson, on the other
hand, has a zero mode at k= �0,0� which appears to be linear
rather than quadratic. Thus the counting rules of the general
theory are satisfied, but the linear and quadratic modes ap-
pear to be interchanged as compared with the spin-wave pre-
diction.

Further evidence comes from the behavior of the energy
gap as a function of �, the anisotropy parameter. A standard
D log Padé analysis �Table I� was made to estimate the criti-
cal exponent of the gap as a function of �. For the � boson at
�� ,0�, the exponent is very close to 1, corresponding to a
linear zero at �=1, while for the � boson at �0, 0�, it is very

FIG. 8. �Color online� One-particle transverse spectral weight
for the � boson.

FIG. 9. �Color online� Estimated canting angle in the canted
phase as a function of �. The solid line is the classical result
cos �=1/2�, while the circles are the series estimates.
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close to 0.5, indicating a square-root branch point. Now in
spin-wave theory, an exponent 0.5 is associated with linear
behavior in momentum, while an exponent of 1 would be
associated with quadratic behavior in momentum. It can be
shown that the same connection holds for this model, at least
in leading order of spin-wave theory. These results reinforce
the momentum dependence outlined above. The complicated
crossover between � and � bosons predicted by linear spin-
wave theory also does not seem to occur in the series results.

VI. SUMMARY AND CONCLUSIONS

We have used both high-order series expansions and spin-
wave theory to explore the phase diagram of a frustrated
Heisenberg spin model on the union jack lattice.

Series expansions in the Néel phase at small couplings �
show very clear evidence of a second-order phase transition
at a critical coupling �c=0.65�1�. Both the staggered magne-
tization and the energy gap at momentum k= �� ,0� vanish at
that point. The magnon dispersions in this phase are remark-
ably close to the predictions of the modified spin-wave
theory. The critical indices can only be crudely estimated,
but are consistent with 
=1, �=1/2.

For couplings ���c, the system lies in the canted phase
predicted by the classical theory.10 There is no sign of any
intermediate “spin-liquid” phase between the two ordered

FIG. 10. Estimates of �a� the average magnetization Mz= �Sz� in
the z direction, �b� the staggered magnetization in the z direction,
Mz

s= ��−1�x+ySz�, and �c� the staggered magnetization in the x direc-
tion, Mx

s = ��−1�ySx�, as functions of �. The solid curves are the
linear spin-wave results.

FIG. 11. �Color online� Dispersion curves for �a� �-boson and
�b� �-boson excitations for various �=J2 /J1 in the canted phase of
the union jack model. The solid lines are merely to guide the eye.
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phases, such as occurs in other frustrated systems. Series
expansions in the canted phase give a ground-state energy
which continues smoothly from the Néel into the canted
phase. The canted ferromagnetic and antiferromagnetic order
parameters, in the pattern shown in Fig. 2, appear to drop
smoothly towards zero around �c, albeit with large error
bars.

The critical indices estimated at the transition do not
agree with those predicted by Sachdev and Senthil12 for a
Néel–to–canted–phase transition. Those authors assumed
that the Néel order parameter and spin stiffness would re-
main finite at the transition, whereas in the present case they
vanish. Presumably this places our transition in a different
universality class. It would be interesting to see if their meth-
ods could be adapted to this case.

Results for the magnon dispersions in the canted phase
are consistent, having chosen the appropriate canting angle,
with the presence of two Goldstone modes, one linear in
momentum near the Goldstone zero and the other quadratic.
This accords with theoretical predictions,12–15 as discussed in
the Introduction. However, the pattern of the dispersion
curves found by series expansions is quite different from that

predicted by spin-wave theory, and the positions of the linear
and quadratic Goldstone modes appear to be interchanged.
Spin-wave theory fails to predict the vanishing of the Néel
magnetization at the transition and cannot be taken as an
infallible guide, but still this discrepancy remains something
of a puzzle.

There is no experimental realization of this model at
present, but the ingenuity of physical chemists could possi-
bly provide one in the future. Theoretically, the model is
interesting because it exhibits a canted ferrimagnetic phase
and a continuous transition from the Néel phase to the canted
phase, whose nature deserves further exploration.
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TABLE I. Pole �residue� of �N /M� Dlog Padé approximants to the �-boson gap as a function of � at
k= �� ,0� and the �-boson gap at k= �0,0� for �=1, �=0.592, and t=1. Defective approximants are marked
with an asterisk.

N−2/N N−1/N N /N N+1/N N+2/N

�-boson gap at k=� ,0, unbiased

N=1 1.0277�1.282� 1.1044�1.481� 1.0800�1.385� 1.0087�1.054�
N=2 1.1111�1.509� 1.0858�1.413� 1.1152�1.504�* 0.9363�0.677� 0.9655�0.841�
N=3 1.1361�1.562�* 1.0120�1.126� 0.9776�0.922� 1.0494�1.563� 0.9857�0.966�
N=4 0.9795�0.935� 0.9926�1.021� 0.9928�1.023�
N=5 0.9928�1.023�

�-boson gap at k=� ,0, biased �c=1

N=1 1.0000�1.214� 1.0000�1.099� 1.0000�1.018�
N=2 1.0000�1.215� 1.0000�1.262�* 1.0000�0.818� 1.0000�1.008� 1.0000�1.016�
N=3 1.0000�0.885� 1.0000�1.070� 1.0000�1.056� 1.0000�1.093� 1.0000�1.071�
N=4 1.0000�1.057� 1.0000�1.065� 1.0000�1.077� 1.0000�1.083�
N=5 1.0000�1.077� 1.0000�1.426�*

�-boson gap at k=0,0, unbiased

N=1 0.4958�0.186� 0.8744�0.580� 1.2308�1.617� 1.4345�2.984�
N=2 0.5724�0.000�* 0.9017�−0.095�* 1.6917�−1.361�* 1.3653�2.370� 1.4597�3.187�*

N=3 0.9343�0.444� 1.1514�0.998� 0.8865�0.223� 1.2583�1.665�* 1.3423�2.285�*

N=4 1.0573�0.679� 1.1114�0.860� 1.5174�5.317�*

N=5 1.0178�0.594�*

�-boson gap at k=0,0, biased �c=1

N=1 1.0000�0.758� 1.0000�0.867� 1.0000�0.705�
N=2 1.0000�−21.9�* 1.0000�0.911� 1.0000�0.802� 1.0000�1.388�* 1.0000�0.204�
N=3 1.0000�0.538� 1.0000�0.576� 1.0000�0.469� 1.0000�0.515� 1.0000�0.341�
N=4 1.0000�0.551� 1.0000�0.502� 1.0000�0.473� 1.0000�1.136�*

N=5 1.0000�0.567�* 1.0000�0.555�*
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